Abstract

We introduce a color imaging method in our digital holographic microscope system (DHM). This DHM can create color images of freely floating, or moving objects inside a large volume by simultaneously capturing three holograms using three different illumination wavelengths. In this DHM a new light source assembly is applied, where we use single mode fibers according to the corresponding wavelengths that are tightly and randomly arranged into a small array in a single FC/PC connector. This design has significant advantages over the earlier approaches, where all the used illuminations are coupled in the same fiber. It avoids the coupling losses and provides a cost effective, compact solution for multicolor coherent illumination. We explain how to determine and correct the different fiber end positions caused tilt aberration during the hologram reconstruction process. To demonstrate the performance of the device, color hologram reconstructions are presented that can achieve at least 1 µm lateral resolution.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gábor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [CrossRef] [PubMed]
  2. P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge University, 1996), Vol. 20.
  3. U. Schnars and W. Jueptner, Digital holography (Springer, 2005).
  4. C. Mann, L. Yu, C.-M. Lo, M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
    [CrossRef] [PubMed]
  5. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45(5), 836–850 (2006).
    [CrossRef] [PubMed]
  6. Z. Göröcs, A. Ozcan, “On-chip biomedical imaging,” IEEE Rev. Biomed. Eng. 6, 29–46 (2013).
  7. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16(16), 11776–11781 (2008).
    [CrossRef] [PubMed]
  8. L. Orzó, Z. Göröcs, I. Szatmári, and S. Tőkés, “Gpu implementation of volume reconstruction and object detection in digital holographic microscopy,” in “Cellular Nanoscale Networks and Their Applications (CNNA), 2010 12th International Workshop on,” (IEEE, 2010), pp. 1–4.
    [CrossRef]
  9. T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
    [CrossRef]
  10. A. F. Coskun, T.-W. Su, A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10(7), 824–827 (2010).
    [CrossRef] [PubMed]
  11. W. Bishara, T.-W. Su, A. F. Coskun, A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
    [CrossRef] [PubMed]
  12. J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
    [CrossRef]
  13. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [CrossRef] [PubMed]
  14. I. Yamaguchi, J. Kato, S. Ohta, J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40(34), 6177–6186 (2001).
    [CrossRef] [PubMed]
  15. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14(10), 4300–4306 (2006).
    [CrossRef] [PubMed]
  16. S. Yeom, I. Moon, B. Javidi, “Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms,” Proc. IEEE 94(3), 550–566 (2006).
    [CrossRef]
  17. I. Moon, M. Daneshpanah, B. Javidi, A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
    [CrossRef]
  18. L. Repetto, F. Pellistri, E. Piano, C. Pontiggia, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72(7), 964–967 (2004).
    [CrossRef]
  19. Z. Göröcs, M. Kiss, V. Tóth, L. Orzó, and S. Tőkés, “Multicolor digital holographic microscope (DHM) for biological purposes,” in “BiOS,” (International Society for Optics and Photonics, 2010), p. 75681P.
  20. Z. Göröcs, L. Orzó, M. Kiss, V. Tóth, and S. Tőkés, “In-line color digital holographic microscope for water quality measurements,” in “Laser Applications in Life Sciences 2010,” (International Society for Optics and Photonics, 2010), p. 737614.
  21. W. Xu, M. H. Jericho, I. A. Meinertzhagen, H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
    [CrossRef] [PubMed]
  22. A. Greenbaum, A. Feizi, N. Akbari, A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21(10), 12469–12483 (2013).
    [CrossRef] [PubMed]
  23. A. Greenbaum, N. Akbari, A. Feizi, W. Luo, A. Ozcan, “Field-portable pixel super-resolution colour microscope,” PLoS ONE 8(9), e76475 (2013).
    [CrossRef] [PubMed]
  24. F. Shen, A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45(6), 1102–1110 (2006).
    [CrossRef] [PubMed]
  25. L. Repetto, E. Piano, C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29(10), 1132–1134 (2004).
    [CrossRef] [PubMed]
  26. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
    [CrossRef] [PubMed]
  27. J. Alda, Laser and Gaussian Beam Propagation and Transformation, Encyclopedia of Optical Engineering (Taylor & Francis, 2007).
  28. W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
    [CrossRef] [PubMed]
  29. H.-J. Cho, D.-C. Kim, Y.-H. Yu, S. Shin, W. Jung, “Tilt aberration compensation using interference patterns in digital holography,” J. Opt. Soc. Korea 13(4), 451–455 (2009).
    [CrossRef]
  30. E. Cuche, P. Marquet, C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000).
    [CrossRef]
  31. K. Matsushima, T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17(22), 19662–19673 (2009).
    [CrossRef] [PubMed]
  32. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
  33. P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, B. Javidii, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Displ. Technol. 4(1), 97–100 (2008).
    [CrossRef]
  34. A. E. Siegman, Lasers University Science Books (Mill Valley, 1986), Vol. 37.

2013 (3)

Z. Göröcs, A. Ozcan, “On-chip biomedical imaging,” IEEE Rev. Biomed. Eng. 6, 29–46 (2013).

A. Greenbaum, A. Feizi, N. Akbari, A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21(10), 12469–12483 (2013).
[CrossRef] [PubMed]

A. Greenbaum, N. Akbari, A. Feizi, W. Luo, A. Ozcan, “Field-portable pixel super-resolution colour microscope,” PLoS ONE 8(9), e76475 (2013).
[CrossRef] [PubMed]

2012 (1)

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[CrossRef]

2011 (1)

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

2010 (3)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

A. F. Coskun, T.-W. Su, A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10(7), 824–827 (2010).
[CrossRef] [PubMed]

W. Bishara, T.-W. Su, A. F. Coskun, A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (3)

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, B. Javidii, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Displ. Technol. 4(1), 97–100 (2008).
[CrossRef]

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[CrossRef]

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16(16), 11776–11781 (2008).
[CrossRef] [PubMed]

2006 (4)

2005 (2)

2004 (2)

L. Repetto, E. Piano, C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29(10), 1132–1134 (2004).
[CrossRef] [PubMed]

L. Repetto, F. Pellistri, E. Piano, C. Pontiggia, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72(7), 964–967 (2004).
[CrossRef]

2001 (2)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

I. Yamaguchi, J. Kato, S. Ohta, J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40(34), 6177–6186 (2001).
[CrossRef] [PubMed]

2000 (1)

E. Cuche, P. Marquet, C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000).
[CrossRef]

1948 (1)

D. Gábor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Akbari, N.

A. Greenbaum, A. Feizi, N. Akbari, A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21(10), 12469–12483 (2013).
[CrossRef] [PubMed]

A. Greenbaum, N. Akbari, A. Feizi, W. Luo, A. Ozcan, “Field-portable pixel super-resolution colour microscope,” PLoS ONE 8(9), e76475 (2013).
[CrossRef] [PubMed]

Alfieri, D.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, B. Javidii, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Displ. Technol. 4(1), 97–100 (2008).
[CrossRef]

Aspert, N.

Bishara, W.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

W. Bishara, T.-W. Su, A. F. Coskun, A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[CrossRef] [PubMed]

Charrière, F.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[CrossRef]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14(10), 4300–4306 (2006).
[CrossRef] [PubMed]

Cho, H.-J.

Colomb, T.

Coskun, A. F.

Cuche, E.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[CrossRef]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000).
[CrossRef]

Daneshpanah, M.

I. Moon, M. Daneshpanah, B. Javidi, A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[CrossRef]

De Nicola, S.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, B. Javidii, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Displ. Technol. 4(1), 97–100 (2008).
[CrossRef]

Depeursinge, C.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[CrossRef]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14(10), 4300–4306 (2006).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000).
[CrossRef]

Emery, Y.

Feizi, A.

A. Greenbaum, N. Akbari, A. Feizi, W. Luo, A. Ozcan, “Field-portable pixel super-resolution colour microscope,” PLoS ONE 8(9), e76475 (2013).
[CrossRef] [PubMed]

A. Greenbaum, A. Feizi, N. Akbari, A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21(10), 12469–12483 (2013).
[CrossRef] [PubMed]

Ferraro, P.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, B. Javidii, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Displ. Technol. 4(1), 97–100 (2008).
[CrossRef]

Finizio, A.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, B. Javidii, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Displ. Technol. 4(1), 97–100 (2008).
[CrossRef]

Gábor, D.

D. Gábor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Garcia-Sucerquia, J.

Göröcs, Z.

Z. Göröcs, A. Ozcan, “On-chip biomedical imaging,” IEEE Rev. Biomed. Eng. 6, 29–46 (2013).

Greenbaum, A.

A. Greenbaum, N. Akbari, A. Feizi, W. Luo, A. Ozcan, “Field-portable pixel super-resolution colour microscope,” PLoS ONE 8(9), e76475 (2013).
[CrossRef] [PubMed]

A. Greenbaum, A. Feizi, N. Akbari, A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21(10), 12469–12483 (2013).
[CrossRef] [PubMed]

Grilli, S.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, B. Javidii, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Displ. Technol. 4(1), 97–100 (2008).
[CrossRef]

Isikman, S. O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Ito, T.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[CrossRef]

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16(16), 11776–11781 (2008).
[CrossRef] [PubMed]

Javidi, B.

I. Moon, M. Daneshpanah, B. Javidi, A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[CrossRef]

S. Yeom, I. Moon, B. Javidi, “Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms,” Proc. IEEE 94(3), 550–566 (2006).
[CrossRef]

Javidii, B.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, B. Javidii, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Displ. Technol. 4(1), 97–100 (2008).
[CrossRef]

Jericho, M. H.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45(5), 836–850 (2006).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

Jericho, S. K.

Jung, W.

Kato, J.

Khademhosseini, B.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Kim, D.-C.

Kim, M.

Klages, P.

Kreuzer, H. J.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45(5), 836–850 (2006).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

Kühn, J.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[CrossRef]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14(10), 4300–4306 (2006).
[CrossRef] [PubMed]

Lo, C.-M.

Luckhart, S.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

Luo, W.

A. Greenbaum, N. Akbari, A. Feizi, W. Luo, A. Ozcan, “Field-portable pixel super-resolution colour microscope,” PLoS ONE 8(9), e76475 (2013).
[CrossRef] [PubMed]

Magistretti, P. J.

Mann, C.

Marquet, P.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[CrossRef]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14(10), 4300–4306 (2006).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000).
[CrossRef]

Masuda, N.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[CrossRef]

Matsushima, K.

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

Miccio, L.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, B. Javidii, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Displ. Technol. 4(1), 97–100 (2008).
[CrossRef]

Miura, J.

Mizuno, J.

Montfort, F.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[CrossRef]

Moon, I.

I. Moon, M. Daneshpanah, B. Javidi, A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[CrossRef]

S. Yeom, I. Moon, B. Javidi, “Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms,” Proc. IEEE 94(3), 550–566 (2006).
[CrossRef]

Mudanyali, O.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Nishitsuji, T.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[CrossRef]

Oh, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Ohta, S.

Okada, N.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[CrossRef]

Ozcan, A.

Z. Göröcs, A. Ozcan, “On-chip biomedical imaging,” IEEE Rev. Biomed. Eng. 6, 29–46 (2013).

A. Greenbaum, N. Akbari, A. Feizi, W. Luo, A. Ozcan, “Field-portable pixel super-resolution colour microscope,” PLoS ONE 8(9), e76475 (2013).
[CrossRef] [PubMed]

A. Greenbaum, A. Feizi, N. Akbari, A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21(10), 12469–12483 (2013).
[CrossRef] [PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

A. F. Coskun, T.-W. Su, A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10(7), 824–827 (2010).
[CrossRef] [PubMed]

W. Bishara, T.-W. Su, A. F. Coskun, A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[CrossRef] [PubMed]

Oztoprak, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Pellistri, F.

L. Repetto, F. Pellistri, E. Piano, C. Pontiggia, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72(7), 964–967 (2004).
[CrossRef]

Piano, E.

L. Repetto, F. Pellistri, E. Piano, C. Pontiggia, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72(7), 964–967 (2004).
[CrossRef]

L. Repetto, E. Piano, C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29(10), 1132–1134 (2004).
[CrossRef] [PubMed]

Pontiggia, C.

L. Repetto, E. Piano, C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29(10), 1132–1134 (2004).
[CrossRef] [PubMed]

L. Repetto, F. Pellistri, E. Piano, C. Pontiggia, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72(7), 964–967 (2004).
[CrossRef]

Rappaz, B.

Repetto, L.

L. Repetto, F. Pellistri, E. Piano, C. Pontiggia, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72(7), 964–967 (2004).
[CrossRef]

L. Repetto, E. Piano, C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29(10), 1132–1134 (2004).
[CrossRef] [PubMed]

Sakurai, T.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[CrossRef]

Sato, Y.

Sencan, I.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Seo, S.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Shen, F.

Shimobaba, T.

Shin, S.

Shiraki, A.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[CrossRef]

Sikora, U.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

Stern, A.

I. Moon, M. Daneshpanah, B. Javidi, A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[CrossRef]

Su, T.-W.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

A. F. Coskun, T.-W. Su, A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10(7), 824–827 (2010).
[CrossRef] [PubMed]

W. Bishara, T.-W. Su, A. F. Coskun, A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[CrossRef] [PubMed]

Takada, N.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[CrossRef]

Takenouchi, M.

Tseng, D.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Wang, A.

Weng, J.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[CrossRef]

Xu, W.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45(5), 836–850 (2006).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

Yaglidere, O.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

Yamaguchi, I.

Yeom, S.

S. Yeom, I. Moon, B. Javidi, “Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms,” Proc. IEEE 94(3), 550–566 (2006).
[CrossRef]

Yu, L.

Yu, Y.-H.

Am. J. Phys. (1)

L. Repetto, F. Pellistri, E. Piano, C. Pontiggia, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72(7), 964–967 (2004).
[CrossRef]

Appl. Opt. (3)

Comput. Phys. Commun. (1)

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[CrossRef]

IEEE Rev. Biomed. Eng. (1)

Z. Göröcs, A. Ozcan, “On-chip biomedical imaging,” IEEE Rev. Biomed. Eng. 6, 29–46 (2013).

J. Displ. Technol. (1)

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, B. Javidii, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Displ. Technol. 4(1), 97–100 (2008).
[CrossRef]

J. Opt. Soc. Korea (1)

Lab Chip (3)

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

A. F. Coskun, T.-W. Su, A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10(7), 824–827 (2010).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[CrossRef]

Nature (1)

D. Gábor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. Cuche, P. Marquet, C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

PLoS ONE (1)

A. Greenbaum, N. Akbari, A. Feizi, W. Luo, A. Ozcan, “Field-portable pixel super-resolution colour microscope,” PLoS ONE 8(9), e76475 (2013).
[CrossRef] [PubMed]

Proc. IEEE (2)

S. Yeom, I. Moon, B. Javidi, “Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms,” Proc. IEEE 94(3), 550–566 (2006).
[CrossRef]

I. Moon, M. Daneshpanah, B. Javidi, A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

Other (8)

J. Alda, Laser and Gaussian Beam Propagation and Transformation, Encyclopedia of Optical Engineering (Taylor & Francis, 2007).

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

A. E. Siegman, Lasers University Science Books (Mill Valley, 1986), Vol. 37.

Z. Göröcs, M. Kiss, V. Tóth, L. Orzó, and S. Tőkés, “Multicolor digital holographic microscope (DHM) for biological purposes,” in “BiOS,” (International Society for Optics and Photonics, 2010), p. 75681P.

Z. Göröcs, L. Orzó, M. Kiss, V. Tóth, and S. Tőkés, “In-line color digital holographic microscope for water quality measurements,” in “Laser Applications in Life Sciences 2010,” (International Society for Optics and Photonics, 2010), p. 737614.

L. Orzó, Z. Göröcs, I. Szatmári, and S. Tőkés, “Gpu implementation of volume reconstruction and object detection in digital holographic microscopy,” in “Cellular Nanoscale Networks and Their Applications (CNNA), 2010 12th International Workshop on,” (IEEE, 2010), pp. 1–4.
[CrossRef]

P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge University, 1996), Vol. 20.

U. Schnars and W. Jueptner, Digital holography (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Our multicolor DHM setup aims to reconstruct the image of freely floating objects within the volume of a flow through chamber. Application of an afocal optical setup provides uniform (5 times lateral and 25 times longitudinal) magnification within the whole observed volume. The red, green, and blue holograms are simultaneously acquired by a detector using Bayern-pattern color filter, while the illumination is provided by synchronized flashes of the applied lasers.

Fig. 2
Fig. 2

In the introduced special illuminating light source the three different fiber ends are tightly packaged in the same connector. Near the axis where the beams overlap, we can get “white light” illumination, with RGB line spectrum.

Fig. 3
Fig. 3

As in the new illumination design the light sources are slightly displaced (~125 µm), the corresponding illuminating reference wave fields - which can be approximated by plane waves - have different incident direction at the detector.

Fig. 4
Fig. 4

The calculated and the measured tilts depending on the displacement of the laser light source from the optical axis.

Fig. 5
Fig. 5

Our afocal optical system magnifies the distances between the fiber ends (the red and the green points) and transposes the virtual position of the light sources in much larger distance from the detector. Therefore the Gaussian beams can be correctly approximated by (tilted) plane waves at the detector surface.

Fig. 6
Fig. 6

Photograph of the fiber connector end, incorporating the three different single mode fiber ends. The black arrows indicate the distances between the red and green, and red and blue fiber ends.

Fig. 7
Fig. 7

The hologram reconstructions of Pediastrum (a,b) and Melosira (c,d) alga colonies without (a, c), and with (b, d) tilt compensation. (Scale bar is 20 μm).

Fig. 8
Fig. 8

Reconstruction from a digitally simulated sample in-line hologram (a), using a tilted reconstructing plane wave (b) shows considerable numerical reconstruction artifacts at the hologram borders (d). Discrete Fourier transform implies the infinite periodic tiling of the wave field. In the case of a tilted plane wave, this periodicity can introduce severe phase discontinuity (b) where the wave field and its copies meet at the border of the hologram. The top, left, bottom, and right borders are shown in the tiled copies, while 'w' and 'h' denotes the width and height of the detector respectively. The continuities of the phase at the detector boundaries can be ensured by slight modification of the applied plane wave slopes (c). Applying a reconstructing beam with this optimized tilt the artifact is perfectly eliminated (e).

Fig. 9
Fig. 9

Reconstruction of an USAF test target hologram (a) and some reconstructed color images of freely floating algae holograms. These algae are classified as Scenedesmus (b, c, h, j), Asterionella (d, e), Melosira (f, i), Pediastrum (g, k), Ankistrodesmus (l), Thalassiosirales (m, n), and Bacillariophyceae (o). (Scale bar is 20 µm.)

Tables (1)

Tables Icon

Table 1 The relative tilt angles (Θ) of the calculated (related to the illuminating reference beams) and the measured (related to the reconstruction beams) data are shown here. γ shows the angle between the red-blue and red-green light axes defined planes.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E( x,y,0 )=H(x,y)R(x,y).
R(x,y)=1 e iϕ = e i r k = e i( k x ·x+ k y ·y)
ϕ(x,y)=ϕ(x+w,y) and ϕ(x,y)=ϕ(x,y+h)
k ¯ = k ¯ +Δ k ¯
e i( k x ·x+ k y ·y) = e i( k x ·(x+w)+ k y ·y) e i( k x ·w) = 1 and e i( k x ·x+ k y ·y) = e i( k x ·x+ k y ·(y+h)) e i( k y ·h) = 1 .
k x =N 2π w and k y =M 2π h
| Δ k x |=| k x k x |=| N× 2π w k x | and | Δ k y |=| k y k y |=| M× 2π h k y |.
| N k x w 2π | and | M k y h 2π |
N=round( k x w 2π ) and M=round( k y h 2π ) .
k x =round( k x · w 2π ) 2 π w and k y =round( k y · h 2π ) 2 π h .
Φ(x,y,z)= A 0 w 0 w(z) exp( ρ g 2 w 2 (z) i(kzζ(z))ik ρ g 2 2R(z) ),
Φ(x,y,z)= A 0 A+B/ q 0 × exp{ ik 2 q 1 (z) [ (x x 01 ) 2 + (y y 01 ) 2 ]ik( ε 1x x+ ε 1y y)+i( φ x + φ y ) },
1 q(z) = 1 R(z) i 2 k w 2 (z) .
[ A B C D ]=[ 1 z 2 0 1 ][ 1 0 - 1 f 2 1 ][ 1 d 0 1 ][ 1 0 - 1 f 1 1 ][ 1 z 1 0 1 ],
A=1- z 2 f 2 -( ( 1- z 2 f 2 )d+ z 2 ) 1 f 1 , B=A z 1 +( 1- z 2 f 2 )d+ z 2 , C=- 1 f 2 -( 1- d f 2 ) 1 f 1 , D=C z 1 - d f 2 +1.
A=1- d f 1 ,C=0,andD=1- d f 2 .
F( r,z )= 1 q( z ) exp{ -ik r 2 2q( z ) }
q'( z )= Aq( z )+B Cq( z )+D .
k=R( 1 q'( z ) ) 2pA r 0 l .

Metrics