Abstract

We propose and demonstrate a compact and cost-effective photonic approach to generate arbitrarily phase-modulated microwave signals using a conventional dual-drive Mach-Zehnder modulator (DDMZM). One arm (arm1) of the DDMZM is driven by a sinusoidal microwave signal whose power is optimized to suppress the optical carrier, while the other arm (arm2) of the DDMZM is driven by a coding signal. In this way, the phase-modulated optical carrier from the arm2 and the sidebands from the arm1 are combined together at the output of the DDMZM. Binary phase-coded microwave pulses which are free from the baseband frequency components can be generated when the coding signal is a three-level signal. In this case, the precise π phase shift of the microwave signal is independent of the amplitude of the coding signal. Moreover, arbitrarily phase-modulated microwave signals can be generated when an optical bandpass filter is attached after the DDMZM to achieve optical single-sideband modulation. The proposed approach is theoretically analyzed and experimentally verified. The binary phase-coded microwave pulses, quaternary phase-coded microwave signal, and linearly frequency-chirped microwave signal are experimentally generated. The simulated and the experimental results agree very well with each other.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Skolnik, Introduction to Radar Systems, 2nd ed. (McGraw-Hill, 1980).
  2. J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284(15), 3723–3736 (2011).
    [CrossRef]
  3. J. Chou, Y. Han, B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
    [CrossRef]
  4. I. S. Lin, J. D. McKinney, A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveform applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett. 15(4), 226–228 (2005).
    [CrossRef]
  5. H. Chi, J. P. Yao, “All-fiber chirped microwave pulse generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007).
    [CrossRef]
  6. J. D. McKinney, D. E. Leaird, A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett. 27(15), 1345–1347 (2002).
    [CrossRef] [PubMed]
  7. F. Laghezza, F. Scotti, P. Ghelfi, F. Berizzi, A. Bogoni, “Photonic generation of microwave phase coded radar signal,” in Proc. IET Int.Conf. Radar Syst. 74–77 (2012).
    [CrossRef]
  8. P. Ghelfi, F. Scotti, F. Laghezza, A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
    [CrossRef]
  9. Z. Li, W. Li, H. Chi, X. Zhang, J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
    [CrossRef]
  10. H. Chi, J. P. Yao, “Photonic generation of phase-coded millimeterwave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
    [CrossRef]
  11. Y. M. Zhang, S. L. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38(5), 766–768 (2013).
    [CrossRef] [PubMed]
  12. W. Li, F. Kong, J. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 31(23), 3780–3786 (2013).
    [CrossRef]
  13. W. Li, L. X. Wang, M. Li, N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photon. Technol. Lett. 25(19), 1867–1870 (2013).
    [CrossRef]
  14. W. Li, L. X. Wang, M. Li, H. Wang, N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tenability using a dual-parallel Mach-Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
  15. Z. Tang, T. Zhang, F. Zhang, S. Pan, “Photonic generation of a phase-coded microwave signal based on a single dual-drive Mach-Zehnder modulator,” Opt. Lett. 38(24), 5365–5368 (2013).
    [CrossRef] [PubMed]
  16. L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photon. Technol. Lett. 25(7), 678–681 (2013).
    [CrossRef]
  17. W. Li, L. X. Wang, M. Li, N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
    [CrossRef] [PubMed]
  18. S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2008).
    [CrossRef]
  19. W. Li, W. T. Wang, W. H. Sun, L. X. Wang, N. H. Zhu, “Photonic generation of background-free millimeter-wave ultrawideband pulses based on a single dual-drive Mach-Zehnder modulator,” Opt. Lett. 39(5), 1201–1203 (2014).
    [CrossRef]

2014

2013

Y. M. Zhang, S. L. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38(5), 766–768 (2013).
[CrossRef] [PubMed]

W. Li, L. X. Wang, M. Li, N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
[CrossRef] [PubMed]

W. Li, F. Kong, J. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 31(23), 3780–3786 (2013).
[CrossRef]

Z. Tang, T. Zhang, F. Zhang, S. Pan, “Photonic generation of a phase-coded microwave signal based on a single dual-drive Mach-Zehnder modulator,” Opt. Lett. 38(24), 5365–5368 (2013).
[CrossRef] [PubMed]

W. Li, L. X. Wang, M. Li, N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photon. Technol. Lett. 25(19), 1867–1870 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, H. Wang, N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tenability using a dual-parallel Mach-Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photon. Technol. Lett. 25(7), 678–681 (2013).
[CrossRef]

2012

2011

Z. Li, W. Li, H. Chi, X. Zhang, J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[CrossRef]

J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284(15), 3723–3736 (2011).
[CrossRef]

2008

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2008).
[CrossRef]

H. Chi, J. P. Yao, “Photonic generation of phase-coded millimeterwave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[CrossRef]

2007

H. Chi, J. P. Yao, “All-fiber chirped microwave pulse generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007).
[CrossRef]

2005

I. S. Lin, J. D. McKinney, A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveform applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett. 15(4), 226–228 (2005).
[CrossRef]

2003

J. Chou, Y. Han, B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[CrossRef]

2002

Berizzi, F.

F. Laghezza, F. Scotti, P. Ghelfi, F. Berizzi, A. Bogoni, “Photonic generation of microwave phase coded radar signal,” in Proc. IET Int.Conf. Radar Syst. 74–77 (2012).
[CrossRef]

Bogoni, A.

P. Ghelfi, F. Scotti, F. Laghezza, A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[CrossRef]

F. Laghezza, F. Scotti, P. Ghelfi, F. Berizzi, A. Bogoni, “Photonic generation of microwave phase coded radar signal,” in Proc. IET Int.Conf. Radar Syst. 74–77 (2012).
[CrossRef]

Chi, H.

Z. Li, W. Li, H. Chi, X. Zhang, J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[CrossRef]

H. Chi, J. P. Yao, “Photonic generation of phase-coded millimeterwave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[CrossRef]

H. Chi, J. P. Yao, “All-fiber chirped microwave pulse generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007).
[CrossRef]

Chou, J.

J. Chou, Y. Han, B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[CrossRef]

Delfyett, P. J.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2008).
[CrossRef]

Gee, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2008).
[CrossRef]

Ghelfi, P.

P. Ghelfi, F. Scotti, F. Laghezza, A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[CrossRef]

F. Laghezza, F. Scotti, P. Ghelfi, F. Berizzi, A. Bogoni, “Photonic generation of microwave phase coded radar signal,” in Proc. IET Int.Conf. Radar Syst. 74–77 (2012).
[CrossRef]

Han, Y.

J. Chou, Y. Han, B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[CrossRef]

Jalali, B.

J. Chou, Y. Han, B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[CrossRef]

Kong, F.

Laghezza, F.

P. Ghelfi, F. Scotti, F. Laghezza, A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[CrossRef]

F. Laghezza, F. Scotti, P. Ghelfi, F. Berizzi, A. Bogoni, “Photonic generation of microwave phase coded radar signal,” in Proc. IET Int.Conf. Radar Syst. 74–77 (2012).
[CrossRef]

Leaird, D. E.

Li, M.

W. Li, L. X. Wang, M. Li, N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
[CrossRef] [PubMed]

W. Li, L. X. Wang, M. Li, N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photon. Technol. Lett. 25(19), 1867–1870 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, H. Wang, N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tenability using a dual-parallel Mach-Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).

Li, W.

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, N. H. Zhu, “Photonic generation of background-free millimeter-wave ultrawideband pulses based on a single dual-drive Mach-Zehnder modulator,” Opt. Lett. 39(5), 1201–1203 (2014).
[CrossRef]

W. Li, L. X. Wang, M. Li, N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photon. Technol. Lett. 25(19), 1867–1870 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
[CrossRef] [PubMed]

W. Li, L. X. Wang, M. Li, H. Wang, N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tenability using a dual-parallel Mach-Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photon. Technol. Lett. 25(7), 678–681 (2013).
[CrossRef]

W. Li, F. Kong, J. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 31(23), 3780–3786 (2013).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[CrossRef]

Li, Z.

Z. Li, W. Li, H. Chi, X. Zhang, J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[CrossRef]

Lin, I. S.

I. S. Lin, J. D. McKinney, A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveform applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett. 15(4), 226–228 (2005).
[CrossRef]

Liu, J. G.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photon. Technol. Lett. 25(7), 678–681 (2013).
[CrossRef]

McKinney, J. D.

I. S. Lin, J. D. McKinney, A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveform applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett. 15(4), 226–228 (2005).
[CrossRef]

J. D. McKinney, D. E. Leaird, A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett. 27(15), 1345–1347 (2002).
[CrossRef] [PubMed]

Ozdur, I.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2008).
[CrossRef]

Ozharar, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2008).
[CrossRef]

Pan, S.

Pan, S. L.

Quinlan, F.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2008).
[CrossRef]

Scotti, F.

P. Ghelfi, F. Scotti, F. Laghezza, A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[CrossRef]

F. Laghezza, F. Scotti, P. Ghelfi, F. Berizzi, A. Bogoni, “Photonic generation of microwave phase coded radar signal,” in Proc. IET Int.Conf. Radar Syst. 74–77 (2012).
[CrossRef]

Sun, W. H.

Tang, Z.

Wang, H.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photon. Technol. Lett. 25(7), 678–681 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, H. Wang, N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tenability using a dual-parallel Mach-Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).

Wang, L. X.

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, N. H. Zhu, “Photonic generation of background-free millimeter-wave ultrawideband pulses based on a single dual-drive Mach-Zehnder modulator,” Opt. Lett. 39(5), 1201–1203 (2014).
[CrossRef]

W. Li, L. X. Wang, M. Li, N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photon. Technol. Lett. 25(19), 1867–1870 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
[CrossRef] [PubMed]

W. Li, L. X. Wang, M. Li, H. Wang, N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tenability using a dual-parallel Mach-Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photon. Technol. Lett. 25(7), 678–681 (2013).
[CrossRef]

Wang, W. T.

Weiner, A. M.

I. S. Lin, J. D. McKinney, A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveform applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett. 15(4), 226–228 (2005).
[CrossRef]

J. D. McKinney, D. E. Leaird, A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett. 27(15), 1345–1347 (2002).
[CrossRef] [PubMed]

Yao, J.

Yao, J. P.

Z. Li, W. Li, H. Chi, X. Zhang, J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[CrossRef]

J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284(15), 3723–3736 (2011).
[CrossRef]

H. Chi, J. P. Yao, “Photonic generation of phase-coded millimeterwave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[CrossRef]

H. Chi, J. P. Yao, “All-fiber chirped microwave pulse generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007).
[CrossRef]

Zhang, F.

Zhang, T.

Zhang, X.

Z. Li, W. Li, H. Chi, X. Zhang, J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[CrossRef]

Zhang, Y. M.

Zheng, J. Y.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photon. Technol. Lett. 25(7), 678–681 (2013).
[CrossRef]

Zhu, N. H.

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, N. H. Zhu, “Photonic generation of background-free millimeter-wave ultrawideband pulses based on a single dual-drive Mach-Zehnder modulator,” Opt. Lett. 39(5), 1201–1203 (2014).
[CrossRef]

W. Li, L. X. Wang, M. Li, N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photon. Technol. Lett. 25(19), 1867–1870 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
[CrossRef] [PubMed]

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photon. Technol. Lett. 25(7), 678–681 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, H. Wang, N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tenability using a dual-parallel Mach-Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).

IEEE Microw. Wirel. Compon. Lett.

I. S. Lin, J. D. McKinney, A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveform applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett. 15(4), 226–228 (2005).
[CrossRef]

H. Chi, J. P. Yao, “Photonic generation of phase-coded millimeterwave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[CrossRef]

IEEE Photon. J.

W. Li, L. X. Wang, M. Li, H. Wang, N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tenability using a dual-parallel Mach-Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).

IEEE Photon. Technol. Lett.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photon. Technol. Lett. 25(7), 678–681 (2013).
[CrossRef]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2008).
[CrossRef]

J. Chou, Y. Han, B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[CrossRef]

W. Li, L. X. Wang, M. Li, N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photon. Technol. Lett. 25(19), 1867–1870 (2013).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

H. Chi, J. P. Yao, “All-fiber chirped microwave pulse generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284(15), 3723–3736 (2011).
[CrossRef]

Opt. Lett.

Other

M. L. Skolnik, Introduction to Radar Systems, 2nd ed. (McGraw-Hill, 1980).

F. Laghezza, F. Scotti, P. Ghelfi, F. Berizzi, A. Bogoni, “Photonic generation of microwave phase coded radar signal,” in Proc. IET Int.Conf. Radar Syst. 74–77 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the proposed phase-modulated microwave signal generator (LD: laser diode; DDMZM: dual-drive Mach-Zehnder modulator; OBPF: optical bandpass filter; PD: photodetector; OSC: sampling oscilloscope; ESA: electrical spectrum analyzer.

Fig. 2
Fig. 2

Variations of J0(β) and J1(β) versus β.

Fig. 3
Fig. 3

Measured optical spectrum at the output of the DDMZM and the simulated optical spectrum at the output of the arm1 of the DDMZM. The frequency of the microwave signal driven to the arm1 is 15 GHz and the coding signal applied to the arm2 is a 13-bit Barker code.

Fig. 4
Fig. 4

(a) The electrical 13-bit Barker coded signal applied to the arm2 of the DDMZM. (b) The measured binary phase-coded microwave pulse. (c) The simulated binary phase-coded microwave pulse. (d) The phase information extracted from Fig. 4(b). (e) The phase information extracted from Fig. 4(c). (f) The measured binary phase-coded microwave pulses in a time duration of 70 ns.

Fig. 5
Fig. 5

Measured electrical spectrum of the generated binary phase-coded microwave pulse.

Fig. 6
Fig. 6

(a) Autocorrelation of the measured 13-bit Barker coded microwave pulse shown in Fig. 4(b). Inset shows a zoom-in view of the autocorrelation. (b) Autocorrelation of the simulated 13-bit Barker coded microwave pulse shown in Fig. 4(c). Inset shows a zoom-in view of the autocorrelation.

Fig. 7
Fig. 7

Measured optical spectra at the output of the DDMZM before filtering, after filtering by the OBPF, and the response of the OBPF as well as the simulated optical spectrum at the output of the arm1 of the DDMZM. The frequency of the microwave signal applied to the arm1 of the DDMZM is 10 GHz. The coding signal is a four-level stair wave signal.

Fig. 8
Fig. 8

(a) The electrical four-level stair wave coding signal generated by the AWG. (b) The measured quaternary phase-coded microwave signal. (c) The phase information extracted from Fig. 8(b). (d) The simulated quaternary phase-coded microwave signal. (e) The phase information extracted from Fig. 8(d).

Fig. 9
Fig. 9

(a) Autocorrelation of the measured quaternary phase-coded microwave signal. Inset shows a zoom-in view of the autocorrelation. (b) The zoom-in view of Fig. 8(b) used to calculate the autocorrelation in Fig. 9(a). (c) Autocorrelation of the simulated quaternary phase-coded microwave signal. Inset shows a zoom-in view of the autocorrelation. (d) The zoom-in view of Fig. 8(d) used to calculate the autocorrelation in Fig. 9(c).

Fig. 10
Fig. 10

(a) The electrical parabolic coding signal generated by the AWG. (b) The measured linearly frequency-chirped microwave signal. (c) The phase information extracted from Fig. 10(b). (d) The recovered instantaneous frequency shift from Fig. 10(b). (e) The simulated linearly frequency-chirped microwave signal. (f) The phase information extracted from Fig. 10(e). (g) The recovered instantaneous frequency shift from Fig. 10(e).

Fig. 11
Fig. 11

(a) Autocorrelation of the measured frequency-chirped microwave signal. Inset shows a zoom-in view of the autocorrelation. (b) The zoom-in view of Fig. 10(b) used to calculate the autocorrelation in Fig. 11(a). (c) Autocorrelation of the simulated frequency-chirped microwave signal. Inset shows a zoom-in view of the autocorrelation. (d) The zoom-in view of Fig. 10(e) used to calculate the autocorrelation in Fig. 11(c).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = exp [ j ( ω 0 t + β 1 sin ( ω m t ) ) ] + exp [ j ( ω 0 t + β 2 c ( t ) + φ ) ] = exp ( j ω 0 t ) n = J n ( β 1 ) exp ( j n ω m t ) + exp [ j ( ω 0 t + β 2 c ( t ) + φ )
E 1 (t)= J 0 ( β 1 )exp(j ω 0 t) J 1 ( β 1 )exp[j( ω 0 ω m )t] + J 1 ( β 1 )exp[j( ω 0 + ω m )t]+exp[j( ω 0 t+ β 2 c(t)+φ)].
i 1 (t) E 1 (t) E 1 * (t) =1+ J 0 2 ( β 1 )+2 J 1 2 ( β 1 )+2 J 0 ( β 1 )cos[ β 2 c(t)+φ]+4 J 1 ( β 1 )sin[ β 2 c(t)+φ]sin( ω m t).
i 1 ( t ) 3 / 2 + 2 sin [ β 2 c ( t ) ] sin ( ω m t ) .
E 2 (t)= J 0 ( β 1 )exp(j ω 0 t) J 1 ( β 1 )exp[j( ω 0 ω m )t]. +exp[j( ω 0 t+ β 2 c(t)+φ)]
i 2 (t) E 2 (t) E 2 * (t) =1+ J 0 2 ( β 1 )+ J 1 2 ( β 1 )+2 J 0 ( β 1 )cos[ β 2 c(t)+φ] . 2 J 0 ( β 1 ) J 1 ( β 1 )cos( ω m t)2 J 1 ( β 1 )cos[ ω m t+ β 2 c(t)+φ]
i 2 (t)5/4cos[ ω m t+ β 2 c(t)].
c ( t ) = { k t 2 + β 2 , | t | T 0 0 , e l s e

Metrics