Abstract

An excited state Faraday anomalous dispersion optical filter (ES-FADOF) working at the optical communication wavelength (1.5 μm) is realized. Unlike the usual ES-FADOF schemes using an external frequency stabilization, an internal frequency stabilization scheme is proposed and the working atoms inside the filter are adopted as the reference. A particular cross line of multiple transitions is used for the frequency stabilization for the pump laser and thus, a higher pump efficiency is achieved. For example, compared with previous ES-FADOF schemes, this method can increase the transmittance from 10% to 60% at 100 °C. Moreover, in this scheme, the external frequency stabilization is not necessary and the volume of the atomic filter can be reduced. This simplifies the whole structure and a compact ES-FADOF can thus be realized.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Dick, T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett. 16, 867–869 (1991).
    [CrossRef] [PubMed]
  2. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16, 846–848 (1991).
    [CrossRef] [PubMed]
  3. P. Yeh, “Dispersive magnetooptic filters,” Appl. Opt. 21, 2069–2075 (1982).
    [CrossRef] [PubMed]
  4. J. Menders, P. Searcy, K. Roff, E. Korevaar, “Blue cesium Faraday and Voigt magneto-optic atomic line filters,” Opt. Lett. 17, 1388–1390 (1992).
    [CrossRef] [PubMed]
  5. H. Chen, C. Y. She, P. Searcy, E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett. 18, 1019– 1021 (1993).
    [CrossRef] [PubMed]
  6. E. T. Dressler, A. E. Laux, R. I. Billmers, “Theory and experiment for the anomalous Faraday effect in potassium,” J. Opt. Soc. Am. B 13, 1849–1858 (1996).
    [CrossRef]
  7. Y. C. Chan, J. A. Gelbwachs, “A Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm,” IEEE J. Quantum Electron. 29, 2379–2384 (1993).
    [CrossRef]
  8. L. Chen, L. S. Alvarez, B. Yin, T. M. Shay, “High-sensitivity direct detection optical communication system that operates in sunlight,” Proc. SPIE 2123, 448–454 (1994).
    [CrossRef]
  9. C. B. Svec, T. M. Shay, “Doppler shift compensation for spaceborne optical communication using a Faraday anomalous dispersion optical filter (FADOF),” Proc. SPIE 2123, 470–476 (1994).
    [CrossRef]
  10. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995).
    [CrossRef]
  11. X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
    [CrossRef] [PubMed]
  12. H. Chen, M. A. White, D. A. Krueger, C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093–1095 (1996).
    [CrossRef] [PubMed]
  13. C. Fricke-Begemann, M. Alpers, J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002).
    [CrossRef]
  14. A. Popescu, T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B Lasers O 98, 667–675 (2010).
    [CrossRef]
  15. R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, D. M. Allocca, “Experimental demonstration of an excited-state Faraday filter operating at 532 nm,” Opt. Lett. 20, 106–108 (1995).
    [CrossRef] [PubMed]
  16. A. Popescu, D. Walldorf, K. Schorstein, T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264, 475–481 (2006).
    [CrossRef]
  17. L. D. Turner, V. Karaganov, P. J. O. Teubner, R. E. Scholten, “Sub-Doppler bandwidth atomic optical filter,” Opt. Lett. 27, 500–502 (2002).
    [CrossRef]
  18. Z.-Q. Zhao, M. J. Lefebvre, D. H. Leslie, “Excited state atomic line filters,” US 7,058,110 B2 (2006).
  19. Q. Sun, Y. Hong, W. Zhuang, Z. Liu, J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
    [CrossRef]
  20. J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (RbI through RbXXXVII),” J. Phys. Chem. Ref. Data 35, 301–421 (2006).
    [CrossRef]
  21. L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, ”Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B 45, 055001 (2012).
    [CrossRef]
  22. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998).
    [CrossRef]

2012 (2)

L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, ”Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B 45, 055001 (2012).
[CrossRef]

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[CrossRef]

2011 (1)

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef] [PubMed]

2010 (1)

A. Popescu, T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B Lasers O 98, 667–675 (2010).
[CrossRef]

2006 (2)

A. Popescu, D. Walldorf, K. Schorstein, T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264, 475–481 (2006).
[CrossRef]

J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (RbI through RbXXXVII),” J. Phys. Chem. Ref. Data 35, 301–421 (2006).
[CrossRef]

2002 (2)

1998 (1)

1996 (2)

1995 (2)

1994 (2)

L. Chen, L. S. Alvarez, B. Yin, T. M. Shay, “High-sensitivity direct detection optical communication system that operates in sunlight,” Proc. SPIE 2123, 448–454 (1994).
[CrossRef]

C. B. Svec, T. M. Shay, “Doppler shift compensation for spaceborne optical communication using a Faraday anomalous dispersion optical filter (FADOF),” Proc. SPIE 2123, 470–476 (1994).
[CrossRef]

1993 (2)

H. Chen, C. Y. She, P. Searcy, E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett. 18, 1019– 1021 (1993).
[CrossRef] [PubMed]

Y. C. Chan, J. A. Gelbwachs, “A Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm,” IEEE J. Quantum Electron. 29, 2379–2384 (1993).
[CrossRef]

1992 (1)

1991 (2)

1982 (1)

Adams, C. S.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, ”Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B 45, 055001 (2012).
[CrossRef]

Allocca, D. M.

Alpers, M.

Alvarez, L. S.

L. Chen, L. S. Alvarez, B. Yin, T. M. Shay, “High-sensitivity direct detection optical communication system that operates in sunlight,” Proc. SPIE 2123, 448–454 (1994).
[CrossRef]

Benson, K.

Billmers, R. I.

Bloom, S. H.

Chan, Y. C.

Y. C. Chan, J. A. Gelbwachs, “A Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm,” IEEE J. Quantum Electron. 29, 2379–2384 (1993).
[CrossRef]

Chen, H.

Chen, J.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[CrossRef]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef] [PubMed]

Chen, L.

L. Chen, L. S. Alvarez, B. Yin, T. M. Shay, “High-sensitivity direct detection optical communication system that operates in sunlight,” Proc. SPIE 2123, 448–454 (1994).
[CrossRef]

Contarino, V. M.

Corwin, K. L.

Dalton, T.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, ”Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B 45, 055001 (2012).
[CrossRef]

Dang, A.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef] [PubMed]

Dick, D. J.

Dressler, E. T.

Duan, M.

Epstein, R. J.

Fricke-Begemann, C.

Gan, J.

Gayen, S. K.

Gelbwachs, J. A.

Y. C. Chan, J. A. Gelbwachs, “A Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm,” IEEE J. Quantum Electron. 29, 2379–2384 (1993).
[CrossRef]

Guo, H.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef] [PubMed]

Hand, C. F.

Höffner, J.

Hong, Y.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[CrossRef]

Hughes, I. G.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, ”Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B 45, 055001 (2012).
[CrossRef]

Karaganov, V.

Kong, J.

Korevaar, E.

Krueger, D. A.

Laux, A. E.

Lefebvre, M. J.

Z.-Q. Zhao, M. J. Lefebvre, D. H. Leslie, “Excited state atomic line filters,” US 7,058,110 B2 (2006).

Leslie, D. H.

Z.-Q. Zhao, M. J. Lefebvre, D. H. Leslie, “Excited state atomic line filters,” US 7,058,110 B2 (2006).

Li, Y.

Liu, C. S.

Liu, Z.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[CrossRef]

Lu, Z.-T.

Luo, B.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef] [PubMed]

Menders, J.

Miao, X.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef] [PubMed]

Popescu, A.

A. Popescu, T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B Lasers O 98, 667–675 (2010).
[CrossRef]

A. Popescu, D. Walldorf, K. Schorstein, T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264, 475–481 (2006).
[CrossRef]

Roff, K.

Sansonetti, J. E.

J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (RbI through RbXXXVII),” J. Phys. Chem. Ref. Data 35, 301–421 (2006).
[CrossRef]

Scharpf, W. J.

Scholten, R. E.

Schorstein, K.

A. Popescu, D. Walldorf, K. Schorstein, T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264, 475–481 (2006).
[CrossRef]

Searcy, P.

Shay, T. M.

C. B. Svec, T. M. Shay, “Doppler shift compensation for spaceborne optical communication using a Faraday anomalous dispersion optical filter (FADOF),” Proc. SPIE 2123, 470–476 (1994).
[CrossRef]

L. Chen, L. S. Alvarez, B. Yin, T. M. Shay, “High-sensitivity direct detection optical communication system that operates in sunlight,” Proc. SPIE 2123, 448–454 (1994).
[CrossRef]

D. J. Dick, T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett. 16, 867–869 (1991).
[CrossRef] [PubMed]

She, C. Y.

Siddons, P.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, ”Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B 45, 055001 (2012).
[CrossRef]

Squicciarini, M. F.

Sun, Q.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[CrossRef]

Svec, C. B.

C. B. Svec, T. M. Shay, “Doppler shift compensation for spaceborne optical communication using a Faraday anomalous dispersion optical filter (FADOF),” Proc. SPIE 2123, 470–476 (1994).
[CrossRef]

Tang, J.

Teubner, P. J. O.

Turner, L. D.

Walldorf, D.

A. Popescu, D. Walldorf, K. Schorstein, T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264, 475–481 (2006).
[CrossRef]

Walther, T.

A. Popescu, T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B Lasers O 98, 667–675 (2010).
[CrossRef]

A. Popescu, D. Walldorf, K. Schorstein, T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264, 475–481 (2006).
[CrossRef]

Wang, Q.

Weller, L.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, ”Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B 45, 055001 (2012).
[CrossRef]

White, M. A.

Wieman, C. E.

Yeh, P.

Yin, B.

L. Chen, L. S. Alvarez, B. Yin, T. M. Shay, “High-sensitivity direct detection optical communication system that operates in sunlight,” Proc. SPIE 2123, 448–454 (1994).
[CrossRef]

Yin, L.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef] [PubMed]

Zhang, L.

Zhao, Z.-Q.

Z.-Q. Zhao, M. J. Lefebvre, D. H. Leslie, “Excited state atomic line filters,” US 7,058,110 B2 (2006).

Zheng, L.

Zhuang, W.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[CrossRef]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. B Lasers O (1)

A. Popescu, T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B Lasers O 98, 667–675 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. C. Chan, J. A. Gelbwachs, “A Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm,” IEEE J. Quantum Electron. 29, 2379–2384 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, ”Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B 45, 055001 (2012).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (RbI through RbXXXVII),” J. Phys. Chem. Ref. Data 35, 301–421 (2006).
[CrossRef]

Opt. Commun. (1)

A. Popescu, D. Walldorf, K. Schorstein, T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264, 475–481 (2006).
[CrossRef]

Opt. Lett. (8)

Proc. SPIE (2)

L. Chen, L. S. Alvarez, B. Yin, T. M. Shay, “High-sensitivity direct detection optical communication system that operates in sunlight,” Proc. SPIE 2123, 448–454 (1994).
[CrossRef]

C. B. Svec, T. M. Shay, “Doppler shift compensation for spaceborne optical communication using a Faraday anomalous dispersion optical filter (FADOF),” Proc. SPIE 2123, 470–476 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef] [PubMed]

Other (1)

Z.-Q. Zhao, M. J. Lefebvre, D. H. Leslie, “Excited state atomic line filters,” US 7,058,110 B2 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The energy levels of 85Rb and 87Rb [20]. Red parallel line is the transition that the filter works on. Blue bold line is the transition with which the pump laser resonates. Hyperfine structure band stands for the maximum frequency difference of hyperfine levels.

Fig. 2
Fig. 2

(a) Schematic experimental setup. Two external-cavity diodes are used, respectively, as the pump and probe laser, in which the pump laser works at 780 nm with frequency stabilized. ISO is isolator. P1 and P2 are two orthogonal polarizers with antireflection coating. D1 and D2 are dichroic mirrors. The rubidium cell is made by quartz, with 50 mm length and 20 mm diameter. HWP is half wave plate, QWP is quarter wave plate and PBS is polarized beam splitter. (b) Transmitted spectra of the pump laser after the absorption by the rubidium vapor. Blue dashed curve is the original shape of the rubidium D2 line. Red solid curve is the new spectrum of D2 line in 550 gauss magnetic field of the filter. (c) Difference signal of our frequency stabilization system.

Fig. 3
Fig. 3

Comparison of the peak transmittances under different pump powers and temperatures in the EFR and IMR.

Fig. 4
Fig. 4

Transmittance spectra of ES-FADOF with the IMR (a, b, c) and EFR (d, e, f) solutions for different pump powers at 120 °C. The pump powers are labeled at the top-right corner of each spectrum.

Metrics