Abstract

We report the enhancement in the obtained signal and penetration depth of 2-D depth-resolved images that were taken by shaping the incident wavefront in optical coherence tomography (OCT). Limitations in the penetration depth and signal to noise ratio (SNR) in OCT are mainly due to multiple scattering, which have been effectively suppressed by controlling the incident wavefront using a digital mirror device (DMD) in combination with spectral-domain OCT. The successful enhancements in the penetration depth and SNR are demonstrated in a wide-range of tissue phantoms, reaching depth enhancement of up to 92%. The hidden structures inside a tissue phantom that could not be seen in conventional OCT are clearly revealed through our proposed system. Its 2-D imaging capability, assisted by further optimization of the system for real-time acquisition speed will boost wide-spread use of OCT for in-vivo tissue diagnosis.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Sebbah, Waves and Imaging through Complex Media (Kluwer Academic Publishers, 2001).
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  3. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004).
    [CrossRef] [PubMed]
  4. B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22(7), 1369–1379 (2005).
    [CrossRef] [PubMed]
  5. J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
    [CrossRef] [PubMed]
  6. M. Bashkansky, J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25(8), 545–547 (2000).
    [CrossRef] [PubMed]
  7. B. Hermann, E. J. Fernndez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, P. Artal, “Adaptive-optics ultrahigh-resolution optical coherencetomography,” Opt. Lett. 29, 2142–2144 (2004).
  8. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
    [CrossRef] [PubMed]
  9. M. Rueckel, J. A. Mack-Bucher, W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
    [CrossRef] [PubMed]
  10. K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express 18(8), 8515–8527 (2010).
    [CrossRef] [PubMed]
  11. N. Iftimia, B. E. Bouma, G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
    [CrossRef] [PubMed]
  12. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
    [CrossRef] [PubMed]
  13. R. Fiolka, K. Si, M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532–16543 (2012).
    [CrossRef]
  14. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
    [CrossRef] [PubMed]
  15. Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
    [CrossRef] [PubMed]
  16. A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [CrossRef]
  17. D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
    [CrossRef] [PubMed]
  18. D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011).
    [CrossRef] [PubMed]
  19. B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
    [CrossRef] [PubMed]
  20. B. W. Pogue, M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
    [CrossRef] [PubMed]
  21. S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [CrossRef] [PubMed]
  22. D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of biomedical optics (CRC, 2011).
  23. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  24. A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [CrossRef]
  25. J. H. Park, C. Park, H. Yu, Y. H. Cho, Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20(15), 17010–17016 (2012).
    [CrossRef]
  26. J. H. Park, C. H. Park, H. Yu, Y. H. Cho, Y. K. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37(15), 3261–3263 (2012).
    [CrossRef] [PubMed]
  27. Y.-K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
    [CrossRef] [PubMed]
  28. I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
    [CrossRef]
  29. J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
    [CrossRef]

2013 (3)

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[CrossRef] [PubMed]

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[CrossRef] [PubMed]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

2012 (5)

2011 (1)

2010 (4)

2009 (1)

2006 (2)

B. W. Pogue, M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[CrossRef] [PubMed]

M. Rueckel, J. A. Mack-Bucher, W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (2)

2003 (3)

N. Iftimia, B. E. Bouma, G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

2000 (2)

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[CrossRef] [PubMed]

M. Bashkansky, J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25(8), 545–547 (2000).
[CrossRef] [PubMed]

1993 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Akbulut, D.

Artal, P.

Badizadegan, K.

Bashkansky, M.

Biedermann, B. R.

Boppart, S. A.

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[CrossRef] [PubMed]

Bouma, B. E.

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004).
[CrossRef] [PubMed]

N. Iftimia, B. E. Bouma, G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[CrossRef] [PubMed]

Bourquin, S.

Bower, B. A.

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[CrossRef] [PubMed]

Caravaca-Aguirre, A. M.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

Cho, Y. H.

Cho, Y.-H.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Choi, H.

Choi, S.

Choi, W.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[CrossRef] [PubMed]

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[CrossRef] [PubMed]

Y.-K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
[CrossRef] [PubMed]

Choi, Y.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[CrossRef] [PubMed]

Conkey, D. B.

Cui, M.

Dasari, R.

Dasari, R. R.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[CrossRef] [PubMed]

de Boer, J. F.

Denk, W.

M. Rueckel, J. A. Mack-Bucher, W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Drexler, W.

B. Hermann, E. J. Fernndez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, P. Artal, “Adaptive-optics ultrahigh-resolution optical coherencetomography,” Opt. Lett. 29, 2142–2144 (2004).

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Eigenwillig, C. M.

Feld, M. S.

Fercher, A. F.

B. Hermann, E. J. Fernndez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, P. Artal, “Adaptive-optics ultrahigh-resolution optical coherencetomography,” Opt. Lett. 29, 2142–2144 (2004).

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Fernndez, E. J.

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

Fiolka, R.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gotzinger, E.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ha, J.

Han, S.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hillman, T. R.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Huisman, T. J.

Iftimia, N.

N. Iftimia, B. E. Bouma, G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[CrossRef] [PubMed]

Izatt, J. A.

Jang, J.

Jang, W.

Jones, S. M.

Karamata, B.

Kennedy, B. F.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
[CrossRef] [PubMed]

Klein, T.

Ko, S. H.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Kurokawa, K.

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

Lambelet, P.

Lasser, T.

B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22(7), 1369–1379 (2005).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Laubscher, M.

Laut, S.

Lee, S.

Leitgeb, R.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[CrossRef] [PubMed]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

Leutenegger, M.

Lim, J.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Loitsch, S.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
[CrossRef] [PubMed]

Lue, N.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[CrossRef] [PubMed]

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Makita, S.

McLaughlin, R. A.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
[CrossRef] [PubMed]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011).
[CrossRef] [PubMed]

I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

Nam, K. T.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Nassif, N.

Oh, W. Y.

Olivier, S. S.

Park, B. H.

Park, C.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

J. H. Park, C. Park, H. Yu, Y. H. Cho, Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20(15), 17010–17016 (2012).
[CrossRef]

Park, C. H.

Park, J.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Park, J. H.

Park, J.-H.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Park, Y.

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[CrossRef] [PubMed]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Park, Y. K.

Park, Y.-K.

Patterson, M. S.

B. W. Pogue, M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[CrossRef] [PubMed]

Piestun, R.

Pircher, M.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[CrossRef] [PubMed]

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[CrossRef] [PubMed]

Pogue, B. W.

B. W. Pogue, M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[CrossRef] [PubMed]

Prahl, S. A.

Prieto, P. M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Reintjes, J.

Rigby, P.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
[CrossRef] [PubMed]

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Sampson, D. D.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
[CrossRef] [PubMed]

Sasaki, K.

Sattmann, H.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Scolaro, L.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
[CrossRef] [PubMed]

Shin, J.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Si, K.

So, P. T. C.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004).
[CrossRef] [PubMed]

N. Iftimia, B. E. Bouma, G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[CrossRef] [PubMed]

Unterhuber, A.

van Gemert, M. J. C.

van Putten, E. G.

Vellekoop, I. M.

I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

Vos, W. L.

Welch, A. J.

Werner, J. S.

Wieser, W.

Yamanari, M.

Yaqoob, Z.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[CrossRef] [PubMed]

Y.-K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
[CrossRef] [PubMed]

Yasuno, Y.

Yu, H.

Yun, S. H.

Zawadzki, R. J.

Zhao, M.

Appl. Opt. (1)

J. Biomed. Opt. (4)

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[CrossRef] [PubMed]

N. Iftimia, B. E. Bouma, G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Photonics (3)

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[CrossRef]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[CrossRef] [PubMed]

Opt. Express (9)

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

R. Fiolka, K. Si, M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532–16543 (2012).
[CrossRef]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[CrossRef] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express 18(8), 8515–8527 (2010).
[CrossRef] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
[CrossRef] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011).
[CrossRef] [PubMed]

J. H. Park, C. Park, H. Yu, Y. H. Cho, Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20(15), 17010–17016 (2012).
[CrossRef]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

Y.-K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Rueckel, J. A. Mack-Bucher, W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

P. Sebbah, Waves and Imaging through Complex Media (Kluwer Academic Publishers, 2001).

D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of biomedical optics (CRC, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Optical setup for SD-OCT with complex wavefront control capability. A DMD is added to a SD-OCT system for wavefront control. The diffraction grating (G1) is inserted for dispersion compensation and the objective back focal plane is conjugated to the DMD plane via two 4-f systems (L1-L2, L3-L4). L1, L2, L3, L4 are 75 mm, 100 mm, 150 mm and 150 mm achromatic lenses, respectively. C: collimator lens, M: mirror, G: grating, BS: beam splitter, GM: galvanometer mirror (b) The synchronization among DMD, CCD and GM via trigger signals. Hadamard patterns (H1, H2, …, H7500) are loaded on the DMD and corresponding OCT signals are measured at the CCD. The optimizing patterns (O1, O2, …, O200) for each depth are calculated in parallel, and the corresponding optimized signals are measured after characterization process.

Fig. 2
Fig. 2

2-D OCT images for a structured sample with the scattering tissue phantom slanted at the top-most layer (a). (b) Optimized image for the dashed-rectangular area. (c) The spatial compounding result using Hadamard basis patterns for the same area. The input illumination power is 0.55 mW for both cases.

Fig. 3
Fig. 3

B-scan images under various conditions. (a) Optimized image by wavefront control with input power of 0.55 mW. (b) Image acquired for uncontrolled input beam of 1.1 mW. (c) Image acquired for uncontrolled input beam of 0.55 mW. (d) Image obtained by spatial compounding method. (e) The averaged A-scan profiles along 15 different A-scans in each case are plotted.

Fig. 4
Fig. 4

B-scan images under various conditions. (a) Optimized image by wavefront control. (b) Image obtained by spatial compounding method (averaged 7500 uncontrolled curves). (c) Image obtained by spatial compounding method (averaged 200 uncontrolled curves). (d) The averaged A-scan profiles along 10 different A-scans in each case are plotted.

Fig. 5
Fig. 5

(a) First-order exponential fits to the OCT signals in Fig. 3(e). (b) The penetration depth enhancement for various reduced scattering coefficients and DMD macro-pixel segmentations.

Metrics