Abstract

Spectral broadening of the fundamental field in intracavity Raman lasers is investigated. The mechanism for the spectral broadening is discussed and the effect is compared in two lasers using Raman crystals with different Raman linewidths. The impact of the spectral broadening on the effective Raman gain is analyzed, and the use of etalons to limit the fundamental spectral width is explored. It was found that an improvement in output power could be obtained by using etalons to limit the fundamental spectrum to a single narrow peak.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Progress in Quant. Electron. 32, 121–158 (2008).
  2. A. J. Lee, D. J. Spence, J. A. Piper, H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
    [CrossRef] [PubMed]
  3. A. Lee, H. M. Pask, D. J. Spence, “Control of cascading in multiple-order Raman lasers,” Opt. Lett. 37(18), 3840–3842 (2012).
    [CrossRef] [PubMed]
  4. A. J. Lee, H. M. Pask, J. A. Piper, H. Zhang, J. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express 18(6), 5984–5992 (2010).
    [CrossRef] [PubMed]
  5. X. Li, A. J. Lee, Y. Huo, H. Zhang, J. Wang, J. A. Piper, H. M. Pask, D. J. Spence, “Managing SRS competition in a miniature visible Nd:YVO4/BaWO4 Raman laser,” Opt. Express 20(17), 19305–19312 (2012).
    [CrossRef] [PubMed]
  6. P. Dekker, H. M. Pask, D. J. Spence, J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
    [CrossRef] [PubMed]
  7. P. Dekker, H. M. Pask, J. A. Piper, “All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser,” Opt. Lett. 32(9), 1114–1116 (2007).
    [CrossRef] [PubMed]
  8. L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B-Lasers and Optics 94(4), 553–557 (2009).
    [CrossRef]
  9. L. Fan, Y. X. Fan, H. T. Wang, “A compact efficient continuous-wave self-frequency Raman laser with a composite YVO4/Nd:YVO4/ YVO4 crystal,” Appl. Phys. B 101(3), 493–496 (2010).
    [CrossRef]
  10. L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
    [CrossRef] [PubMed]
  11. V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B-Lasers and Optics 88(4), 499–501 (2007).
    [CrossRef]
  12. D. C. Parrotta, A. J. Kemp, M. D. Dawson, J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE Selected Topics in Quant. Electron. 19, # 1400108 (2013).
  13. Y. Sato, T. Taira, “Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials,” Opt. Mater. Express 2(8), 1076–1087 (2012).
    [CrossRef]
  14. Y. Sato, T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE Selected Topics in Journal of Quant. Electron. 11, 613–620 (2005).
  15. Y. Sato, T. Taira, “Spectroscopic properties of Neodymium-doped Yttrium Orthovanadate single crystals with high-resolution measurement,” Jpn. J. Appl. Phys. 41(1), 5999–6002 (2002).
    [CrossRef]
  16. U. Keller, T. H. Chiu, “Resonant passive mode-locked Nd:YLF laser,” IEEE J. Quantum Electron. 28(7), 1710–1721 (1992).
    [CrossRef]
  17. T. T. Basiev, A. A. Sobol, Y. K. Voronko, P. G. Zverev, “Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers,” Opt. Mater. 15(3), 205–216 (2000).
    [CrossRef]
  18. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
    [CrossRef] [PubMed]
  19. G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express 20(9), 9810–9818 (2012).
    [CrossRef] [PubMed]
  20. J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26(12), 2052–2057 (1990).
    [CrossRef]
  21. A. Penzkofer, A. Laubereau, W. Kaiser, “High intensity Raman interactions,” Progress in Quant. Electron. 6, 55–140 (1982).
  22. J. Eggleston, R. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. 16(8), 850–853 (1980).
    [CrossRef]
  23. E. A. Stappaerts, H. Komine, W. H. Long., “Gain enhancement in Raman amplifiers with broadband pumping,” Opt. Lett. 5(1), 4–6 (1980).
    [CrossRef] [PubMed]
  24. A. T. Georges, “Statistical theory of Raman amplification and spontaneous generation in dispersive media pumped with a broadband laser,” Phys. Rev. A 39(4), 1876–1886 (1989).
    [CrossRef] [PubMed]
  25. A. Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. (Berl.) 17(3), 211–232 (1978).
    [CrossRef]

2013 (1)

D. C. Parrotta, A. J. Kemp, M. D. Dawson, J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE Selected Topics in Quant. Electron. 19, # 1400108 (2013).

2012 (4)

2010 (3)

2009 (2)

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B-Lasers and Optics 94(4), 553–557 (2009).
[CrossRef]

L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
[CrossRef] [PubMed]

2008 (1)

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Progress in Quant. Electron. 32, 121–158 (2008).

2007 (3)

2005 (1)

Y. Sato, T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE Selected Topics in Journal of Quant. Electron. 11, 613–620 (2005).

2002 (1)

Y. Sato, T. Taira, “Spectroscopic properties of Neodymium-doped Yttrium Orthovanadate single crystals with high-resolution measurement,” Jpn. J. Appl. Phys. 41(1), 5999–6002 (2002).
[CrossRef]

2000 (1)

T. T. Basiev, A. A. Sobol, Y. K. Voronko, P. G. Zverev, “Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers,” Opt. Mater. 15(3), 205–216 (2000).
[CrossRef]

1999 (1)

1992 (1)

U. Keller, T. H. Chiu, “Resonant passive mode-locked Nd:YLF laser,” IEEE J. Quantum Electron. 28(7), 1710–1721 (1992).
[CrossRef]

1990 (1)

J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26(12), 2052–2057 (1990).
[CrossRef]

1989 (1)

A. T. Georges, “Statistical theory of Raman amplification and spontaneous generation in dispersive media pumped with a broadband laser,” Phys. Rev. A 39(4), 1876–1886 (1989).
[CrossRef] [PubMed]

1982 (1)

A. Penzkofer, A. Laubereau, W. Kaiser, “High intensity Raman interactions,” Progress in Quant. Electron. 6, 55–140 (1982).

1980 (2)

J. Eggleston, R. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. 16(8), 850–853 (1980).
[CrossRef]

E. A. Stappaerts, H. Komine, W. H. Long., “Gain enhancement in Raman amplifiers with broadband pumping,” Opt. Lett. 5(1), 4–6 (1980).
[CrossRef] [PubMed]

1978 (1)

A. Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. (Berl.) 17(3), 211–232 (1978).
[CrossRef]

Basiev, T. T.

T. T. Basiev, A. A. Sobol, Y. K. Voronko, P. G. Zverev, “Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers,” Opt. Mater. 15(3), 205–216 (2000).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[CrossRef] [PubMed]

Bonner, G. M.

Burakevich, V. N.

V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B-Lasers and Optics 88(4), 499–501 (2007).
[CrossRef]

Byer, R.

J. Eggleston, R. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. 16(8), 850–853 (1980).
[CrossRef]

Chiu, T. H.

U. Keller, T. H. Chiu, “Resonant passive mode-locked Nd:YLF laser,” IEEE J. Quantum Electron. 28(7), 1710–1721 (1992).
[CrossRef]

Dawson, M. D.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE Selected Topics in Quant. Electron. 19, # 1400108 (2013).

Dekker, P.

Demidovich, A. A.

V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B-Lasers and Optics 88(4), 499–501 (2007).
[CrossRef]

Duan, Y. H.

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B-Lasers and Optics 94(4), 553–557 (2009).
[CrossRef]

Eggleston, J.

J. Eggleston, R. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. 16(8), 850–853 (1980).
[CrossRef]

Fan, L.

L. Fan, Y. X. Fan, H. T. Wang, “A compact efficient continuous-wave self-frequency Raman laser with a composite YVO4/Nd:YVO4/ YVO4 crystal,” Appl. Phys. B 101(3), 493–496 (2010).
[CrossRef]

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B-Lasers and Optics 94(4), 553–557 (2009).
[CrossRef]

L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
[CrossRef] [PubMed]

Fan, Y. X.

L. Fan, Y. X. Fan, H. T. Wang, “A compact efficient continuous-wave self-frequency Raman laser with a composite YVO4/Nd:YVO4/ YVO4 crystal,” Appl. Phys. B 101(3), 493–496 (2010).
[CrossRef]

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B-Lasers and Optics 94(4), 553–557 (2009).
[CrossRef]

L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
[CrossRef] [PubMed]

Georges, A. T.

A. T. Georges, “Statistical theory of Raman amplification and spontaneous generation in dispersive media pumped with a broadband laser,” Phys. Rev. A 39(4), 1876–1886 (1989).
[CrossRef] [PubMed]

Grabtchikov, A. S.

V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B-Lasers and Optics 88(4), 499–501 (2007).
[CrossRef]

Grasiuk, A. Z.

A. Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. (Berl.) 17(3), 211–232 (1978).
[CrossRef]

Hastie, J. E.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE Selected Topics in Quant. Electron. 19, # 1400108 (2013).

Huo, Y.

Jia, G. H.

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B-Lasers and Optics 94(4), 553–557 (2009).
[CrossRef]

Kaiser, W.

A. Penzkofer, A. Laubereau, W. Kaiser, “High intensity Raman interactions,” Progress in Quant. Electron. 6, 55–140 (1982).

Keller, U.

U. Keller, T. H. Chiu, “Resonant passive mode-locked Nd:YLF laser,” IEEE J. Quantum Electron. 28(7), 1710–1721 (1992).
[CrossRef]

Kemp, A. J.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE Selected Topics in Quant. Electron. 19, # 1400108 (2013).

G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express 20(9), 9810–9818 (2012).
[CrossRef] [PubMed]

Komine, H.

Laubereau, A.

A. Penzkofer, A. Laubereau, W. Kaiser, “High intensity Raman interactions,” Progress in Quant. Electron. 6, 55–140 (1982).

Lee, A.

Lee, A. J.

Li, X.

Li, Y. Q.

Lisinetskii, V. A.

V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B-Lasers and Optics 88(4), 499–501 (2007).
[CrossRef]

Long, W. H.

Mildren, R. P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Progress in Quant. Electron. 32, 121–158 (2008).

Omatsu, T.

Orlovich, V. A.

V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B-Lasers and Optics 88(4), 499–501 (2007).
[CrossRef]

Osiko, V. V.

Parrotta, D. C.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE Selected Topics in Quant. Electron. 19, # 1400108 (2013).

Pask, H. M.

G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express 20(9), 9810–9818 (2012).
[CrossRef] [PubMed]

A. Lee, H. M. Pask, D. J. Spence, “Control of cascading in multiple-order Raman lasers,” Opt. Lett. 37(18), 3840–3842 (2012).
[CrossRef] [PubMed]

X. Li, A. J. Lee, Y. Huo, H. Zhang, J. Wang, J. A. Piper, H. M. Pask, D. J. Spence, “Managing SRS competition in a miniature visible Nd:YVO4/BaWO4 Raman laser,” Opt. Express 20(17), 19305–19312 (2012).
[CrossRef] [PubMed]

A. J. Lee, D. J. Spence, J. A. Piper, H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
[CrossRef] [PubMed]

A. J. Lee, H. M. Pask, J. A. Piper, H. Zhang, J. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express 18(6), 5984–5992 (2010).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Progress in Quant. Electron. 32, 121–158 (2008).

P. Dekker, H. M. Pask, D. J. Spence, J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
[CrossRef] [PubMed]

P. Dekker, H. M. Pask, J. A. Piper, “All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser,” Opt. Lett. 32(9), 1114–1116 (2007).
[CrossRef] [PubMed]

Penzkofer, A.

A. Penzkofer, A. Laubereau, W. Kaiser, “High intensity Raman interactions,” Progress in Quant. Electron. 6, 55–140 (1982).

Piper, J. A.

Powell, R. C.

Sato, Y.

Y. Sato, T. Taira, “Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials,” Opt. Mater. Express 2(8), 1076–1087 (2012).
[CrossRef]

Y. Sato, T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE Selected Topics in Journal of Quant. Electron. 11, 613–620 (2005).

Y. Sato, T. Taira, “Spectroscopic properties of Neodymium-doped Yttrium Orthovanadate single crystals with high-resolution measurement,” Jpn. J. Appl. Phys. 41(1), 5999–6002 (2002).
[CrossRef]

Sobol, A. A.

T. T. Basiev, A. A. Sobol, Y. K. Voronko, P. G. Zverev, “Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers,” Opt. Mater. 15(3), 205–216 (2000).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[CrossRef] [PubMed]

Spence, D. J.

Stappaerts, E. A.

Taira, T.

Y. Sato, T. Taira, “Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials,” Opt. Mater. Express 2(8), 1076–1087 (2012).
[CrossRef]

Y. Sato, T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE Selected Topics in Journal of Quant. Electron. 11, 613–620 (2005).

Y. Sato, T. Taira, “Spectroscopic properties of Neodymium-doped Yttrium Orthovanadate single crystals with high-resolution measurement,” Jpn. J. Appl. Phys. 41(1), 5999–6002 (2002).
[CrossRef]

Titov, A. N.

V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B-Lasers and Optics 88(4), 499–501 (2007).
[CrossRef]

Tu, C. Y.

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B-Lasers and Optics 94(4), 553–557 (2009).
[CrossRef]

Voronko, Y. K.

T. T. Basiev, A. A. Sobol, Y. K. Voronko, P. G. Zverev, “Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers,” Opt. Mater. 15(3), 205–216 (2000).
[CrossRef]

Wang, H. T.

L. Fan, Y. X. Fan, H. T. Wang, “A compact efficient continuous-wave self-frequency Raman laser with a composite YVO4/Nd:YVO4/ YVO4 crystal,” Appl. Phys. B 101(3), 493–496 (2010).
[CrossRef]

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B-Lasers and Optics 94(4), 553–557 (2009).
[CrossRef]

L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
[CrossRef] [PubMed]

Wang, J.

Wang, Q.

L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
[CrossRef] [PubMed]

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B-Lasers and Optics 94(4), 553–557 (2009).
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26(12), 2052–2057 (1990).
[CrossRef]

Zhang, H.

Zhang, H. J.

Zubarev, I. G.

A. Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. (Berl.) 17(3), 211–232 (1978).
[CrossRef]

Zverev, P. G.

T. T. Basiev, A. A. Sobol, Y. K. Voronko, P. G. Zverev, “Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers,” Opt. Mater. 15(3), 205–216 (2000).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. (Berl.) (1)

A. Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. (Berl.) 17(3), 211–232 (1978).
[CrossRef]

Appl. Phys. B (1)

L. Fan, Y. X. Fan, H. T. Wang, “A compact efficient continuous-wave self-frequency Raman laser with a composite YVO4/Nd:YVO4/ YVO4 crystal,” Appl. Phys. B 101(3), 493–496 (2010).
[CrossRef]

Appl. Phys. B-Lasers and Optics (2)

V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B-Lasers and Optics 88(4), 499–501 (2007).
[CrossRef]

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B-Lasers and Optics 94(4), 553–557 (2009).
[CrossRef]

IEEE J. Quantum Electron. (3)

U. Keller, T. H. Chiu, “Resonant passive mode-locked Nd:YLF laser,” IEEE J. Quantum Electron. 28(7), 1710–1721 (1992).
[CrossRef]

J. Eggleston, R. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. 16(8), 850–853 (1980).
[CrossRef]

J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26(12), 2052–2057 (1990).
[CrossRef]

IEEE Selected Topics in Journal of Quant. Electron. (1)

Y. Sato, T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE Selected Topics in Journal of Quant. Electron. 11, 613–620 (2005).

IEEE Selected Topics in Quant. Electron. (1)

D. C. Parrotta, A. J. Kemp, M. D. Dawson, J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE Selected Topics in Quant. Electron. 19, # 1400108 (2013).

Jpn. J. Appl. Phys. (1)

Y. Sato, T. Taira, “Spectroscopic properties of Neodymium-doped Yttrium Orthovanadate single crystals with high-resolution measurement,” Jpn. J. Appl. Phys. 41(1), 5999–6002 (2002).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Opt. Mater. (1)

T. T. Basiev, A. A. Sobol, Y. K. Voronko, P. G. Zverev, “Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers,” Opt. Mater. 15(3), 205–216 (2000).
[CrossRef]

Opt. Mater. Express (1)

Phys. Rev. A (1)

A. T. Georges, “Statistical theory of Raman amplification and spontaneous generation in dispersive media pumped with a broadband laser,” Phys. Rev. A 39(4), 1876–1886 (1989).
[CrossRef] [PubMed]

Progress in Quant. Electron. (2)

A. Penzkofer, A. Laubereau, W. Kaiser, “High intensity Raman interactions,” Progress in Quant. Electron. 6, 55–140 (1982).

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Progress in Quant. Electron. 32, 121–158 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Laser gain α F ( ν 0 δ ν ) loss (including passive loss γ F and loss due to the Stokes field Γ ( ν 0 δ ν ) ), and net gain α N E T ( ν 0 δ ν ) for wavelengths around the fundamental frequency ν 0 , for an idealized single-longitudinal mode laser pumped at two times the Raman pump power threshold. The laser gain and Raman spectrum are assumed to be Lorentzian, with widths Δ ν F and Δ ν R respectively. In (a) the Raman linewidth is wider than the laser linewidth with Δ ν R / Δ ν F = 4 / 3 and in (b) the Raman linewidth is narrower than the laser linewidth with Δ ν R / Δ ν F = 1 / 3 .

Fig. 2
Fig. 2

Schematic of BaWO4 laser cavity. DC was a plane dichroic mirror, highly transmitting at the fundamental wavelength of 1064 nm and highly reflecting at the Stokes wavelength of 1180 nm. M1 was a highly reflecting coating at the fundamental wavelength on the back of the Nd:YVO4 crystal. M2 and M3 were highly reflecting at both wavelengths, and had radii of curvature of 100 mm and −100 mm respectively. OC was a concave output coupler with a radius of curvature of 250 mm and a transmission of 0.4% at 1180 nm.

Fig. 3
Fig. 3

Power transfer for the BaWO4 Raman laser.

Fig. 4
Fig. 4

Spectra of the BaWO4 Raman laser. The upper plots (blue) show the fundamental spectra. The lower plots (red) show the corresponding Stokes spectra. The absorbed pump power was (a) 1.6 W (below Raman threshold), (b) 8.2 W, (c) 14.2 W, (d) 31.5 W.

Fig. 5
Fig. 5

Spectra of the KGd(WO4)2 Raman laser. Upper plots (blue) show the fundamental spectra. The lower plots (red) show the corresponding Stokes spectra. The absorbed pump power was (a) 0.90 W (below Raman threshold), (b) 3.98 W, (c) 12.94 W, (d) 27.33 W.

Fig. 6
Fig. 6

Spectra of the BaWO4 Raman laser with (a) no etalons, (b) the 400 μm thick YAG etalon and (c) both the 400 μm and the 50 μm thick etalons in the fundamental cavity The upper plots (blue) show the fundamental spectra when SRS is occurring. The lower plots (red) show the corresponding Stokes spectra. The absorbed pump power was 31.5 W. Note the instrument linewidths are 0.09 nm for the fundamental and 0.06 nm for the Stokes.

Fig. 7
Fig. 7

Power transfers for the BaWO4 Raman laser with and without etalons in the fundamental cavity.

Fig. 8
Fig. 8

The effective gain factor, ε = geff/gR, calculated from the experimental spectral data for the Raman laser with and without etalons in the fundamental cavity.

Tables (1)

Tables Icon

Table 1 Laser gain bandwidths and Raman linewidths for common laser and Raman crystals

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α NET ( ν 0 δν )= α F ( ν 0 δν )Γ( ν 0 δν ) γ F .
g eff = g R [R( ν )*F( ν )]S( ν ) dν.

Metrics