Abstract

An improved algorithm named “twice-FFT” for multi-point intrusion location in distributed Sagnac sensing system is proposed and demonstrated. To find the null-frequencies more accurately and efficiently, a second FFT is applied to the frequency spectrum of the phase signal caused by intrusion. After Gaussian fitting and searching the peak response frequency in the twice-FFT curve, the intrusion position could be calculated out stably. Meanwhile, the twice-FFT algorithm could solve the problem of multi-point intrusion location. Based on the experiment with twice-FFT algorithm, the location error less than 100m for single intrusion is achieved at any position along the total length of 41km, and the locating ability for two or three intrusions occurring simultaneously is also demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Juarez, E. W. Maier, K. N. Choi, H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
    [CrossRef]
  2. P. Chelliah, K. Murgesan, S. Samvel, B. R. Chelamchala, J. Tammana, M. Nagarajan, B. Raj, “Looped back fiber mode for reduction of false alarm in leak detection using distributed optical fiber sensor,” Appl. Opt. 49(20), 3869–3874 (2010).
    [CrossRef] [PubMed]
  3. H. Murayama, K. Kageyama, H. Naruse, A. Shimada, K. Uzawa, “Application of fiber-optic distributed sensors to health monitoring for full-scale composite structures,” J. Intell. Mater. Syst. Struct. 14(1), 3–13 (2003).
    [CrossRef]
  4. H. Ghafoori-Shiraz, T. Okoshi, “Fault location in optical fibers using optical frequency domain reflectometry,” J. Lightwave Technol. 4(3), 316–322 (1986).
    [CrossRef]
  5. X. Li, Q. Sun, J. Wo, M. Zhang, D. Liu, “Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection,” J. Lightwave Technol. 30(8), 1113–1120 (2012).
    [CrossRef]
  6. Q. Sun, D. Liu, J. Wang, H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281(6), 1538–1544 (2008).
    [CrossRef]
  7. X. Hong, J. Wu, C. Zuo, F. Liu, H. Guo, K. Xu, “Dual Michelson interferometers for distributed vibration detection,” Appl. Opt. 50(22), 4333–4338 (2011).
    [CrossRef] [PubMed]
  8. H. Ohno, H. Naruse, M. Kihara, A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol. 7(1), 45–64 (2001).
    [CrossRef]
  9. N. Linze, P. Mégret, M. Wuilpart, “Development of an intrusion sensor based on a polarization-OTDR system,” IEEE Sens. J. 12(10), 3005–3009 (2012).
    [CrossRef]
  10. Y. Peled, A. Motil, M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
    [CrossRef] [PubMed]
  11. K. Wada, H. Narui, D. Yamamoto, T. Matsuyama, H. Horinaka, “Balanced polarization maintaining fiber Sagnac interferometer vibration sensor,” Opt. Express 19(22), 21467–21474 (2011).
    [CrossRef] [PubMed]
  12. S.-C. Huang, W.-W. Lin, M.-T. Tsai, M.-H. Chen, “Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks,” Sens. Actuators A Phys. 135(2), 570–579 (2007).
    [CrossRef]
  13. Z. Guang, X. Chao, L. Yijun, and Z. Huigang, “Dual-Sagnac optical fiber sensor used in acoustic emission source location,” in Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC),2011(IEEE, 2011), pp. 1598–1602.
  14. W. Qiang and W. Xiaowei, “Interferometeric fibre optic signal processing based on wavelet transform for subsea gas pipeline leakage inspection,” in Measuring Technology and Mechatronics Automation (ICMTMA),2010International Conference on(IEEE, 2010), pp. 501–504.
  15. G. Hong, B. Jia, H. Tang, “Location of a wideband perturbation using a fiber Fox–Smith interferometer,” J. Lightwave Technol. 25(10), 3057–3061 (2007).
    [CrossRef]
  16. H. Wu, H. Xu, C. Wang, and D. Zhao, “Position determination and monitoring of disturbance along distributed fiber optic sensors,” in SPIE Defense, Security, and Sensing(International Society for Optics and Photonics, 2011), pp. 80280L–80280L–80286.
  17. P. R. Hoffman, M. G. Kuzyk, “Position determination of an acoustic burst along a Sagnac interferometer,” J. Lightwave Technol. 22(2), 494–498 (2004).
    [CrossRef]
  18. H. Xu, H. Wu, Z. Qiao, and Q. Xiao, “A research on polarization effects in a distributed optical fiber sensor disturbance location system,” in SPIE Defense, Security, and Sensing(International Society for Optics and Photonics, 2011), pp. 80280R–80280R–80210.
  19. D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
    [CrossRef]
  20. A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE T. Microw. Theory 30(10), 1635–1641 (1982).
    [CrossRef]
  21. M. J. Connelly, “Digital synthetic-heterodyne interferometric demodulation,” J. Opt. A, Pure Appl. Opt. 4(6), S400–S405 (2002).
    [CrossRef]
  22. C. He, L. Hang, and B. Wu, “Application of homodyne demodulation system in fiber optic sensors using phase generated carrier based on LabVIEW in pipeline leakage detection,” in 2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies(International Society for Optics and Photonics, 2006), 61502–61506.
    [CrossRef]

2012

2011

2010

2008

Q. Sun, D. Liu, J. Wang, H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281(6), 1538–1544 (2008).
[CrossRef]

2007

S.-C. Huang, W.-W. Lin, M.-T. Tsai, M.-H. Chen, “Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks,” Sens. Actuators A Phys. 135(2), 570–579 (2007).
[CrossRef]

G. Hong, B. Jia, H. Tang, “Location of a wideband perturbation using a fiber Fox–Smith interferometer,” J. Lightwave Technol. 25(10), 3057–3061 (2007).
[CrossRef]

2005

2004

2003

H. Murayama, K. Kageyama, H. Naruse, A. Shimada, K. Uzawa, “Application of fiber-optic distributed sensors to health monitoring for full-scale composite structures,” J. Intell. Mater. Syst. Struct. 14(1), 3–13 (2003).
[CrossRef]

2002

M. J. Connelly, “Digital synthetic-heterodyne interferometric demodulation,” J. Opt. A, Pure Appl. Opt. 4(6), S400–S405 (2002).
[CrossRef]

2001

H. Ohno, H. Naruse, M. Kihara, A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol. 7(1), 45–64 (2001).
[CrossRef]

1988

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
[CrossRef]

1986

H. Ghafoori-Shiraz, T. Okoshi, “Fault location in optical fibers using optical frequency domain reflectometry,” J. Lightwave Technol. 4(3), 316–322 (1986).
[CrossRef]

1982

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE T. Microw. Theory 30(10), 1635–1641 (1982).
[CrossRef]

Chelamchala, B. R.

Chelliah, P.

Chen, M.-H.

S.-C. Huang, W.-W. Lin, M.-T. Tsai, M.-H. Chen, “Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks,” Sens. Actuators A Phys. 135(2), 570–579 (2007).
[CrossRef]

Choi, K. N.

Connelly, M. J.

M. J. Connelly, “Digital synthetic-heterodyne interferometric demodulation,” J. Opt. A, Pure Appl. Opt. 4(6), S400–S405 (2002).
[CrossRef]

Dandridge, A.

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE T. Microw. Theory 30(10), 1635–1641 (1982).
[CrossRef]

Ghafoori-Shiraz, H.

H. Ghafoori-Shiraz, T. Okoshi, “Fault location in optical fibers using optical frequency domain reflectometry,” J. Lightwave Technol. 4(3), 316–322 (1986).
[CrossRef]

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE T. Microw. Theory 30(10), 1635–1641 (1982).
[CrossRef]

Guo, H.

Hoffman, P. R.

Hong, G.

Hong, X.

Horinaka, H.

Huang, S.-C.

S.-C. Huang, W.-W. Lin, M.-T. Tsai, M.-H. Chen, “Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks,” Sens. Actuators A Phys. 135(2), 570–579 (2007).
[CrossRef]

Jia, B.

Juarez, J. C.

Kageyama, K.

H. Murayama, K. Kageyama, H. Naruse, A. Shimada, K. Uzawa, “Application of fiber-optic distributed sensors to health monitoring for full-scale composite structures,” J. Intell. Mater. Syst. Struct. 14(1), 3–13 (2003).
[CrossRef]

Kihara, M.

H. Ohno, H. Naruse, M. Kihara, A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol. 7(1), 45–64 (2001).
[CrossRef]

Kuzyk, M. G.

Li, X.

Lin, W.-W.

S.-C. Huang, W.-W. Lin, M.-T. Tsai, M.-H. Chen, “Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks,” Sens. Actuators A Phys. 135(2), 570–579 (2007).
[CrossRef]

Linze, N.

N. Linze, P. Mégret, M. Wuilpart, “Development of an intrusion sensor based on a polarization-OTDR system,” IEEE Sens. J. 12(10), 3005–3009 (2012).
[CrossRef]

Liu, D.

X. Li, Q. Sun, J. Wo, M. Zhang, D. Liu, “Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection,” J. Lightwave Technol. 30(8), 1113–1120 (2012).
[CrossRef]

Q. Sun, D. Liu, J. Wang, H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281(6), 1538–1544 (2008).
[CrossRef]

Liu, F.

Liu, H.

Q. Sun, D. Liu, J. Wang, H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281(6), 1538–1544 (2008).
[CrossRef]

Maier, E. W.

Matsuyama, T.

Mégret, P.

N. Linze, P. Mégret, M. Wuilpart, “Development of an intrusion sensor based on a polarization-OTDR system,” IEEE Sens. J. 12(10), 3005–3009 (2012).
[CrossRef]

Mortimore, D. B.

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
[CrossRef]

Motil, A.

Murayama, H.

H. Murayama, K. Kageyama, H. Naruse, A. Shimada, K. Uzawa, “Application of fiber-optic distributed sensors to health monitoring for full-scale composite structures,” J. Intell. Mater. Syst. Struct. 14(1), 3–13 (2003).
[CrossRef]

Murgesan, K.

Nagarajan, M.

Narui, H.

Naruse, H.

H. Murayama, K. Kageyama, H. Naruse, A. Shimada, K. Uzawa, “Application of fiber-optic distributed sensors to health monitoring for full-scale composite structures,” J. Intell. Mater. Syst. Struct. 14(1), 3–13 (2003).
[CrossRef]

H. Ohno, H. Naruse, M. Kihara, A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol. 7(1), 45–64 (2001).
[CrossRef]

Ohno, H.

H. Ohno, H. Naruse, M. Kihara, A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol. 7(1), 45–64 (2001).
[CrossRef]

Okoshi, T.

H. Ghafoori-Shiraz, T. Okoshi, “Fault location in optical fibers using optical frequency domain reflectometry,” J. Lightwave Technol. 4(3), 316–322 (1986).
[CrossRef]

Peled, Y.

Raj, B.

Samvel, S.

Shimada, A.

H. Murayama, K. Kageyama, H. Naruse, A. Shimada, K. Uzawa, “Application of fiber-optic distributed sensors to health monitoring for full-scale composite structures,” J. Intell. Mater. Syst. Struct. 14(1), 3–13 (2003).
[CrossRef]

H. Ohno, H. Naruse, M. Kihara, A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol. 7(1), 45–64 (2001).
[CrossRef]

Sun, Q.

X. Li, Q. Sun, J. Wo, M. Zhang, D. Liu, “Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection,” J. Lightwave Technol. 30(8), 1113–1120 (2012).
[CrossRef]

Q. Sun, D. Liu, J. Wang, H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281(6), 1538–1544 (2008).
[CrossRef]

Tammana, J.

Tang, H.

Taylor, H. F.

Tsai, M.-T.

S.-C. Huang, W.-W. Lin, M.-T. Tsai, M.-H. Chen, “Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks,” Sens. Actuators A Phys. 135(2), 570–579 (2007).
[CrossRef]

Tur, M.

Tveten, A. B.

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE T. Microw. Theory 30(10), 1635–1641 (1982).
[CrossRef]

Uzawa, K.

H. Murayama, K. Kageyama, H. Naruse, A. Shimada, K. Uzawa, “Application of fiber-optic distributed sensors to health monitoring for full-scale composite structures,” J. Intell. Mater. Syst. Struct. 14(1), 3–13 (2003).
[CrossRef]

Wada, K.

Wang, J.

Q. Sun, D. Liu, J. Wang, H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281(6), 1538–1544 (2008).
[CrossRef]

Wo, J.

Wu, J.

Wuilpart, M.

N. Linze, P. Mégret, M. Wuilpart, “Development of an intrusion sensor based on a polarization-OTDR system,” IEEE Sens. J. 12(10), 3005–3009 (2012).
[CrossRef]

Xu, K.

Yamamoto, D.

Zhang, M.

Zuo, C.

Appl. Opt.

IEEE Sens. J.

N. Linze, P. Mégret, M. Wuilpart, “Development of an intrusion sensor based on a polarization-OTDR system,” IEEE Sens. J. 12(10), 3005–3009 (2012).
[CrossRef]

IEEE T. Microw. Theory

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE T. Microw. Theory 30(10), 1635–1641 (1982).
[CrossRef]

J. Intell. Mater. Syst. Struct.

H. Murayama, K. Kageyama, H. Naruse, A. Shimada, K. Uzawa, “Application of fiber-optic distributed sensors to health monitoring for full-scale composite structures,” J. Intell. Mater. Syst. Struct. 14(1), 3–13 (2003).
[CrossRef]

J. Lightwave Technol.

J. Opt. A, Pure Appl. Opt.

M. J. Connelly, “Digital synthetic-heterodyne interferometric demodulation,” J. Opt. A, Pure Appl. Opt. 4(6), S400–S405 (2002).
[CrossRef]

Opt. Commun.

Q. Sun, D. Liu, J. Wang, H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281(6), 1538–1544 (2008).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

H. Ohno, H. Naruse, M. Kihara, A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol. 7(1), 45–64 (2001).
[CrossRef]

Sens. Actuators A Phys.

S.-C. Huang, W.-W. Lin, M.-T. Tsai, M.-H. Chen, “Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks,” Sens. Actuators A Phys. 135(2), 570–579 (2007).
[CrossRef]

Other

Z. Guang, X. Chao, L. Yijun, and Z. Huigang, “Dual-Sagnac optical fiber sensor used in acoustic emission source location,” in Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC),2011(IEEE, 2011), pp. 1598–1602.

W. Qiang and W. Xiaowei, “Interferometeric fibre optic signal processing based on wavelet transform for subsea gas pipeline leakage inspection,” in Measuring Technology and Mechatronics Automation (ICMTMA),2010International Conference on(IEEE, 2010), pp. 501–504.

H. Xu, H. Wu, Z. Qiao, and Q. Xiao, “A research on polarization effects in a distributed optical fiber sensor disturbance location system,” in SPIE Defense, Security, and Sensing(International Society for Optics and Photonics, 2011), pp. 80280R–80280R–80210.

C. He, L. Hang, and B. Wu, “Application of homodyne demodulation system in fiber optic sensors using phase generated carrier based on LabVIEW in pipeline leakage detection,” in 2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies(International Society for Optics and Photonics, 2006), 61502–61506.
[CrossRef]

H. Wu, H. Xu, C. Wang, and D. Zhao, “Position determination and monitoring of disturbance along distributed fiber optic sensors,” in SPIE Defense, Security, and Sensing(International Society for Optics and Photonics, 2011), pp. 80280L–80280L–80286.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup of the distributed Sagnac intrusion detection system.

Fig. 2
Fig. 2

The actually obtained null-frequency curve with the intrusion position L = 17690m.

Fig. 3
Fig. 3

The flow diagram of the twice-FFT algorithm.

Fig. 4
Fig. 4

The process results of twice-FFT algorithm with the intrusion position L = 17690m: (a) H0(f). (b) H1(f). (c) H2(f). (d) H3(f). (e) H4(f). (f) the peak frequency in twice-FFT curve with Gaussian fitting.

Fig. 5
Fig. 5

The schematic diagram of multi-point intrusion along the sensing fiber.

Fig. 6
Fig. 6

The locating results when two intrusions occur on the sensing fiber simultaneously: (a) the disordered null-frequency curve. (b) twice-FFT curve.

Fig. 7
Fig. 7

(a) The original null-frequency curves and (b) twice-FFT curves for different intrusion points: (1) L = 10586m; (2) L = 11642m; (3) L = 17690m; (4) L = 37741m; (5) L = 41707m.

Fig. 8
Fig. 8

The locating results for 30 times intrusion events at five different points: (a) by traditional null-frequencies searching method; (b) by twice-FFT algorithm.

Fig. 9
Fig. 9

The locating results for two intruders applying at 11642m and 41707m simultaneously: (a) the null-frequency curve; (b) the twice-FFT curve.

Fig. 10
Fig. 10

The locating results for three intruders applying at 11642m, 17690m and 41707m simultaneously: (a) the null-frequency curve; (b) the twice-FFT curve.

Tables (1)

Tables Icon

Table 1 Locating Results in Multiple Groups of Experiments Using Twice-FFT Algorithm

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

φ(t)= i=1 W ψ i sin( ω i t+ ϕ i )
Δφ( t )= i=1 M { ψ i sin[ ω i (t τ 3 )+ ϕ i ]+ ψ i sin[ ω i (t τ 4 )+ ϕ i ] ψ i sin[ ω i (t τ 1 )+ ϕ i ] ψ i sin[ ω i (t τ 2 )+ ϕ i ]} =4 i=1 M ψ i sin( ω i n L d 2c )cos( ω i nL c )cos[ ω i (t n(2 L 0 + L d ) 2c )+ ϕ i ]
f null = ω i 2π = (2k1)c 4nL ,k=1,2,3
L= c 2nΔ f null
f peak =ε/Δ f null   
L= c f peak 2nε
Δ φ PQ (t)=Δ φ P (t)+Δ φ Q (t) =4 i1=1 M ψ i1 sin( ω i1 n L d 2c )cos( ω i1 n L 1 c )cos[ ω i1 (t n(2 L 0 + L d ) 2c )+ ϕ i1 ] +4 i2=1 N ψ i2 sin( ω i2 n L d 2c )cos( ω i2 n L 2 c )cos[ ω i2 (t n(2 L 0 + L d ) 2c )+ ϕ i2 ]
L 1 = c f peak1 2nε , L 2 = c f peak2 2nε
L k = c f peakk 2nε ,k=1,2,3

Metrics