Abstract

The collection of light at very high numerical aperture allows detection of evanescent waves above the critical angle of total internal reflection in solid immersion lens microscopy. We investigate the effect of such evanescent modes, so-called forbidden light, on the far-field imaging properties of an aplanatic solid immersion microscope by developing a dyadic Green’s function formalism in the context of subsurface semiconductor integrated circuit imaging. We demonstrate that the collection of forbidden light allows for sub-diffraction spatial resolution and substantial enhancement of photon collection efficiency albeit inducing wave-front discontinuities and aberrations.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bianic, A. Allemand, G. Kerrosa, P. Scafidi, D. Renard, “Advanced backside failure analysis in 65nm CMOS technology,” Microelectron. Reliab. 47(9-11), 1550–1554 (2007).
    [CrossRef]
  2. Y. Zhang, “Design of high-performance supersphere solid immersion lenses,” Appl. Opt. 45(19), 4540–4546 (2006).
    [CrossRef] [PubMed]
  3. S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum. 80(1), 013703 (2009).
    [CrossRef] [PubMed]
  4. E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
    [CrossRef]
  5. F. H. Köklü, S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “Subsurface microscopy of integrated circuits with angular spectrum and polarization control,” Opt. Lett. 34(8), 1261–1263 (2009).
    [CrossRef] [PubMed]
  6. K. A. Serrels, E. Ramsay, R. J. Warburton, D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nature Pho. 2(5), 311–314 (2008).
    [CrossRef]
  7. A. Yurt, E. Ramsay, F. H. Köklü, C. R. Stockbridge, Y. Lu, M. S. Ünlü, and B. B. Goldberg, “Dual-Phase Interferometric Confocal Imaging for Electrical Signal Modulation Mapping in ICs,” in Proc. of the 38th International Symposium for Testing and Failure Analysis (ASM International, 2012), 172–175 (2012).
  8. W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67(12), 1607–1615 (1977).
    [CrossRef]
  9. L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am. A 14(1), 91–104 (1997).
    [CrossRef]
  10. J. Enderlein, M. Böhmer, “Influence of interface-dipole interactions on the efficiency of fluorescence light collection near surfaces,” Opt. Lett. 28(11), 941–943 (2003).
    [CrossRef] [PubMed]
  11. S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, Y. Leblebici, “High spatial resolution subsurface thermal emission microscopy,” Appl. Phys. Lett. 84(22), 4529–4531 (2004).
    [CrossRef]
  12. F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, M. S. Unlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express 16(13), 9501–9506 (2008).
    [CrossRef] [PubMed]
  13. S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
    [CrossRef]
  14. R. Chen, K. Agarwal, Y. Zhong, C. J. R. Sheppard, J. C. H. Phang, X. D. Chen, “Complete modeling of subsurface microscopy system based on aplanatic solid immersion lens,” J. Opt. Soc. Am. A 29(11), 2350–2359 (2012).
    [CrossRef] [PubMed]
  15. R. Chen, K. Agarwal, C. J. R. Sheppard, C. H. Phang, X. Chen, “A complete and computationally efficient numerical model of aplanatic solid immersion lens scanning microscope,” Opt. Express 21(12), 14316–14330 (2013).
    [CrossRef] [PubMed]
  16. L. Hu, R. Chen, K. Agarwal, C. J. R. Sheppard, J. C. H. Phang, X. Chen, “Dyadic Green’s function for aplanatic solid immersion lens based sub-surface microscopy,” Opt. Express 19(20), 19280–19295 (2011).
    [CrossRef] [PubMed]
  17. Throughout the article, the term “sub-diffraction” refers to a length scale smaller than the fundamental diffraction limit according to Rayleigh’s definition (0.61λ where the λ is the wavelength of light in the medium).
  18. A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, M. S. Ünlü, “Strong extinction of a far-field laser beam by a single quantum dot,” Nano Lett. 7(9), 2892–2896 (2007).
    [CrossRef] [PubMed]
  19. L. Wang, M. C. Pitter, M. G. Somekh, “Wide-field high-resolution structured illumination solid immersion fluorescence microscopy,” Opt. Lett. 36(15), 2794–2796 (2011).
    [CrossRef] [PubMed]
  20. K. Karrai, X. Lorenz, L. Novotny, “Enhanced reflectivity contrast in confocal solid immersion lens microscopy,” Appl. Phys. Lett. 77(21), 3459–3461 (2000).
    [CrossRef]
  21. M. Lang, E. Aspnes, T. D. Milster, “Geometrical analysis of third-order aberrations for a solid immersion lens,” Opt. Express 16(24), 20008–20028 (2008).
    [CrossRef] [PubMed]
  22. Y. Lu, T. Bifano, S. Ünlü, B. Goldberg, “Aberration compensation in aplanatic solid immersion lens microscopy,” Opt. Express 21(23), 28189–28197 (2013).
    [CrossRef] [PubMed]
  23. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).
  24. M. B. Pereira, J. S. Craven, S. B. Mendes, “Solid immersion lens at the aplanatic condition for enhancing the spectral bandwidth of a waveguide grating coupler,” Opt. Eng. 49(12), 124601 (2010).
    [CrossRef] [PubMed]
  25. B. B. Goldberg, A. Yurt, Y. Lu, E. Ramsay, F. H. Köklü, J. Mertz, T. G. Bifano, M. S. Ünlü, “Chromatic and spherical aberration correction for silicon aplanatic solid immersion lens for fault isolation and photon emission microscopy of integrated circuits,” Microelectron. Reliab. 51(9-11), 1637–1639 (2011).
    [CrossRef]
  26. K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. J. Warburton, D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
    [CrossRef]
  27. C. Liu, S. H. Park, “Numerical analysis of an annular-aperture solid immersion lens,” Opt. Lett. 29(15), 1742–1744 (2004).
    [CrossRef] [PubMed]
  28. D. R. Mason, M. V. Jouravlev, K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett. 35(12), 2007–2009 (2010).
    [CrossRef] [PubMed]
  29. J. Enderlein, I. Gregor, T. Ruckstuhl, “Imaging properties of supercritical angle fluorescence optics,” Opt. Express 19(9), 8011–8018 (2011).
    [CrossRef] [PubMed]
  30. Note that the circularly asymmetric intensity distribution in the allowed zone is obscured due to the logarithmic scale and the range on the plots.
  31. O. Haeberlé, M. Ammar, H. Furukawa, K. Tenjimbayashi, P. Török, “The point spread function of optical microscopes imaging through stratified media,” Opt. Express 11(22), 2964–2969 (2003).
    [CrossRef] [PubMed]
  32. P. Török, “Propagation of electromagnetic dipole waves through dielectric interfaces,” Opt. Lett. 25(19), 1463–1465 (2000).
    [CrossRef] [PubMed]
  33. F. Goos, H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436(7-8), 333–346 (1947).
    [CrossRef]
  34. A. J. den Dekker, A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A 14(3), 547–557 (1997).
    [CrossRef]
  35. C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J. 44, 76–86 (1916).
    [CrossRef]
  36. T. Asakura, “Resolution of two unequally bright points with partially coherent light,” Nouv. Rev. Opt. 5(3), 169–177 (1974).
    [CrossRef]
  37. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1997).

2013 (2)

2012 (1)

2011 (4)

2010 (2)

M. B. Pereira, J. S. Craven, S. B. Mendes, “Solid immersion lens at the aplanatic condition for enhancing the spectral bandwidth of a waveguide grating coupler,” Opt. Eng. 49(12), 124601 (2010).
[CrossRef] [PubMed]

D. R. Mason, M. V. Jouravlev, K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett. 35(12), 2007–2009 (2010).
[CrossRef] [PubMed]

2009 (2)

S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum. 80(1), 013703 (2009).
[CrossRef] [PubMed]

F. H. Köklü, S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “Subsurface microscopy of integrated circuits with angular spectrum and polarization control,” Opt. Lett. 34(8), 1261–1263 (2009).
[CrossRef] [PubMed]

2008 (4)

K. A. Serrels, E. Ramsay, R. J. Warburton, D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nature Pho. 2(5), 311–314 (2008).
[CrossRef]

F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, M. S. Unlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express 16(13), 9501–9506 (2008).
[CrossRef] [PubMed]

M. Lang, E. Aspnes, T. D. Milster, “Geometrical analysis of third-order aberrations for a solid immersion lens,” Opt. Express 16(24), 20008–20028 (2008).
[CrossRef] [PubMed]

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. J. Warburton, D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

2007 (3)

A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, M. S. Ünlü, “Strong extinction of a far-field laser beam by a single quantum dot,” Nano Lett. 7(9), 2892–2896 (2007).
[CrossRef] [PubMed]

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[CrossRef]

S. Bianic, A. Allemand, G. Kerrosa, P. Scafidi, D. Renard, “Advanced backside failure analysis in 65nm CMOS technology,” Microelectron. Reliab. 47(9-11), 1550–1554 (2007).
[CrossRef]

2006 (1)

2005 (1)

S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
[CrossRef]

2004 (2)

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, Y. Leblebici, “High spatial resolution subsurface thermal emission microscopy,” Appl. Phys. Lett. 84(22), 4529–4531 (2004).
[CrossRef]

C. Liu, S. H. Park, “Numerical analysis of an annular-aperture solid immersion lens,” Opt. Lett. 29(15), 1742–1744 (2004).
[CrossRef] [PubMed]

2003 (2)

2000 (2)

K. Karrai, X. Lorenz, L. Novotny, “Enhanced reflectivity contrast in confocal solid immersion lens microscopy,” Appl. Phys. Lett. 77(21), 3459–3461 (2000).
[CrossRef]

P. Török, “Propagation of electromagnetic dipole waves through dielectric interfaces,” Opt. Lett. 25(19), 1463–1465 (2000).
[CrossRef] [PubMed]

1997 (2)

1977 (1)

1974 (1)

T. Asakura, “Resolution of two unequally bright points with partially coherent light,” Nouv. Rev. Opt. 5(3), 169–177 (1974).
[CrossRef]

1947 (1)

F. Goos, H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436(7-8), 333–346 (1947).
[CrossRef]

1916 (1)

C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J. 44, 76–86 (1916).
[CrossRef]

Agarwal, K.

Allemand, A.

S. Bianic, A. Allemand, G. Kerrosa, P. Scafidi, D. Renard, “Advanced backside failure analysis in 65nm CMOS technology,” Microelectron. Reliab. 47(9-11), 1550–1554 (2007).
[CrossRef]

Ammar, M.

Asakura, T.

T. Asakura, “Resolution of two unequally bright points with partially coherent light,” Nouv. Rev. Opt. 5(3), 169–177 (1974).
[CrossRef]

Aspnes, E.

Atatüre, M.

A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, M. S. Ünlü, “Strong extinction of a far-field laser beam by a single quantum dot,” Nano Lett. 7(9), 2892–2896 (2007).
[CrossRef] [PubMed]

Badolato, A.

A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, M. S. Ünlü, “Strong extinction of a far-field laser beam by a single quantum dot,” Nano Lett. 7(9), 2892–2896 (2007).
[CrossRef] [PubMed]

Bianic, S.

S. Bianic, A. Allemand, G. Kerrosa, P. Scafidi, D. Renard, “Advanced backside failure analysis in 65nm CMOS technology,” Microelectron. Reliab. 47(9-11), 1550–1554 (2007).
[CrossRef]

Bifano, T.

Bifano, T. G.

B. B. Goldberg, A. Yurt, Y. Lu, E. Ramsay, F. H. Köklü, J. Mertz, T. G. Bifano, M. S. Ünlü, “Chromatic and spherical aberration correction for silicon aplanatic solid immersion lens for fault isolation and photon emission microscopy of integrated circuits,” Microelectron. Reliab. 51(9-11), 1637–1639 (2011).
[CrossRef]

Böhmer, M.

Chen, R.

Chen, X.

Chen, X. D.

Chua, C. M.

S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum. 80(1), 013703 (2009).
[CrossRef] [PubMed]

Craven, J. S.

M. B. Pereira, J. S. Craven, S. B. Mendes, “Solid immersion lens at the aplanatic condition for enhancing the spectral bandwidth of a waveguide grating coupler,” Opt. Eng. 49(12), 124601 (2010).
[CrossRef] [PubMed]

Dalgarno, P. A.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. J. Warburton, D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

den Dekker, A. J.

Dreiser, J.

A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, M. S. Ünlü, “Strong extinction of a far-field laser beam by a single quantum dot,” Nano Lett. 7(9), 2892–2896 (2007).
[CrossRef] [PubMed]

Enderlein, J.

Eraslan, M. G.

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, Y. Leblebici, “High spatial resolution subsurface thermal emission microscopy,” Appl. Phys. Lett. 84(22), 4529–4531 (2004).
[CrossRef]

Furukawa, H.

Gerardot, B.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. J. Warburton, D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

Goh, S. H.

S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum. 80(1), 013703 (2009).
[CrossRef] [PubMed]

Goldberg, B.

Goldberg, B. B.

B. B. Goldberg, A. Yurt, Y. Lu, E. Ramsay, F. H. Köklü, J. Mertz, T. G. Bifano, M. S. Ünlü, “Chromatic and spherical aberration correction for silicon aplanatic solid immersion lens for fault isolation and photon emission microscopy of integrated circuits,” Microelectron. Reliab. 51(9-11), 1637–1639 (2011).
[CrossRef]

F. H. Köklü, S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “Subsurface microscopy of integrated circuits with angular spectrum and polarization control,” Opt. Lett. 34(8), 1261–1263 (2009).
[CrossRef] [PubMed]

F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, M. S. Unlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express 16(13), 9501–9506 (2008).
[CrossRef] [PubMed]

A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, M. S. Ünlü, “Strong extinction of a far-field laser beam by a single quantum dot,” Nano Lett. 7(9), 2892–2896 (2007).
[CrossRef] [PubMed]

S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
[CrossRef]

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, Y. Leblebici, “High spatial resolution subsurface thermal emission microscopy,” Appl. Phys. Lett. 84(22), 4529–4531 (2004).
[CrossRef]

Goos, F.

F. Goos, H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436(7-8), 333–346 (1947).
[CrossRef]

Gregor, I.

Hadfield, R. H.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. J. Warburton, D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

Haeberlé, O.

Hänchen, H.

F. Goos, H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436(7-8), 333–346 (1947).
[CrossRef]

Hu, L.

Imamoglu, A.

A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, M. S. Ünlü, “Strong extinction of a far-field laser beam by a single quantum dot,” Nano Lett. 7(9), 2892–2896 (2007).
[CrossRef] [PubMed]

Ippolito, S. B.

F. H. Köklü, S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “Subsurface microscopy of integrated circuits with angular spectrum and polarization control,” Opt. Lett. 34(8), 1261–1263 (2009).
[CrossRef] [PubMed]

F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, M. S. Unlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express 16(13), 9501–9506 (2008).
[CrossRef] [PubMed]

S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
[CrossRef]

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, Y. Leblebici, “High spatial resolution subsurface thermal emission microscopy,” Appl. Phys. Lett. 84(22), 4529–4531 (2004).
[CrossRef]

Jouravlev, M. V.

Karrai, K.

K. Karrai, X. Lorenz, L. Novotny, “Enhanced reflectivity contrast in confocal solid immersion lens microscopy,” Appl. Phys. Lett. 77(21), 3459–3461 (2000).
[CrossRef]

Kerrosa, G.

S. Bianic, A. Allemand, G. Kerrosa, P. Scafidi, D. Renard, “Advanced backside failure analysis in 65nm CMOS technology,” Microelectron. Reliab. 47(9-11), 1550–1554 (2007).
[CrossRef]

Kim, K. S.

Koh, L. S.

S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum. 80(1), 013703 (2009).
[CrossRef] [PubMed]

Köklü, F. H.

B. B. Goldberg, A. Yurt, Y. Lu, E. Ramsay, F. H. Köklü, J. Mertz, T. G. Bifano, M. S. Ünlü, “Chromatic and spherical aberration correction for silicon aplanatic solid immersion lens for fault isolation and photon emission microscopy of integrated circuits,” Microelectron. Reliab. 51(9-11), 1637–1639 (2011).
[CrossRef]

F. H. Köklü, S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “Subsurface microscopy of integrated circuits with angular spectrum and polarization control,” Opt. Lett. 34(8), 1261–1263 (2009).
[CrossRef] [PubMed]

F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, M. S. Unlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express 16(13), 9501–9506 (2008).
[CrossRef] [PubMed]

Kunz, R. E.

Lang, M.

Leblebici, Y.

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, Y. Leblebici, “High spatial resolution subsurface thermal emission microscopy,” Appl. Phys. Lett. 84(22), 4529–4531 (2004).
[CrossRef]

Liu, C.

Lorenz, X.

K. Karrai, X. Lorenz, L. Novotny, “Enhanced reflectivity contrast in confocal solid immersion lens microscopy,” Appl. Phys. Lett. 77(21), 3459–3461 (2000).
[CrossRef]

Lu, Y.

Y. Lu, T. Bifano, S. Ünlü, B. Goldberg, “Aberration compensation in aplanatic solid immersion lens microscopy,” Opt. Express 21(23), 28189–28197 (2013).
[CrossRef] [PubMed]

B. B. Goldberg, A. Yurt, Y. Lu, E. Ramsay, F. H. Köklü, J. Mertz, T. G. Bifano, M. S. Ünlü, “Chromatic and spherical aberration correction for silicon aplanatic solid immersion lens for fault isolation and photon emission microscopy of integrated circuits,” Microelectron. Reliab. 51(9-11), 1637–1639 (2011).
[CrossRef]

Lukosz, W.

Mason, D. R.

Mendes, S. B.

M. B. Pereira, J. S. Craven, S. B. Mendes, “Solid immersion lens at the aplanatic condition for enhancing the spectral bandwidth of a waveguide grating coupler,” Opt. Eng. 49(12), 124601 (2010).
[CrossRef] [PubMed]

Mertz, J.

B. B. Goldberg, A. Yurt, Y. Lu, E. Ramsay, F. H. Köklü, J. Mertz, T. G. Bifano, M. S. Ünlü, “Chromatic and spherical aberration correction for silicon aplanatic solid immersion lens for fault isolation and photon emission microscopy of integrated circuits,” Microelectron. Reliab. 51(9-11), 1637–1639 (2011).
[CrossRef]

Milster, T. D.

Novotny, L.

K. Karrai, X. Lorenz, L. Novotny, “Enhanced reflectivity contrast in confocal solid immersion lens microscopy,” Appl. Phys. Lett. 77(21), 3459–3461 (2000).
[CrossRef]

L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am. A 14(1), 91–104 (1997).
[CrossRef]

O’Connor, J.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. J. Warburton, D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

Park, S. H.

Pereira, M. B.

M. B. Pereira, J. S. Craven, S. B. Mendes, “Solid immersion lens at the aplanatic condition for enhancing the spectral bandwidth of a waveguide grating coupler,” Opt. Eng. 49(12), 124601 (2010).
[CrossRef] [PubMed]

Phang, C. H.

Phang, J. C. H.

Pitter, M. C.

Quah, A. C. T.

S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum. 80(1), 013703 (2009).
[CrossRef] [PubMed]

Quesnel, J. I.

Ramsay, E.

B. B. Goldberg, A. Yurt, Y. Lu, E. Ramsay, F. H. Köklü, J. Mertz, T. G. Bifano, M. S. Ünlü, “Chromatic and spherical aberration correction for silicon aplanatic solid immersion lens for fault isolation and photon emission microscopy of integrated circuits,” Microelectron. Reliab. 51(9-11), 1637–1639 (2011).
[CrossRef]

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. J. Warburton, D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

K. A. Serrels, E. Ramsay, R. J. Warburton, D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nature Pho. 2(5), 311–314 (2008).
[CrossRef]

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[CrossRef]

Reid, D. T.

K. A. Serrels, E. Ramsay, R. J. Warburton, D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nature Pho. 2(5), 311–314 (2008).
[CrossRef]

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. J. Warburton, D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[CrossRef]

Renard, D.

S. Bianic, A. Allemand, G. Kerrosa, P. Scafidi, D. Renard, “Advanced backside failure analysis in 65nm CMOS technology,” Microelectron. Reliab. 47(9-11), 1550–1554 (2007).
[CrossRef]

Ruckstuhl, T.

Scafidi, P.

S. Bianic, A. Allemand, G. Kerrosa, P. Scafidi, D. Renard, “Advanced backside failure analysis in 65nm CMOS technology,” Microelectron. Reliab. 47(9-11), 1550–1554 (2007).
[CrossRef]

Serrels, K. A.

K. A. Serrels, E. Ramsay, R. J. Warburton, D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nature Pho. 2(5), 311–314 (2008).
[CrossRef]

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. J. Warburton, D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[CrossRef]

Sheppard, C. J. R.

Somekh, M. G.

Sparrow, C. M.

C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J. 44, 76–86 (1916).
[CrossRef]

Swan, A. K.

A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, M. S. Ünlü, “Strong extinction of a far-field laser beam by a single quantum dot,” Nano Lett. 7(9), 2892–2896 (2007).
[CrossRef] [PubMed]

Taghizadeh, M. R.

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[CrossRef]

Tenjimbayashi, K.

Thomson, M. J.

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[CrossRef]

Thorne, S. A.

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, Y. Leblebici, “High spatial resolution subsurface thermal emission microscopy,” Appl. Phys. Lett. 84(22), 4529–4531 (2004).
[CrossRef]

Török, P.

Unlü, M. S.

Ünlü, M. S.

B. B. Goldberg, A. Yurt, Y. Lu, E. Ramsay, F. H. Köklü, J. Mertz, T. G. Bifano, M. S. Ünlü, “Chromatic and spherical aberration correction for silicon aplanatic solid immersion lens for fault isolation and photon emission microscopy of integrated circuits,” Microelectron. Reliab. 51(9-11), 1637–1639 (2011).
[CrossRef]

F. H. Köklü, S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “Subsurface microscopy of integrated circuits with angular spectrum and polarization control,” Opt. Lett. 34(8), 1261–1263 (2009).
[CrossRef] [PubMed]

A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, M. S. Ünlü, “Strong extinction of a far-field laser beam by a single quantum dot,” Nano Lett. 7(9), 2892–2896 (2007).
[CrossRef] [PubMed]

S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
[CrossRef]

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, Y. Leblebici, “High spatial resolution subsurface thermal emission microscopy,” Appl. Phys. Lett. 84(22), 4529–4531 (2004).
[CrossRef]

Ünlü, S.

Vamivakas, A. N.

F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, M. S. Unlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express 16(13), 9501–9506 (2008).
[CrossRef] [PubMed]

A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, M. S. Ünlü, “Strong extinction of a far-field laser beam by a single quantum dot,” Nano Lett. 7(9), 2892–2896 (2007).
[CrossRef] [PubMed]

van den Bos, A.

Waddie, A. J.

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[CrossRef]

Wang, L.

Warburton, R. J.

K. A. Serrels, E. Ramsay, R. J. Warburton, D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nature Pho. 2(5), 311–314 (2008).
[CrossRef]

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. J. Warburton, D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[CrossRef]

Yilmaz, S. T.

A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, M. S. Ünlü, “Strong extinction of a far-field laser beam by a single quantum dot,” Nano Lett. 7(9), 2892–2896 (2007).
[CrossRef] [PubMed]

Yurt, A.

B. B. Goldberg, A. Yurt, Y. Lu, E. Ramsay, F. H. Köklü, J. Mertz, T. G. Bifano, M. S. Ünlü, “Chromatic and spherical aberration correction for silicon aplanatic solid immersion lens for fault isolation and photon emission microscopy of integrated circuits,” Microelectron. Reliab. 51(9-11), 1637–1639 (2011).
[CrossRef]

Zhang, Y.

Zhong, Y.

Ann. Phys. (1)

F. Goos, H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436(7-8), 333–346 (1947).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007).
[CrossRef]

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, Y. Leblebici, “High spatial resolution subsurface thermal emission microscopy,” Appl. Phys. Lett. 84(22), 4529–4531 (2004).
[CrossRef]

K. Karrai, X. Lorenz, L. Novotny, “Enhanced reflectivity contrast in confocal solid immersion lens microscopy,” Appl. Phys. Lett. 77(21), 3459–3461 (2000).
[CrossRef]

Astrophys. J. (1)

C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J. 44, 76–86 (1916).
[CrossRef]

J. Appl. Phys. (1)

S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
[CrossRef]

J. Nanophoton. (1)

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. J. Warburton, D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Microelectron. Reliab. (2)

S. Bianic, A. Allemand, G. Kerrosa, P. Scafidi, D. Renard, “Advanced backside failure analysis in 65nm CMOS technology,” Microelectron. Reliab. 47(9-11), 1550–1554 (2007).
[CrossRef]

B. B. Goldberg, A. Yurt, Y. Lu, E. Ramsay, F. H. Köklü, J. Mertz, T. G. Bifano, M. S. Ünlü, “Chromatic and spherical aberration correction for silicon aplanatic solid immersion lens for fault isolation and photon emission microscopy of integrated circuits,” Microelectron. Reliab. 51(9-11), 1637–1639 (2011).
[CrossRef]

Nano Lett. (1)

A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, M. S. Ünlü, “Strong extinction of a far-field laser beam by a single quantum dot,” Nano Lett. 7(9), 2892–2896 (2007).
[CrossRef] [PubMed]

Nature Pho. (1)

K. A. Serrels, E. Ramsay, R. J. Warburton, D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nature Pho. 2(5), 311–314 (2008).
[CrossRef]

Nouv. Rev. Opt. (1)

T. Asakura, “Resolution of two unequally bright points with partially coherent light,” Nouv. Rev. Opt. 5(3), 169–177 (1974).
[CrossRef]

Opt. Eng. (1)

M. B. Pereira, J. S. Craven, S. B. Mendes, “Solid immersion lens at the aplanatic condition for enhancing the spectral bandwidth of a waveguide grating coupler,” Opt. Eng. 49(12), 124601 (2010).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (6)

Rev. Sci. Instrum. (1)

S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum. 80(1), 013703 (2009).
[CrossRef] [PubMed]

Other (5)

A. Yurt, E. Ramsay, F. H. Köklü, C. R. Stockbridge, Y. Lu, M. S. Ünlü, and B. B. Goldberg, “Dual-Phase Interferometric Confocal Imaging for Electrical Signal Modulation Mapping in ICs,” in Proc. of the 38th International Symposium for Testing and Failure Analysis (ASM International, 2012), 172–175 (2012).

Throughout the article, the term “sub-diffraction” refers to a length scale smaller than the fundamental diffraction limit according to Rayleigh’s definition (0.61λ where the λ is the wavelength of light in the medium).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

Note that the circularly asymmetric intensity distribution in the allowed zone is obscured due to the logarithmic scale and the range on the plots.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the problem. GRS and R stand for Gaussian reference sphere of the objective and radius of the aSIL, respectively. Green and red zones denote the allowed and forbidden light regions, respectively.

Fig. 2
Fig. 2

The logarithm of the electric field intensity map (ignoring the constant ω2μ0) is shown for horizontal dipole (left column) and vertical dipole (middle column) when d = 0 (a), d = λins/2 (b), d = λins. The black rings inside the images denote the circle corresponding to the critical angle. The region inside and outside of the ring corresponds to the allowed and forbidden light zones, respectively. The size of each image is 8 mm by 8 mm. (d) A cross section of the intensity profile as a function of polar angle ( θ o b j ) at φ = 0 for horizontal dipole. (e) The same as in (d) except for vertical dipole.

Fig. 3
Fig. 3

Wave-front aberration introduced by the forbidden light ( Ψ F L in units of radian) in (a) E θ GRS , (b) E ϕ GRS of horizontal dipole and (c) E θ GRS of the vertical dipole as a function of polar angle θ o b j and the distance d in units of waves. Note that vertical dipole does not have the E ϕ GRS component.

Fig. 4
Fig. 4

Normalized wide-field detector images of a horizontal dipole when d = 0 (top row) and d = λins (bottom row). Intensity images for: (a) and (d) full collection NA of the microscope, (b) and (e) only subcritical angle components (allowed light), (c) and (f) only supercritical angle components (forbidden light). The edge length of each image is 3λins x magnification. The color scales are normalized to the maximum intensity in (a).

Fig. 5
Fig. 5

Same as in Fig. 4 except for a vertical dipole.

Fig. 6
Fig. 6

Collection efficiency shown in intensity axis and spot size (in x and y axes) as a function of dipole height d for horizontal (left) and vertical (right) dipoles. In the vertical dipole case, the spot geometry is circularly symmetric therefore the lines showing the spot size in x and y axes overlap. λ refers to the wavelength in insulating material. FL and AL refer to forbidden light and allowed light.

Fig. 7
Fig. 7

Normalized wide-field detector images of two dipoles separated by 0.35λins when (a) both dipoles positioned at d = 0, (b) dipole on the right at d = 0 and the dipole on the left at d = 0.1λins. First column corresponds to coherent case, middle column corresponds to incoherent case and the third column is for the cross sections of the two conditions along the lateral axis. The edge length of each image is 2λins x magnification.

Fig. 8
Fig. 8

Simulated images of a resolution target with periodic grating structures at different depth with respect to the dielectric interface. (a) d = 0, (b) d = 438nm (λins/2), (c) d = 876nm (λins). The size of each image is 7.32μm x 15.52μm (8.3λins x 17.7λins) x magnification.

Fig. 9
Fig. 9

Layout and the simulated images of a buried two-level metal wiring. (a) The red and blue lines are located at a distance of λins/2 and λins, respectively. The scalebar corresponds to a length of 876 nm (λins). (b) The optical image of the object. (c) Cross section of the image along the dotted line shown in (b). The size of the images corresponds to a field of view of 8.86μm x 6.38μm (10.11λins x 7.28λins) x magnification.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( r ) = ω 2 μ 0 G 0 ( r , r d ) μ
G 0 ( r ) = i 8 π 2 A e i[ k x i n s ( x - x d ) + k y i n s ( y - y d ) + k z i n s ( z - z d )] d k x i n s d k y i n s A = 1 k i n s 2 k z i n s [ k i n s 2 k x i n s 2 k x i n s k y i n s k x i n s k z i n s k x i n s k y i n s k i n s 2 k y i n s 2 k y i n s k z i n s k x i n s k z i n s k y i n s k z i n s k i n s 2 k z i n s 2 ]
G aSIL ( r , θ a S I L , ϕ ) = e i k a S I L r 4 π r e i ( k i n s r d ) e i ( d ( k z i n s k z a S I L ) ) × [ 0 0 0 cos ϕ cos θ a S I L Φ ( 2 ) sin ϕ cos θ a S I L Φ ( 2 ) sin θ a S I L Φ ( 1 ) sin ϕ Φ ( 3 ) cos ϕ Φ ( 3 ) 0 ] , Φ ( 1 ) = n a S I L n i n s k z a S I L k z i n s t p i n s , Φ ( 2 ) = n a S I L n i n s t p i n s , Φ ( 3 ) = k z a S I L k z i n s t s i n s
E G R S ( r , θ a S I L , ϕ ) = [ E θ GRS E ϕ GRS ] = ω 2 μ 0 e i k o b j f o b j 4 π f o b j e i ( k i n s r d ) e i ( d ( k z i n s k z s i l ) ) × [ cos ϕ cos θ a S I L Φ ( 2 ) t p a S I L sin ϕ cos θ a S I L Φ ( 2 ) t p a S I L sin θ a S I L Φ ( 1 ) t p a S I L sin ϕ Φ ( 3 ) t s a S I L cos ϕ Φ ( 3 ) t s a S I L 0 ] μ t p a S I L = 2 n a S I L cos θ o b j n o b j cos θ o b j + n a S I L cos θ a S I L n a S I L n o b j t s a S I L = 2 n a S I L cos θ o b j n a S I L cos θ o b j + n o b j cos θ a S I L n a S I L n o b j
G det ( ρ,φ,z )= i k det f obj 8π f det n obj n det e i( k det f det + k obj f obj ) [ I 0 + I 21 I 22 2i I 11 I 22 I 0 I 21 2i I 12 0 0 0 ], I 0 = 0 θ max sin θ obj cos θ obj ( t s aSIL Φ (3) + t p aSIL Φ (2) cos θ aSIL ) J 0 (ρ) e iz d θ obj , I 11 = 0 θ max sin θ obj cos θ obj ( t p aSIL Φ (1) sin θ aSIL ) J 1 (ρ) e iz cosφ d θ obj , I 12 = 0 θ max sin θ obj cos θ obj ( t p aSIL Φ (1) sin θ aSIL ) J 1 (ρ) e iz sinφ d θ obj , I 21 = 0 θ max sin θ obj cos θ obj ( t s aSIL Φ (3) t p aSIL Φ (2) cos θ aSIL ) J 2 (ρ) e iz cos2φ d θ obj , I 22 = 0 θ max sin θ obj cos θ obj ( t s aSIL Φ (3) t p aSIL Φ (2) cos θ aSIL ) J 2 (ρ) e iz sin2φ d θ obj
ρ= x 2 + y 2 ; φ= tan 1 ( y/x ) x=( k det sin θ det x det + k aSIL sin θ aSIL x d ) y=( k det sin θ det y det + k aSIL sin θ aSIL y d ) z=d( k zins k zaSIL )( k det cos θ det z det + k ins 1 ( k aSIL k ins ) 2 sin 2 θ aSIL z d )
n obj sin θ aSIL = n aSIL sin θ obj f det sin θ det = f obj sin θ obj n ins sin θ ins = n aSIL sin θ aSIL

Metrics