Abstract

We present a new design of plasmonic nanoantenna with slant gap for optical chirality engineering. At resonance, the slant gap provides highly enhanced electric field parallel to external magnetic field with a phase delay of π/2, resulting in enhanced optical chirality. We show by numerical simulations that upon linearly polarized excitation our nanoantenna can generate near field with enhanced optical chirality which can be tuned by the slant angle and resonance condition. Our design allows chiral analysis with linearly polarized light and may find applications in circular dichroism analysis of chiral matter at surface.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Greenfield, “Applications of circular dichroism in protein and peptide analysis,” Trends Analyt. Chem. 18(4), 236–244 (1999).
    [CrossRef]
  2. N. Yang, Y. Tang, A. E. Cohen, “Spectroscopy in sculpted fields,” Nano Today 4(3), 269–279 (2009).
    [CrossRef]
  3. N. Yang, A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115(18), 5304–5311 (2011).
    [CrossRef] [PubMed]
  4. L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2004).
  5. E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits,” Nano Lett. 12(7), 3640–3644 (2012).
    [CrossRef] [PubMed]
  6. M. Schäferling, X. Yin, H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20(24), 26326–26336 (2012).
    [CrossRef] [PubMed]
  7. M. Meinzer, E. Hendry, W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88(4), 041407 (2013).
    [CrossRef]
  8. Y. Tang, A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
    [CrossRef] [PubMed]
  9. D. M. Lipkin, “Existence of a new conservation law in electromagnetic theory,” J. Math. Phys. 5(5), 696–700 (1964).
    [CrossRef]
  10. Y. Tang, A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
    [CrossRef] [PubMed]
  11. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [CrossRef] [PubMed]
  12. L. Novotny, N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [CrossRef]
  13. P. Biagioni, J.-S. Huang, B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [CrossRef] [PubMed]
  14. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
    [CrossRef] [PubMed]
  15. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
    [CrossRef] [PubMed]
  16. P. Biagioni, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
    [CrossRef] [PubMed]
  17. P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
    [CrossRef]
  18. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  19. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
    [CrossRef] [PubMed]
  20. R. Quidant, M. Kreuzer, “Biosensing: Plasmons offer a helping hand,” Nat. Nanotechnol. 5(11), 762–763 (2010).
    [CrossRef] [PubMed]
  21. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
    [CrossRef] [PubMed]
  22. M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev 2, 031010 (2012).
  23. Y. Zhao, M. A. Belkin, A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun 3, 870 (2012).
    [CrossRef] [PubMed]
  24. X. B. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo, N. Liu, B. Q. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13(5), 2128–2133 (2013).
    [CrossRef] [PubMed]
  25. V. K. Valev, J. J. Baumberg, C. Sibilia, T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
    [CrossRef] [PubMed]
  26. B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
    [CrossRef] [PubMed]
  27. T. J. Davis, E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
    [CrossRef]
  28. A. García-Etxarri, J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013).
    [CrossRef]
  29. D. Axelrod, T. P. Burghardt, N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
    [CrossRef] [PubMed]
  30. M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
    [CrossRef] [PubMed]
  31. D. Axelrod, E. H. Hellen, and R. M. Fulbright, in Topics in Fluorescence Spectroscopy: Biochemical Applications, J. R. Lakowicz, ed. (Kluwer Academic, 2002).
  32. H.-F. Fan, F. P. Li, R. N. Zare, K.-C. Lin, “Characterization of two types of silanol groups on fused-silica surfaces using evanescent-wave cavity ring-down spectroscopy,” Anal. Chem. 79(10), 3654–3661 (2007).
    [CrossRef] [PubMed]
  33. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  34. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
    [CrossRef] [PubMed]
  35. D. W. Pohl, S. G. Rodrigo, L. Novotny, “Stacked optical antennas,” Appl. Phys. Lett. 98(2), 023111 (2011).
    [CrossRef]
  36. C.-H. Liu, C.-H. Chen, S.-Y. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen, Y.-L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
    [CrossRef] [PubMed]
  37. G. London, G. T. Carroll, T. Fernández Landaluce, M. M. Pollard, P. Rudolf, B. L. Feringa, “Light-driven altitudinal molecular motors on surfaces,” Chem. Commun. (Camb.) 2009(13), 1712–1714 (2009).
    [CrossRef] [PubMed]
  38. N. P. M. Huck, W. F. Jager, B. de Lange, B. L. Feringa, “Dynamic control and amplification of molecular chirality by circular polarized light,” Science 273(5282), 1686–1688 (1996).
    [CrossRef]
  39. J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
    [CrossRef] [PubMed]
  40. Y. Inoue, “Asymmetric photochemical reactions in solution,” Chem. Rev. 92(5), 741–770 (1992).
    [CrossRef]
  41. K. Ohkubo, T. Hamada, M. Watanabe, “Novel photoinduced asymmetric synthesis of Ʌ-[Co(acac)3] from Co(acac)2(H2O)2 and Hacac catalysed by racemic complexes of Δ- and Ʌ-[Ru(menbpy)3]2+{menbpy = 4,4’-Di-[(1R,2S,5R)-(-)-menthoxycarbonyl)]-2,2’-bipyridine; Hacac = pentane-2,4-dione},” Chem. Commun. 1993(13), 1070–1072 (1993).
    [CrossRef]

2013 (6)

M. Meinzer, E. Hendry, W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88(4), 041407 (2013).
[CrossRef]

X. B. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo, N. Liu, B. Q. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13(5), 2128–2133 (2013).
[CrossRef] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

T. J. Davis, E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[CrossRef]

A. García-Etxarri, J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013).
[CrossRef]

2012 (5)

M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev 2, 031010 (2012).

Y. Zhao, M. A. Belkin, A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun 3, 870 (2012).
[CrossRef] [PubMed]

E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits,” Nano Lett. 12(7), 3640–3644 (2012).
[CrossRef] [PubMed]

M. Schäferling, X. Yin, H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20(24), 26326–26336 (2012).
[CrossRef] [PubMed]

P. Biagioni, J.-S. Huang, B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[CrossRef] [PubMed]

2011 (5)

N. Yang, A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115(18), 5304–5311 (2011).
[CrossRef] [PubMed]

L. Novotny, N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

Y. Tang, A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[CrossRef] [PubMed]

D. W. Pohl, S. G. Rodrigo, L. Novotny, “Stacked optical antennas,” Appl. Phys. Lett. 98(2), 023111 (2011).
[CrossRef]

C.-H. Liu, C.-H. Chen, S.-Y. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen, Y.-L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

2010 (5)

Y. Tang, A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[CrossRef] [PubMed]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

R. Quidant, M. Kreuzer, “Biosensing: Plasmons offer a helping hand,” Nat. Nanotechnol. 5(11), 762–763 (2010).
[CrossRef] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

2009 (5)

P. Biagioni, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

N. Yang, Y. Tang, A. E. Cohen, “Spectroscopy in sculpted fields,” Nano Today 4(3), 269–279 (2009).
[CrossRef]

G. London, G. T. Carroll, T. Fernández Landaluce, M. M. Pollard, P. Rudolf, B. L. Feringa, “Light-driven altitudinal molecular motors on surfaces,” Chem. Commun. (Camb.) 2009(13), 1712–1714 (2009).
[CrossRef] [PubMed]

2007 (1)

H.-F. Fan, F. P. Li, R. N. Zare, K.-C. Lin, “Characterization of two types of silanol groups on fused-silica surfaces using evanescent-wave cavity ring-down spectroscopy,” Anal. Chem. 79(10), 3654–3661 (2007).
[CrossRef] [PubMed]

2005 (2)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

2004 (1)

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[CrossRef] [PubMed]

1999 (1)

N. J. Greenfield, “Applications of circular dichroism in protein and peptide analysis,” Trends Analyt. Chem. 18(4), 236–244 (1999).
[CrossRef]

1997 (1)

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
[CrossRef] [PubMed]

1996 (1)

N. P. M. Huck, W. F. Jager, B. de Lange, B. L. Feringa, “Dynamic control and amplification of molecular chirality by circular polarized light,” Science 273(5282), 1686–1688 (1996).
[CrossRef]

1993 (1)

K. Ohkubo, T. Hamada, M. Watanabe, “Novel photoinduced asymmetric synthesis of Ʌ-[Co(acac)3] from Co(acac)2(H2O)2 and Hacac catalysed by racemic complexes of Δ- and Ʌ-[Ru(menbpy)3]2+{menbpy = 4,4’-Di-[(1R,2S,5R)-(-)-menthoxycarbonyl)]-2,2’-bipyridine; Hacac = pentane-2,4-dione},” Chem. Commun. 1993(13), 1070–1072 (1993).
[CrossRef]

1992 (1)

Y. Inoue, “Asymmetric photochemical reactions in solution,” Chem. Rev. 92(5), 741–770 (1992).
[CrossRef]

1984 (1)

D. Axelrod, T. P. Burghardt, N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1964 (1)

D. M. Lipkin, “Existence of a new conservation law in electromagnetic theory,” J. Math. Phys. 5(5), 696–700 (1964).
[CrossRef]

Alù, A.

Y. Zhao, M. A. Belkin, A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun 3, 870 (2012).
[CrossRef] [PubMed]

Asenjo-Garcia, A.

X. B. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo, N. Liu, B. Q. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13(5), 2128–2133 (2013).
[CrossRef] [PubMed]

Axelrod, D.

D. Axelrod, T. P. Burghardt, N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[CrossRef] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Bagnall, D. M.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[CrossRef] [PubMed]

Barnes, W. L.

M. Meinzer, E. Hendry, W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88(4), 041407 (2013).
[CrossRef]

Barron, L. D.

E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits,” Nano Lett. 12(7), 3640–3644 (2012).
[CrossRef] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Baumberg, J. J.

V. K. Valev, J. J. Baumberg, C. Sibilia, T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

Belkin, M. A.

Y. Zhao, M. A. Belkin, A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun 3, 870 (2012).
[CrossRef] [PubMed]

Biagioni, P.

P. Biagioni, J.-S. Huang, B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[CrossRef] [PubMed]

P. Biagioni, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

Braun, P. V.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

Burghardt, T. P.

D. Axelrod, T. P. Burghardt, N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[CrossRef] [PubMed]

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Carroll, G. T.

G. London, G. T. Carroll, T. Fernández Landaluce, M. M. Pollard, P. Rudolf, B. L. Feringa, “Light-driven altitudinal molecular motors on surfaces,” Chem. Commun. (Camb.) 2009(13), 1712–1714 (2009).
[CrossRef] [PubMed]

Chen, C.-H.

C.-H. Liu, C.-H. Chen, S.-Y. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen, Y.-L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Chen, L.-J.

C.-H. Liu, C.-H. Chen, S.-Y. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen, Y.-L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Chen, S.-Y.

C.-H. Liu, C.-H. Chen, S.-Y. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen, Y.-L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chueh, Y.-L.

C.-H. Liu, C.-H. Chen, S.-Y. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen, Y.-L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Cohen, A. E.

Y. Tang, A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[CrossRef] [PubMed]

N. Yang, A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115(18), 5304–5311 (2011).
[CrossRef] [PubMed]

Y. Tang, A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[CrossRef] [PubMed]

N. Yang, Y. Tang, A. E. Cohen, “Spectroscopy in sculpted fields,” Nano Today 4(3), 269–279 (2009).
[CrossRef]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[CrossRef] [PubMed]

Davis, T. J.

T. J. Davis, E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[CrossRef]

E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits,” Nano Lett. 12(7), 3640–3644 (2012).
[CrossRef] [PubMed]

de Jong, J. J. D.

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
[CrossRef] [PubMed]

de Lange, B.

N. P. M. Huck, W. F. Jager, B. de Lange, B. L. Feringa, “Dynamic control and amplification of molecular chirality by circular polarized light,” Science 273(5282), 1686–1688 (1996).
[CrossRef]

Decker, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Ding, B. Q.

X. B. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo, N. Liu, B. Q. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13(5), 2128–2133 (2013).
[CrossRef] [PubMed]

Dionne, J. A.

A. García-Etxarri, J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013).
[CrossRef]

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Dregely, D.

M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev 2, 031010 (2012).

Duò, L.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

P. Biagioni, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[CrossRef] [PubMed]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Fan, H.-F.

H.-F. Fan, F. P. Li, R. N. Zare, K.-C. Lin, “Characterization of two types of silanol groups on fused-silica surfaces using evanescent-wave cavity ring-down spectroscopy,” Anal. Chem. 79(10), 3654–3661 (2007).
[CrossRef] [PubMed]

Feringa, B. L.

G. London, G. T. Carroll, T. Fernández Landaluce, M. M. Pollard, P. Rudolf, B. L. Feringa, “Light-driven altitudinal molecular motors on surfaces,” Chem. Commun. (Camb.) 2009(13), 1712–1714 (2009).
[CrossRef] [PubMed]

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
[CrossRef] [PubMed]

N. P. M. Huck, W. F. Jager, B. de Lange, B. L. Feringa, “Dynamic control and amplification of molecular chirality by circular polarized light,” Science 273(5282), 1686–1688 (1996).
[CrossRef]

Fernández Landaluce, T.

G. London, G. T. Carroll, T. Fernández Landaluce, M. M. Pollard, P. Rudolf, B. L. Feringa, “Light-driven altitudinal molecular motors on surfaces,” Chem. Commun. (Camb.) 2009(13), 1712–1714 (2009).
[CrossRef] [PubMed]

Finazzi, M.

P. Biagioni, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

Frank, B.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Gadegaard, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

García de Abajo, F. J.

X. B. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo, N. Liu, B. Q. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13(5), 2128–2133 (2013).
[CrossRef] [PubMed]

García-Etxarri, A.

A. García-Etxarri, J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013).
[CrossRef]

Giessen, H.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev 2, 031010 (2012).

M. Schäferling, X. Yin, H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20(24), 26326–26336 (2012).
[CrossRef] [PubMed]

Greenfield, N. J.

N. J. Greenfield, “Applications of circular dichroism in protein and peptide analysis,” Trends Analyt. Chem. 18(4), 236–244 (1999).
[CrossRef]

Hamada, T.

K. Ohkubo, T. Hamada, M. Watanabe, “Novel photoinduced asymmetric synthesis of Ʌ-[Co(acac)3] from Co(acac)2(H2O)2 and Hacac catalysed by racemic complexes of Δ- and Ʌ-[Ru(menbpy)3]2+{menbpy = 4,4’-Di-[(1R,2S,5R)-(-)-menthoxycarbonyl)]-2,2’-bipyridine; Hacac = pentane-2,4-dione},” Chem. Commun. 1993(13), 1070–1072 (1993).
[CrossRef]

Hecht, B.

P. Biagioni, J.-S. Huang, B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[CrossRef] [PubMed]

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

P. Biagioni, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[CrossRef] [PubMed]

Hein, S. M.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

Hendry, E.

T. J. Davis, E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[CrossRef]

M. Meinzer, E. Hendry, W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88(4), 041407 (2013).
[CrossRef]

E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits,” Nano Lett. 12(7), 3640–3644 (2012).
[CrossRef] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Hentschel, M.

M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev 2, 031010 (2012).

Huang, J.-S.

P. Biagioni, J.-S. Huang, B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[CrossRef] [PubMed]

P. Biagioni, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

Huck, N. P. M.

N. P. M. Huck, W. F. Jager, B. de Lange, B. L. Feringa, “Dynamic control and amplification of molecular chirality by circular polarized light,” Science 273(5282), 1686–1688 (1996).
[CrossRef]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Inoue, Y.

Y. Inoue, “Asymmetric photochemical reactions in solution,” Chem. Rev. 92(5), 741–770 (1992).
[CrossRef]

Iwane, A. H.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
[CrossRef] [PubMed]

Jager, W. F.

N. P. M. Huck, W. F. Jager, B. de Lange, B. L. Feringa, “Dynamic control and amplification of molecular chirality by circular polarized light,” Science 273(5282), 1686–1688 (1996).
[CrossRef]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Jiang, Q.

X. B. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo, N. Liu, B. Q. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13(5), 2128–2133 (2013).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Juang, J.-Y.

C.-H. Liu, C.-H. Chen, S.-Y. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen, Y.-L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Kadodwala, M.

E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits,” Nano Lett. 12(7), 3640–3644 (2012).
[CrossRef] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Kellogg, R. M.

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
[CrossRef] [PubMed]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Kern, K.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Khunsin, W.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Kitamura, K.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
[CrossRef] [PubMed]

Kreuzer, M.

R. Quidant, M. Kreuzer, “Biosensing: Plasmons offer a helping hand,” Nat. Nanotechnol. 5(11), 762–763 (2010).
[CrossRef] [PubMed]

Kuo, H.-C.

C.-H. Liu, C.-H. Chen, S.-Y. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen, Y.-L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Kuo, W.-C.

C.-H. Liu, C.-H. Chen, S.-Y. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen, Y.-L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Lai, C.-H.

C.-H. Liu, C.-H. Chen, S.-Y. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen, Y.-L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Li, F. P.

H.-F. Fan, F. P. Li, R. N. Zare, K.-C. Lin, “Characterization of two types of silanol groups on fused-silica surfaces using evanescent-wave cavity ring-down spectroscopy,” Anal. Chem. 79(10), 3654–3661 (2007).
[CrossRef] [PubMed]

Liao, Y.-K.

C.-H. Liu, C.-H. Chen, S.-Y. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen, Y.-L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Lin, K.-C.

H.-F. Fan, F. P. Li, R. N. Zare, K.-C. Lin, “Characterization of two types of silanol groups on fused-silica surfaces using evanescent-wave cavity ring-down spectroscopy,” Anal. Chem. 79(10), 3654–3661 (2007).
[CrossRef] [PubMed]

Linden, S.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Lipkin, D. M.

D. M. Lipkin, “Existence of a new conservation law in electromagnetic theory,” J. Math. Phys. 5(5), 696–700 (1964).
[CrossRef]

Liu, C.-H.

C.-H. Liu, C.-H. Chen, S.-Y. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen, Y.-L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Liu, N.

X. B. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo, N. Liu, B. Q. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13(5), 2128–2133 (2013).
[CrossRef] [PubMed]

Liu, Q.

X. B. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo, N. Liu, B. Q. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13(5), 2128–2133 (2013).
[CrossRef] [PubMed]

London, G.

G. London, G. T. Carroll, T. Fernández Landaluce, M. M. Pollard, P. Rudolf, B. L. Feringa, “Light-driven altitudinal molecular motors on surfaces,” Chem. Commun. (Camb.) 2009(13), 1712–1714 (2009).
[CrossRef] [PubMed]

Lucas, L. N.

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
[CrossRef] [PubMed]

Meinzer, M.

M. Meinzer, E. Hendry, W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88(4), 041407 (2013).
[CrossRef]

Mikhaylovskiy, R. V.

E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits,” Nano Lett. 12(7), 3640–3644 (2012).
[CrossRef] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

D. W. Pohl, S. G. Rodrigo, L. Novotny, “Stacked optical antennas,” Appl. Phys. Lett. 98(2), 023111 (2011).
[CrossRef]

Ohkubo, K.

K. Ohkubo, T. Hamada, M. Watanabe, “Novel photoinduced asymmetric synthesis of Ʌ-[Co(acac)3] from Co(acac)2(H2O)2 and Hacac catalysed by racemic complexes of Δ- and Ʌ-[Ru(menbpy)3]2+{menbpy = 4,4’-Di-[(1R,2S,5R)-(-)-menthoxycarbonyl)]-2,2’-bipyridine; Hacac = pentane-2,4-dione},” Chem. Commun. 1993(13), 1070–1072 (1993).
[CrossRef]

Papakostas, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[CrossRef] [PubMed]

Pohl, D. W.

D. W. Pohl, S. G. Rodrigo, L. Novotny, “Stacked optical antennas,” Appl. Phys. Lett. 98(2), 023111 (2011).
[CrossRef]

Pollard, M. M.

G. London, G. T. Carroll, T. Fernández Landaluce, M. M. Pollard, P. Rudolf, B. L. Feringa, “Light-driven altitudinal molecular motors on surfaces,” Chem. Commun. (Camb.) 2009(13), 1712–1714 (2009).
[CrossRef] [PubMed]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Potts, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[CrossRef] [PubMed]

Quidant, R.

R. Quidant, M. Kreuzer, “Biosensing: Plasmons offer a helping hand,” Nat. Nanotechnol. 5(11), 762–763 (2010).
[CrossRef] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Rockstuhl, C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Rodrigo, S. G.

D. W. Pohl, S. G. Rodrigo, L. Novotny, “Stacked optical antennas,” Appl. Phys. Lett. 98(2), 023111 (2011).
[CrossRef]

Rudolf, P.

G. London, G. T. Carroll, T. Fernández Landaluce, M. M. Pollard, P. Rudolf, B. L. Feringa, “Light-driven altitudinal molecular motors on surfaces,” Chem. Commun. (Camb.) 2009(13), 1712–1714 (2009).
[CrossRef] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Saito, K.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
[CrossRef] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Savoini, M.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

Schäferling, M.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev 2, 031010 (2012).

M. Schäferling, X. Yin, H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20(24), 26326–26336 (2012).
[CrossRef] [PubMed]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Shen, X. B.

X. B. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo, N. Liu, B. Q. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13(5), 2128–2133 (2013).
[CrossRef] [PubMed]

Sibilia, C.

V. K. Valev, J. J. Baumberg, C. Sibilia, T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

Soukoulis, C. M.

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Tang, Y.

Y. Tang, A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[CrossRef] [PubMed]

Y. Tang, A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[CrossRef] [PubMed]

N. Yang, Y. Tang, A. E. Cohen, “Spectroscopy in sculpted fields,” Nano Today 4(3), 269–279 (2009).
[CrossRef]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Thompson, N. L.

D. Axelrod, T. P. Burghardt, N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[CrossRef] [PubMed]

Tokunaga, M.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
[CrossRef] [PubMed]

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Valev, V. K.

V. K. Valev, J. J. Baumberg, C. Sibilia, T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

van Esch, J. H.

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
[CrossRef] [PubMed]

Van Hulst, N.

L. Novotny, N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

Verbiest, T.

V. K. Valev, J. J. Baumberg, C. Sibilia, T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

Vogelgesang, R.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Watanabe, M.

K. Ohkubo, T. Hamada, M. Watanabe, “Novel photoinduced asymmetric synthesis of Ʌ-[Co(acac)3] from Co(acac)2(H2O)2 and Hacac catalysed by racemic complexes of Δ- and Ʌ-[Ru(menbpy)3]2+{menbpy = 4,4’-Di-[(1R,2S,5R)-(-)-menthoxycarbonyl)]-2,2’-bipyridine; Hacac = pentane-2,4-dione},” Chem. Commun. 1993(13), 1070–1072 (1993).
[CrossRef]

Wegener, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Yanagida, T.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
[CrossRef] [PubMed]

Yang, N.

N. Yang, A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115(18), 5304–5311 (2011).
[CrossRef] [PubMed]

N. Yang, Y. Tang, A. E. Cohen, “Spectroscopy in sculpted fields,” Nano Today 4(3), 269–279 (2009).
[CrossRef]

Yen, Y.-T.

C.-H. Liu, C.-H. Chen, S.-Y. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen, Y.-L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Yin, X.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

M. Schäferling, X. Yin, H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20(24), 26326–26336 (2012).
[CrossRef] [PubMed]

Zare, R. N.

H.-F. Fan, F. P. Li, R. N. Zare, K.-C. Lin, “Characterization of two types of silanol groups on fused-silica surfaces using evanescent-wave cavity ring-down spectroscopy,” Anal. Chem. 79(10), 3654–3661 (2007).
[CrossRef] [PubMed]

Zhao, J.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

Zhao, R.

Zhao, Y.

Y. Zhao, M. A. Belkin, A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun 3, 870 (2012).
[CrossRef] [PubMed]

Zheludev, N. I.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[CrossRef] [PubMed]

ACS Nano (1)

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

Adv. Mater. (1)

V. K. Valev, J. J. Baumberg, C. Sibilia, T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

Anal. Chem. (1)

H.-F. Fan, F. P. Li, R. N. Zare, K.-C. Lin, “Characterization of two types of silanol groups on fused-silica surfaces using evanescent-wave cavity ring-down spectroscopy,” Anal. Chem. 79(10), 3654–3661 (2007).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Bioeng. (1)

D. Axelrod, T. P. Burghardt, N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

D. W. Pohl, S. G. Rodrigo, L. Novotny, “Stacked optical antennas,” Appl. Phys. Lett. 98(2), 023111 (2011).
[CrossRef]

Biochem. Biophys. Res. Commun. (1)

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997).
[CrossRef] [PubMed]

Chem. Commun. (1)

K. Ohkubo, T. Hamada, M. Watanabe, “Novel photoinduced asymmetric synthesis of Ʌ-[Co(acac)3] from Co(acac)2(H2O)2 and Hacac catalysed by racemic complexes of Δ- and Ʌ-[Ru(menbpy)3]2+{menbpy = 4,4’-Di-[(1R,2S,5R)-(-)-menthoxycarbonyl)]-2,2’-bipyridine; Hacac = pentane-2,4-dione},” Chem. Commun. 1993(13), 1070–1072 (1993).
[CrossRef]

Chem. Commun. (Camb.) (1)

G. London, G. T. Carroll, T. Fernández Landaluce, M. M. Pollard, P. Rudolf, B. L. Feringa, “Light-driven altitudinal molecular motors on surfaces,” Chem. Commun. (Camb.) 2009(13), 1712–1714 (2009).
[CrossRef] [PubMed]

Chem. Rev. (1)

Y. Inoue, “Asymmetric photochemical reactions in solution,” Chem. Rev. 92(5), 741–770 (1992).
[CrossRef]

J. Math. Phys. (1)

D. M. Lipkin, “Existence of a new conservation law in electromagnetic theory,” J. Math. Phys. 5(5), 696–700 (1964).
[CrossRef]

J. Phys. Chem. B (1)

N. Yang, A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115(18), 5304–5311 (2011).
[CrossRef] [PubMed]

Nano Lett. (4)

E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits,” Nano Lett. 12(7), 3640–3644 (2012).
[CrossRef] [PubMed]

C.-H. Liu, C.-H. Chen, S.-Y. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen, Y.-L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

X. B. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo, N. Liu, B. Q. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13(5), 2128–2133 (2013).
[CrossRef] [PubMed]

Nano Today (1)

N. Yang, Y. Tang, A. E. Cohen, “Spectroscopy in sculpted fields,” Nano Today 4(3), 269–279 (2009).
[CrossRef]

Nat Commun (1)

Y. Zhao, M. A. Belkin, A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun 3, 870 (2012).
[CrossRef] [PubMed]

Nat. Nanotechnol. (2)

R. Quidant, M. Kreuzer, “Biosensing: Plasmons offer a helping hand,” Nat. Nanotechnol. 5(11), 762–763 (2010).
[CrossRef] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

L. Novotny, N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev (1)

M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev 2, 031010 (2012).

Phys. Rev. B (5)

T. J. Davis, E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[CrossRef]

A. García-Etxarri, J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013).
[CrossRef]

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

M. Meinzer, E. Hendry, W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88(4), 041407 (2013).
[CrossRef]

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

Phys. Rev. Lett. (5)

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

P. Biagioni, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[CrossRef] [PubMed]

Y. Tang, A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

P. Biagioni, J.-S. Huang, B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[CrossRef] [PubMed]

Science (4)

Y. Tang, A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

N. P. M. Huck, W. F. Jager, B. de Lange, B. L. Feringa, “Dynamic control and amplification of molecular chirality by circular polarized light,” Science 273(5282), 1686–1688 (1996).
[CrossRef]

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
[CrossRef] [PubMed]

Trends Analyt. Chem. (1)

N. J. Greenfield, “Applications of circular dichroism in protein and peptide analysis,” Trends Analyt. Chem. 18(4), 236–244 (1999).
[CrossRef]

Other (2)

L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2004).

D. Axelrod, E. H. Hellen, and R. M. Fulbright, in Topics in Fluorescence Spectroscopy: Biochemical Applications, J. R. Lakowicz, ed. (Kluwer Academic, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagrams of a slant-gap plasmonic nanoantenna illuminated with the near field of s-polarized plane waves undergoing total internal reflection. α is the slant angle and θ i is the impinging angle of the plane wave and is larger than the critical angle θ c for total internal reflection. n 1 and n 2 are the refractive index of the glass substrate and air, respectively. The electric field E , magnetic field H and the wavevector k are indicated with green, red and blue arrows, respectively. (b) The stimulated electric field lines (red arrows) in the slant gap are well perpendicular to the metal boundaries.

Fig. 2
Fig. 2

(a) The integration area (in red color) for the calculation of overall OCE. The glass half space and the area inside the antenna arms are excluded since they are not accessible to chiral matter. (b) Overall OCE value as a function of d for the 160-nm antenna at the fundamental resonance. Solid line is a guide line for the eye.

Fig. 3
Fig. 3

(a) Intensity enhancement (black squares) and the spectral phase (red dots) of the field in the slant gap as functions of the total antenna length. (b) Overall optical chirality enhancement (OCE) as a function of antenna length. (c) Distribution of displacement current (top panel), out-of-plane electric-field component ( E z , middle panel) and OCE (bottom panel) of the antenna at fundamental resonance (total length = 160 nm) and the first higher order resonance (total length = 480 nm).

Fig. 4
Fig. 4

(a) Resonant frequency (squares, black solid line) and the field enhancement (dots, red dashed line) as functions of the slant angle of the gap. (b) Overall optical chirality enhancement (OCE, squares, black solid line) and the product of f e × cos α (dots, blue dashed line) as functions of the slant angle of the gap. (c) The cross sectional OCE distributions of various slant angle.

Fig. 5
Fig. 5

Schematic diagram of different excitation configurations, including (a) normally incident excitation linearly polarized in longitudinal antenna axis, (b) p-polarized TIR excitation with magnetic field parallel to the longitudinal axis of antenna, (c) p-polarized TIR excitation with magnetic field perpendicular to the longitudinal axis of antenna and (d) s-polarized TIR excitation with electric field component perpendicular to the longitudinal axis of antenna.

Fig. 6
Fig. 6

(a) Schematic diagram of slant plasmonic grooves illuminated by the near field of s-polarized plane wave undergoing total internal reflection (TIR). The thickness of the gold film is 30 nm and the gap separation in x-direction is 10 nm. θ i is the incident angle of the TIR excitation and α is the slant angle of the gap with respect to the surface plane. (b) Cross sectional OCE distribution in x-z plane. (c) OCE distribution in x-y plane cutting through the middle height of the gold film. (d) Representative SEM image of the slant groove array on a single crystalline gold flake. Scale bar is one micrometer.

Tables (1)

Tables Icon

Table 1 Gap field enhancement and overall optical chirality enhancement (OCE) of various excitation configurations shown in this work.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

p ˜ = α ˜ E ˜ i G ˜ B ˜ ,  m ˜ = χ ˜ B ˜ +i G ˜ E ˜ .
A= E p ˙ +B m ˙ = ω 2 Im( E ˜ * p ˜ + B ˜ * m ˜ ) = ω 2 Im{ α ˜ | E ˜ | 2 + χ ˜ | B ˜ | 2 +i G ˜ ( E ˜ B ˜ * E ˜ * B ˜ ) }.
A= ω 2 Im{ α ˜ | E ˜ | 2 + χ ˜ | B ˜ | 2 +i G ˜ [ 2i( E 1 B 2 E 2 B 1 ) ] } = ω 2 ( α | E ˜ | 2 + χ | B ˜ | 2 )+ω G Im{ E ˜ * B ˜ }.
A ± = ω 2 α | E ˜ | 2 ±ω G Im{ E ˜ * B ˜ },
C ε 0 2 E×E+ 1 2 μ 0 B×B= ε 0 2 ωIm{ E ˜ * B ˜ },
A ± = 2 ε 0 ( ω U e α C G ),
g 2( A + A ) ( A + + A ) .
g=( G α )( 2C ω U e ).
E x = [ 2 cos θ ( 1 n 2 ) 1 / 2 ] A s e i δ s ,
H y = [ 2 cos θ ( sin 2 θ n 2 ) 1 / 2 ( 1 n 2 ) 1 / 2 ] A s e i ( δ s π ) ,
H z = [ 2 cos θ sin θ ( 1 n 2 ) 1 / 2 ] A s e i δ s ,
E g = f e | E x | e i φ r n ^ ,
E z = E g cos α ,
C = [ 2 ε 0 ω cos 2 θ sin θ ( 1 n 2 ) ] A s 2 f e cos α sin φ r .
OC E x,y,z = ε 0 2 ωIm{ E ˜ x,y,z * B ˜ x,y,z } | ε 0 2 ωIm{ E ˜ 0 * B ˜ 0 } | = C x,y,z | C 0 | .
Overall OCE= OC E x,y,z dxdydz.

Metrics