Abstract

Visible light communication (VLC) using LEDs has attracted significant attention recently for the future secure, license-free and electromagnetic-interference (EMI)-free optical wireless communication. Dimming technique in LED lamp is advantageous for energy efficiency. Color control can be performed in the red-green-blue (RGB) LEDs by using dimming technique. It is highly desirable to employ dimming technique to provide simultaneous color and dimming control and high speed VLC. Here, we proposed and demonstrated a LED dimming control using dimming-discrete-multi-tone (DMT) modulation. High speed DMT-based VLC with simultaneous color and dimming control is demonstrated for the first time to the best of our knowledge. Demonstration and analyses for several modulation conditions and transmission distances are performed, for instance, demonstrating the data rate of 103.5 Mb/s (using RGB LED) with fast Fourier transform (FFT) size of 512.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Chow, C. H. Yeh, Y. Liu, Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photonics Soc. Newsl. 26, 9–13 (2012).
  2. W.-Y. Lin, C.-Y. Chen, H. H. Lu, C.-H. Chang, Y.-P. Lin, H.-C. Lin, H.-W. Wu, “10m/500 Mbps WDM visible light communication systems,” Opt. Express 20(9), 9919–9924 (2012).
    [CrossRef] [PubMed]
  3. Z. Wang, C. Yu, W.-D. Zhong, J. Chen, W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
    [CrossRef] [PubMed]
  4. S. Rajagopal, R. D. Roberts, S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
    [CrossRef]
  5. H. Cho, O. K. Kwon, “A backlight dimming algorithm for low power and high image quality LCD applications,” IEEE Trans. Consum. Electron. 55(2), 839–844 (2009).
    [CrossRef]
  6. K. Lee, H. Park, “Modulations for visible light communications with dimming control,” IEEE Photonics Technol. Lett. 23(16), 1136–1138 (2011).
    [CrossRef]
  7. H. J. Jang, J. H. Choi, Z. Ghassemlooy, and C. G. Lee, “PWM-based PPM format for dimming control in visible light communication system,” in 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP) (2012), pp. 1–5.
  8. C. Kottke, J. Hilt, K. Habel, J. Vučić, K. D. Langer, ”1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in European Conference and Exhibition on Optical Communication (ECOC) (2012), We.3.B.4.
    [CrossRef]
  9. G. Ntogari, T. Kamalakis, J. W. Walewski, T. Sphicopoulos, “Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone,” J. Opt. Commun. Netw. 3(1), 56–65 (2011).
    [CrossRef]
  10. Z. Wang, W.-D. Zhong, C. Yu, J. Chen, C. P. Francois, W. Chen, “Performance of dimming control scheme in visible light communication system,” Opt. Express 20(17), 18861–18868 (2012).
    [CrossRef] [PubMed]
  11. C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, “Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photonics J. 5(1), 7900307 (2013).
    [CrossRef]
  12. C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photonics J. 5(2), 7900709 (2013).
    [CrossRef]

2013

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, “Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photonics J. 5(1), 7900307 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photonics J. 5(2), 7900709 (2013).
[CrossRef]

2012

2011

2009

H. Cho, O. K. Kwon, “A backlight dimming algorithm for low power and high image quality LCD applications,” IEEE Trans. Consum. Electron. 55(2), 839–844 (2009).
[CrossRef]

Chang, C.-H.

Chen, C.-Y.

Chen, J.

Chen, W.

Cho, H.

H. Cho, O. K. Kwon, “A backlight dimming algorithm for low power and high image quality LCD applications,” IEEE Trans. Consum. Electron. 55(2), 839–844 (2009).
[CrossRef]

Chow, C. W.

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, “Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photonics J. 5(1), 7900307 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photonics J. 5(2), 7900709 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. Liu, Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photonics Soc. Newsl. 26, 9–13 (2012).

Francois, C. P.

Habel, K.

C. Kottke, J. Hilt, K. Habel, J. Vučić, K. D. Langer, ”1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in European Conference and Exhibition on Optical Communication (ECOC) (2012), We.3.B.4.
[CrossRef]

Hilt, J.

C. Kottke, J. Hilt, K. Habel, J. Vučić, K. D. Langer, ”1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in European Conference and Exhibition on Optical Communication (ECOC) (2012), We.3.B.4.
[CrossRef]

Huang, P. Y.

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, “Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photonics J. 5(1), 7900307 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photonics J. 5(2), 7900709 (2013).
[CrossRef]

Kamalakis, T.

Kottke, C.

C. Kottke, J. Hilt, K. Habel, J. Vučić, K. D. Langer, ”1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in European Conference and Exhibition on Optical Communication (ECOC) (2012), We.3.B.4.
[CrossRef]

Kwon, O. K.

H. Cho, O. K. Kwon, “A backlight dimming algorithm for low power and high image quality LCD applications,” IEEE Trans. Consum. Electron. 55(2), 839–844 (2009).
[CrossRef]

Langer, K. D.

C. Kottke, J. Hilt, K. Habel, J. Vučić, K. D. Langer, ”1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in European Conference and Exhibition on Optical Communication (ECOC) (2012), We.3.B.4.
[CrossRef]

Lee, K.

K. Lee, H. Park, “Modulations for visible light communications with dimming control,” IEEE Photonics Technol. Lett. 23(16), 1136–1138 (2011).
[CrossRef]

Lim, S. K.

S. Rajagopal, R. D. Roberts, S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[CrossRef]

Lin, H.-C.

Lin, W.-Y.

Lin, Y.-P.

Liu, Y.

C. W. Chow, C. H. Yeh, Y. Liu, Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photonics Soc. Newsl. 26, 9–13 (2012).

Liu, Y. F.

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photonics J. 5(2), 7900709 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, “Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photonics J. 5(1), 7900307 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. Liu, Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photonics Soc. Newsl. 26, 9–13 (2012).

Lu, H. H.

Ntogari, G.

Park, H.

K. Lee, H. Park, “Modulations for visible light communications with dimming control,” IEEE Photonics Technol. Lett. 23(16), 1136–1138 (2011).
[CrossRef]

Rajagopal, S.

S. Rajagopal, R. D. Roberts, S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[CrossRef]

Roberts, R. D.

S. Rajagopal, R. D. Roberts, S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[CrossRef]

Sphicopoulos, T.

Vucic, J.

C. Kottke, J. Hilt, K. Habel, J. Vučić, K. D. Langer, ”1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in European Conference and Exhibition on Optical Communication (ECOC) (2012), We.3.B.4.
[CrossRef]

Walewski, J. W.

Wang, Z.

Wu, H.-W.

Yeh, C. H.

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photonics J. 5(2), 7900709 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, “Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photonics J. 5(1), 7900307 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. Liu, Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photonics Soc. Newsl. 26, 9–13 (2012).

Yu, C.

Zhong, W.-D.

IEEE Commun. Mag.

S. Rajagopal, R. D. Roberts, S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[CrossRef]

IEEE Photonics J.

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, “Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photonics J. 5(1), 7900307 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photonics J. 5(2), 7900709 (2013).
[CrossRef]

IEEE Photonics Soc. Newsl.

C. W. Chow, C. H. Yeh, Y. Liu, Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photonics Soc. Newsl. 26, 9–13 (2012).

IEEE Photonics Technol. Lett.

K. Lee, H. Park, “Modulations for visible light communications with dimming control,” IEEE Photonics Technol. Lett. 23(16), 1136–1138 (2011).
[CrossRef]

IEEE Trans. Consum. Electron.

H. Cho, O. K. Kwon, “A backlight dimming algorithm for low power and high image quality LCD applications,” IEEE Trans. Consum. Electron. 55(2), 839–844 (2009).
[CrossRef]

J. Opt. Commun. Netw.

Opt. Express

Other

H. J. Jang, J. H. Choi, Z. Ghassemlooy, and C. G. Lee, “PWM-based PPM format for dimming control in visible light communication system,” in 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP) (2012), pp. 1–5.

C. Kottke, J. Hilt, K. Habel, J. Vučić, K. D. Langer, ”1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in European Conference and Exhibition on Optical Communication (ECOC) (2012), We.3.B.4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Encoding and decoding processes of dimming-DMT. (b) Time trace of typical DMT signals. (c) Time trace of dimming-DMT signals.

Fig. 2
Fig. 2

Architecture for simultaneous color control and high speed VLC. Inset: red-green-blue-white (RGBW) LED.

Fig. 3
Fig. 3

The signal performance for different dimming-ratios. The distance between LEDs and PD was set to be 10 cm. (a) FFT size of 512. (b) FFT size of 128. (c) FFT size of 32.

Fig. 4
Fig. 4

The SNR performance for different DMT subcarriers. The dimming-ratio was set to be 1, and the transmission distance was 10 cm. (a) FFT size of 512. (b) FFT size of 128. (c) FFT size of 32. Inset: constellation for each R, G, and B channels.

Fig. 5
Fig. 5

The signal performance for different transmission distances. The dimming-ratio was set to be 1. (a) FFT size of 512. (b) FFT size of 128. (c) FFT size of 32.

Fig. 6
Fig. 6

The time traces of dimming-DMT signals among different dimming-ratios. (a) Dimming-ratio is 1. (b) Dimming-ratio is 0.5. (c) Dimming-ratio is 0.3.

Fig. 7
Fig. 7

(a) The spectra of R, G, and B LEDs, and PD. (b) The spectra of R, G, and B LEDs, and the CIE 1931 x, y, z color matching function. (c) The coordinate of one generated color on CIE 1931 color gamut.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D[ min( B )+fmin( ξ q )min( Q ) max( B )+fmax( ξ q )max( Q ) , 1 ].
D[ min( B )+fmin( ξ q )/max( N ) max( B )+f1/min( N ) , 1 ].
D[ 2 f0.3+f0.3/512 2 f+f1/4 , 1 ][0.26, 1].

Metrics