Abstract

We report on a novel triple transit region (TTR) layer structure for 1.55 μm waveguide photodiodes (PDs) providing high output power in the millimeter wave (mmW) regime. Basically, the TTR-PD layer structure consists of three transit layers, in which electrons drift at saturation velocity or even at overshoot velocity. Sufficiently strong electric fields (>3000 V/cm) are achieved in all three transit layers even in the undepleted absorber layer and even at very high optical input power levels. This is achieved by incorporating three 10 nm thick p-doped electric field clamp layers. Numerical simulations using the drift-diffusion model (DDM) indicate that for optical intensities up to ~500 kW/cm2, no saturation effects occur, i.e. the electric field exceeds the critical electric field in all three transit layers. This fact in conjunction with a high-frequency double-mushroom cross-section of the waveguide TTR-PD ensures high output power levels at mmW frequencies. Fabricated 1.55 µm InGaAs(P)/InP waveguide TTR-PDs exhibit output power levels exceeding 0 dBm (1 mW) and a return loss (RL) up to ~24 dB. Broadband operation with a 3 dB bandwidth beyond 110 GHz is achieved.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Nagatsuma, H. Ito, T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
    [CrossRef]
  2. T.-F. Tseng, J.-M. Wun, W. Chen, S.-W. Peng, J.-W. Shi, C.-K. Sun, “High-depth-resolution 3-dimensional radar-imaging system based on a few-cycle W-band photonic millimeter-wave pulse generator,” Opt. Express 21(12), 14109–14119 (2013).
    [CrossRef] [PubMed]
  3. A. Stöhr, “Photonic millimeter-wave generation and its applications in high data rate wireless access,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2010), 7–10.
    [CrossRef]
  4. A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
    [CrossRef]
  5. S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [CrossRef]
  6. C. C. Renaud, “Ultra-high-speed uni-traveling carrier photodiodes and their applications,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), 1–3.
    [CrossRef]
  7. E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012).
    [CrossRef] [PubMed]
  8. A. Beling, A. S. Cross, M. Piels, J. Peters, Y. Fu, Q. Zhou, J. E. Bowers, and J. C. Campbell, “High-power high-speed waveguide photodiodes and photodiode arrays heterogeneously integrated on siliconon-insulator,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), 1–3.
    [CrossRef]
  9. T. Ishibashi, S. Kodama, N. Shimizu, T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
    [CrossRef]
  10. M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. Van Dijk, M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photonics Technol. Lett. 24(4), 318–320 (2012).
    [CrossRef]
  11. H. Pan, A. Beling, H. Chen, J. C. Campbell, “Characterization and optimization of high-power InGaAs/InP photodiodes,” Opt. Quantum Electron. 40(1), 41–46 (2008).
    [CrossRef]
  12. T. Ishibashi, T. Furuta, H. Fushimi, H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283, 469–479 (2001).
    [CrossRef]
  13. K. J. Williams, “Comparisons between dual-depletion-region and uni-travelling-carrier p-i-n photodetectors,” IEE Proc. Optoelectron. 149(4), 131–137 (2002).
    [CrossRef]
  14. S. Srivastava, K. P. Roenker, “Numerical modeling study of the InP/InGaAs uni-travelling carrier photodiode,” Solid-State Electron. 48(3), 461–470 (2004).
    [CrossRef]
  15. Y. M. El-Batawy, M. J. Deen, “Modeling of mushroom waveguide photodetector,” J. Vac. Sci. Technol. A 22(3), 811–815 (2004).
    [CrossRef]
  16. V. Rymanov, T. Tekin, A. Stöhr, “Double mushroom 1.55 μm waveguide photodetectors for integrated E-band (60-90 GHz) wireless transmitter modules,” Proc. SPIE 8259, 82590E (2012).
    [CrossRef]
  17. Y.-G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lightwave Technol. 13(7), 1490–1499 (1995).
    [CrossRef]
  18. D. Pasalic, R. Vahldieck, “Hybrid drift-diffusion-TLM analysis of high-speed and high-output UTC traveling-wave photodetectors,” Int. J. Numer. Model. Electron. Networks Devices Fields 21(1–2), 61–76 (2008).
    [CrossRef]
  19. P. S. Menon, K. Kandiah, A. A. Ehsan, S. Shaari, “Concentration-dependent minority carrier lifetime in an In0.53Ga0.47As interdigitated lateral PIN photodiode model based on spin-on chemical fabrication methodology,” Int. J. Numer. Model. Electron. Networks Devices Fields 24(5), 465–477 (2011).
    [CrossRef]
  20. V. Rymanov, M. Palandöken, S. Lutzmann, B. Bouhlal, T. Tekin, and A. Stöhr, “Integrated photonic 71-76 GHz transmitter module employing high linearity double mushroom-type 1.55 μm waveguide photodiodes,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2012), 253–256.
    [CrossRef]

2013 (2)

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

T.-F. Tseng, J.-M. Wun, W. Chen, S.-W. Peng, J.-W. Shi, C.-K. Sun, “High-depth-resolution 3-dimensional radar-imaging system based on a few-cycle W-band photonic millimeter-wave pulse generator,” Opt. Express 21(12), 14109–14119 (2013).
[CrossRef] [PubMed]

2012 (3)

E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012).
[CrossRef] [PubMed]

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. Van Dijk, M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photonics Technol. Lett. 24(4), 318–320 (2012).
[CrossRef]

V. Rymanov, T. Tekin, A. Stöhr, “Double mushroom 1.55 μm waveguide photodetectors for integrated E-band (60-90 GHz) wireless transmitter modules,” Proc. SPIE 8259, 82590E (2012).
[CrossRef]

2011 (1)

P. S. Menon, K. Kandiah, A. A. Ehsan, S. Shaari, “Concentration-dependent minority carrier lifetime in an In0.53Ga0.47As interdigitated lateral PIN photodiode model based on spin-on chemical fabrication methodology,” Int. J. Numer. Model. Electron. Networks Devices Fields 24(5), 465–477 (2011).
[CrossRef]

2010 (1)

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

2009 (1)

T. Nagatsuma, H. Ito, T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
[CrossRef]

2008 (2)

D. Pasalic, R. Vahldieck, “Hybrid drift-diffusion-TLM analysis of high-speed and high-output UTC traveling-wave photodetectors,” Int. J. Numer. Model. Electron. Networks Devices Fields 21(1–2), 61–76 (2008).
[CrossRef]

H. Pan, A. Beling, H. Chen, J. C. Campbell, “Characterization and optimization of high-power InGaAs/InP photodiodes,” Opt. Quantum Electron. 40(1), 41–46 (2008).
[CrossRef]

2004 (2)

S. Srivastava, K. P. Roenker, “Numerical modeling study of the InP/InGaAs uni-travelling carrier photodiode,” Solid-State Electron. 48(3), 461–470 (2004).
[CrossRef]

Y. M. El-Batawy, M. J. Deen, “Modeling of mushroom waveguide photodetector,” J. Vac. Sci. Technol. A 22(3), 811–815 (2004).
[CrossRef]

2002 (1)

K. J. Williams, “Comparisons between dual-depletion-region and uni-travelling-carrier p-i-n photodetectors,” IEE Proc. Optoelectron. 149(4), 131–137 (2002).
[CrossRef]

2001 (1)

T. Ishibashi, T. Furuta, H. Fushimi, H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283, 469–479 (2001).
[CrossRef]

1997 (1)

T. Ishibashi, S. Kodama, N. Shimizu, T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[CrossRef]

1995 (1)

Y.-G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lightwave Technol. 13(7), 1490–1499 (1995).
[CrossRef]

Achouche, M.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. Van Dijk, M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photonics Technol. Lett. 24(4), 318–320 (2012).
[CrossRef]

Ambacher, O.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Antes, J.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Babiel, S.

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Beling, A.

H. Pan, A. Beling, H. Chen, J. C. Campbell, “Characterization and optimization of high-power InGaAs/InP photodiodes,” Opt. Quantum Electron. 40(1), 41–46 (2008).
[CrossRef]

Boes, F.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Bowers, J.

Y.-G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lightwave Technol. 13(7), 1490–1499 (1995).
[CrossRef]

Campbell, J. C.

H. Pan, A. Beling, H. Chen, J. C. Campbell, “Characterization and optimization of high-power InGaAs/InP photodiodes,” Opt. Quantum Electron. 40(1), 41–46 (2008).
[CrossRef]

Cannard, P. J.

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Carpentier, D.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. Van Dijk, M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photonics Technol. Lett. 24(4), 318–320 (2012).
[CrossRef]

Carpintero, G.

Charbonnier, B.

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Chen, H.

H. Pan, A. Beling, H. Chen, J. C. Campbell, “Characterization and optimization of high-power InGaAs/InP photodiodes,” Opt. Quantum Electron. 40(1), 41–46 (2008).
[CrossRef]

Chen, W.

Chtioui, M.

E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012).
[CrossRef] [PubMed]

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. Van Dijk, M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photonics Technol. Lett. 24(4), 318–320 (2012).
[CrossRef]

Deen, M. J.

Y. M. El-Batawy, M. J. Deen, “Modeling of mushroom waveguide photodetector,” J. Vac. Sci. Technol. A 22(3), 811–815 (2004).
[CrossRef]

Ehsan, A. A.

P. S. Menon, K. Kandiah, A. A. Ehsan, S. Shaari, “Concentration-dependent minority carrier lifetime in an In0.53Ga0.47As interdigitated lateral PIN photodiode model based on spin-on chemical fabrication methodology,” Int. J. Numer. Model. Electron. Networks Devices Fields 24(5), 465–477 (2011).
[CrossRef]

El-Batawy, Y. M.

Y. M. El-Batawy, M. J. Deen, “Modeling of mushroom waveguide photodetector,” J. Vac. Sci. Technol. A 22(3), 811–815 (2004).
[CrossRef]

Enard, A.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. Van Dijk, M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photonics Technol. Lett. 24(4), 318–320 (2012).
[CrossRef]

Fedderwitz, S.

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Fice, M. J.

Freude, W.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Furuta, T.

T. Ishibashi, T. Furuta, H. Fushimi, H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283, 469–479 (2001).
[CrossRef]

T. Ishibashi, S. Kodama, N. Shimizu, T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[CrossRef]

Fushimi, H.

T. Ishibashi, T. Furuta, H. Fushimi, H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283, 469–479 (2001).
[CrossRef]

Giboney, K.

Y.-G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lightwave Technol. 13(7), 1490–1499 (1995).
[CrossRef]

Henneberger, R.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Hillerkuss, D.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Ishibashi, T.

T. Nagatsuma, H. Ito, T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
[CrossRef]

T. Ishibashi, T. Furuta, H. Fushimi, H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283, 469–479 (2001).
[CrossRef]

T. Ishibashi, S. Kodama, N. Shimizu, T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[CrossRef]

Ito, H.

T. Nagatsuma, H. Ito, T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
[CrossRef]

T. Ishibashi, T. Furuta, H. Fushimi, H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283, 469–479 (2001).
[CrossRef]

Kallfass, I.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Kandiah, K.

P. S. Menon, K. Kandiah, A. A. Ehsan, S. Shaari, “Concentration-dependent minority carrier lifetime in an In0.53Ga0.47As interdigitated lateral PIN photodiode model based on spin-on chemical fabrication methodology,” Int. J. Numer. Model. Electron. Networks Devices Fields 24(5), 465–477 (2011).
[CrossRef]

Kodama, S.

T. Ishibashi, S. Kodama, N. Shimizu, T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[CrossRef]

König, S.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Koos, C.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Lelarge, F.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. Van Dijk, M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photonics Technol. Lett. 24(4), 318–320 (2012).
[CrossRef]

E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012).
[CrossRef] [PubMed]

Leuther, A.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Leuthold, J.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Lopez-Diaz, D.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Marceaux, A.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. Van Dijk, M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photonics Technol. Lett. 24(4), 318–320 (2012).
[CrossRef]

Menon, P. S.

P. S. Menon, K. Kandiah, A. A. Ehsan, S. Shaari, “Concentration-dependent minority carrier lifetime in an In0.53Ga0.47As interdigitated lateral PIN photodiode model based on spin-on chemical fabrication methodology,” Int. J. Numer. Model. Electron. Networks Devices Fields 24(5), 465–477 (2011).
[CrossRef]

Moodie, D.

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Nagatsuma, T.

T. Nagatsuma, H. Ito, T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
[CrossRef]

Palmer, R.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Pan, H.

H. Pan, A. Beling, H. Chen, J. C. Campbell, “Characterization and optimization of high-power InGaAs/InP photodiodes,” Opt. Quantum Electron. 40(1), 41–46 (2008).
[CrossRef]

Pasalic, D.

D. Pasalic, R. Vahldieck, “Hybrid drift-diffusion-TLM analysis of high-speed and high-output UTC traveling-wave photodetectors,” Int. J. Numer. Model. Electron. Networks Devices Fields 21(1–2), 61–76 (2008).
[CrossRef]

Pavlovic, L.

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Peng, S.-W.

Pommereau, F.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. Van Dijk, M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photonics Technol. Lett. 24(4), 318–320 (2012).
[CrossRef]

Ponnampalam, L.

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Renaud, C. C.

E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012).
[CrossRef] [PubMed]

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Robinson, G.

Y.-G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lightwave Technol. 13(7), 1490–1499 (1995).
[CrossRef]

Rodwell, M.

Y.-G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lightwave Technol. 13(7), 1490–1499 (1995).
[CrossRef]

Roenker, K. P.

S. Srivastava, K. P. Roenker, “Numerical modeling study of the InP/InGaAs uni-travelling carrier photodiode,” Solid-State Electron. 48(3), 461–470 (2004).
[CrossRef]

Rogers, D.

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Rouvalis, E.

Rymanov, V.

V. Rymanov, T. Tekin, A. Stöhr, “Double mushroom 1.55 μm waveguide photodetectors for integrated E-band (60-90 GHz) wireless transmitter modules,” Proc. SPIE 8259, 82590E (2012).
[CrossRef]

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Schmogrow, R.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Seeds, A. J.

E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012).
[CrossRef] [PubMed]

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Shaari, S.

P. S. Menon, K. Kandiah, A. A. Ehsan, S. Shaari, “Concentration-dependent minority carrier lifetime in an In0.53Ga0.47As interdigitated lateral PIN photodiode model based on spin-on chemical fabrication methodology,” Int. J. Numer. Model. Electron. Networks Devices Fields 24(5), 465–477 (2011).
[CrossRef]

Shi, J.-W.

Shimizu, N.

T. Ishibashi, S. Kodama, N. Shimizu, T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[CrossRef]

Silvestre, P.

Y.-G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lightwave Technol. 13(7), 1490–1499 (1995).
[CrossRef]

Srivastava, S.

S. Srivastava, K. P. Roenker, “Numerical modeling study of the InP/InGaAs uni-travelling carrier photodiode,” Solid-State Electron. 48(3), 461–470 (2004).
[CrossRef]

Steffan, A. G.

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Stöhr, A.

V. Rymanov, T. Tekin, A. Stöhr, “Double mushroom 1.55 μm waveguide photodetectors for integrated E-band (60-90 GHz) wireless transmitter modules,” Proc. SPIE 8259, 82590E (2012).
[CrossRef]

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Sun, C.-K.

Tekin, T.

V. Rymanov, T. Tekin, A. Stöhr, “Double mushroom 1.55 μm waveguide photodetectors for integrated E-band (60-90 GHz) wireless transmitter modules,” Proc. SPIE 8259, 82590E (2012).
[CrossRef]

Tessmann, A.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Thiagarajan, P.

Y.-G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lightwave Technol. 13(7), 1490–1499 (1995).
[CrossRef]

Tran, M.

Tseng, T.-F.

Umbach, A.

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Vahldieck, R.

D. Pasalic, R. Vahldieck, “Hybrid drift-diffusion-TLM analysis of high-speed and high-output UTC traveling-wave photodetectors,” Int. J. Numer. Model. Electron. Networks Devices Fields 21(1–2), 61–76 (2008).
[CrossRef]

van Dijk, F.

E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012).
[CrossRef] [PubMed]

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. Van Dijk, M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photonics Technol. Lett. 24(4), 318–320 (2012).
[CrossRef]

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Weiß, M.

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Wey, Y.-G.

Y.-G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lightwave Technol. 13(7), 1490–1499 (1995).
[CrossRef]

Williams, K. J.

K. J. Williams, “Comparisons between dual-depletion-region and uni-travelling-carrier p-i-n photodetectors,” IEE Proc. Optoelectron. 149(4), 131–137 (2002).
[CrossRef]

Wun, J.-M.

Zwick, T.

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

IEE Proc. Optoelectron. (1)

K. J. Williams, “Comparisons between dual-depletion-region and uni-travelling-carrier p-i-n photodetectors,” IEE Proc. Optoelectron. 149(4), 131–137 (2002).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. Van Dijk, M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photonics Technol. Lett. 24(4), 318–320 (2012).
[CrossRef]

IEEE Trans. Microwave Theory Technol. (1)

A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010).
[CrossRef]

Int. J. Numer. Model. Electron. Networks Devices Fields (2)

D. Pasalic, R. Vahldieck, “Hybrid drift-diffusion-TLM analysis of high-speed and high-output UTC traveling-wave photodetectors,” Int. J. Numer. Model. Electron. Networks Devices Fields 21(1–2), 61–76 (2008).
[CrossRef]

P. S. Menon, K. Kandiah, A. A. Ehsan, S. Shaari, “Concentration-dependent minority carrier lifetime in an In0.53Ga0.47As interdigitated lateral PIN photodiode model based on spin-on chemical fabrication methodology,” Int. J. Numer. Model. Electron. Networks Devices Fields 24(5), 465–477 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Y.-G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lightwave Technol. 13(7), 1490–1499 (1995).
[CrossRef]

J. Vac. Sci. Technol. A (1)

Y. M. El-Batawy, M. J. Deen, “Modeling of mushroom waveguide photodetector,” J. Vac. Sci. Technol. A 22(3), 811–815 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Ishibashi, S. Kodama, N. Shimizu, T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[CrossRef]

Laser Photonics Rev. (1)

T. Nagatsuma, H. Ito, T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
[CrossRef]

Nat. Photonics (1)

S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[CrossRef]

Opt. Express (2)

Opt. Quantum Electron. (1)

H. Pan, A. Beling, H. Chen, J. C. Campbell, “Characterization and optimization of high-power InGaAs/InP photodiodes,” Opt. Quantum Electron. 40(1), 41–46 (2008).
[CrossRef]

Proc. SPIE (2)

T. Ishibashi, T. Furuta, H. Fushimi, H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283, 469–479 (2001).
[CrossRef]

V. Rymanov, T. Tekin, A. Stöhr, “Double mushroom 1.55 μm waveguide photodetectors for integrated E-band (60-90 GHz) wireless transmitter modules,” Proc. SPIE 8259, 82590E (2012).
[CrossRef]

Solid-State Electron. (1)

S. Srivastava, K. P. Roenker, “Numerical modeling study of the InP/InGaAs uni-travelling carrier photodiode,” Solid-State Electron. 48(3), 461–470 (2004).
[CrossRef]

Other (4)

A. Beling, A. S. Cross, M. Piels, J. Peters, Y. Fu, Q. Zhou, J. E. Bowers, and J. C. Campbell, “High-power high-speed waveguide photodiodes and photodiode arrays heterogeneously integrated on siliconon-insulator,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), 1–3.
[CrossRef]

C. C. Renaud, “Ultra-high-speed uni-traveling carrier photodiodes and their applications,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), 1–3.
[CrossRef]

V. Rymanov, M. Palandöken, S. Lutzmann, B. Bouhlal, T. Tekin, and A. Stöhr, “Integrated photonic 71-76 GHz transmitter module employing high linearity double mushroom-type 1.55 μm waveguide photodiodes,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2012), 253–256.
[CrossRef]

A. Stöhr, “Photonic millimeter-wave generation and its applications in high data rate wireless access,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2010), 7–10.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic view and operation principle of the double mushroom-type waveguide TTR-PD.

Fig. 2
Fig. 2

(a) Band diagram and (b) layer structure of the developed TTR-PD.

Fig. 3
Fig. 3

Simulated electric field versus layer depth without illumination at different drive voltages.

Fig. 4
Fig. 4

Simulated electric field versus layer depth at different optical intensity levels for a reverse bias of 8 V.

Fig. 5
Fig. 5

Simulated electron velocity versus layer depth at different optical intensity levels for a reverse bias of 8 V.

Fig. 6
Fig. 6

(a) Top view of the fabricated double mushroom-type waveguide TTR-PD featuring a mushroom-type POW, a mushroom-type TTR-PD and a tapered GCPW transmission line matching circuitry. The SEM photos show close-up views of the mushroom-type structures of (b) the POW as well as (c) the TTR-PD.

Fig. 7
Fig. 7

Measured absolute frequency response from DC up to 110 GHz.

Fig. 8
Fig. 8

Measured output RF power plotted against the photocurrent for different drive voltages at 110 GHz.

Metrics