Abstract

We report a technique for blood flow detection using split spectrum Doppler optical coherence tomography (ssDOCT) that shows improved sensitivity over existing Doppler OCT methods. In ssDOCT, the Doppler signal is averaged over multiple sub-bands of the interferogram, increasing the SNR of the Doppler signal. We explore the parameterization of this technique in terms of number of sub-band windows, width and overlap of the windows, and their effect on the Doppler signal to noise in a flow phantom. Compared to conventional DOCT, ssDOCT processing has increased flow sensitivity. We demonstrate the effectiveness of ssDOCT in-vivo for intravascular flow detection within a porcine carotid artery and for microvascular vessel detection in human pulmonary imaging, using rotary catheter probes. To our knowledge, this is the first report of visualizing in-vivo Doppler flow patterns adjacent to stent struts in the carotid artery.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Tearney, S. Boppart, B. Bouma, M. Brezinski, N. Weissman, J. Southern, J. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543–545 (1996).
    [CrossRef] [PubMed]
  2. K. H. Cheng, C. Sun, B. Vuong, K. K. Lee, A. Mariampillai, T. R. Marotta, J. Spears, W. J. Montanera, P. R. Herman, T.-R. Kiehl et al., “Endovascular optical coherence tomography intensity kurtosis: visualization of vasa vasorum in porcine carotid artery,” Biomed. Opt. Express 3, 388–399 (2012).
    [CrossRef] [PubMed]
  3. B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video),” Gastrointestinal endoscopy 65, 898–905 (2007).
    [CrossRef]
  4. A. M. Lee, K. Ohtani, C. MacAulay, A. McWilliams, T. Shaipanich, V. X. Yang, S. Lam, P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color doppler optical coherence tomography,” J. Biomed. Opt. 18, 050501 (2013).
    [CrossRef]
  5. C. Sun, F. Nolte, K. H. Cheng, B. Vuong, K. K. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, V. X. Yang, “In vivo feasibility of endovascular doppler optical coherence tomography,” Biomed. Opt. Express 3, 2600–2610 (2012).
    [CrossRef] [PubMed]
  6. X. Li, T. H. Ko, J. G. Fujimoto, “Intraluminal fiber-optic doppler imaging catheter for structural and functional optical coherence tomography,” Opt. Lett. 26, 1906–1908 (2001).
    [CrossRef]
  7. M. J. McCarthy, I. M. Loftus, M. M. Thompson, L. Jones, N. J. London, P. R. Bell, A. R. Naylor, N. P. Brindle, “Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology,” J. Vascular Surgery 30, 261–268 (1999).
    [CrossRef]
  8. N. F. Voelkel, I. S. Douglas, M. Nicolls, “Angiogenesis in chronic lung disease,” CHEST Journal 131, 874–879 (2007).
    [CrossRef]
  9. A. Yuan, D.-B. Chang, C.-J. Yu, S. Kuo, K. Luh, P. Yang, “Color doppler sonography of benign and malignant pulmonary masses.” AJR. American journal of roentgenology 163, 545–549 (1994).
    [CrossRef] [PubMed]
  10. B. Vakoc, S. Yun, J. De Boer, G. Tearney, B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005).
    [CrossRef] [PubMed]
  11. B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μ m for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886–20903 (2011).
    [CrossRef] [PubMed]
  12. Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
    [CrossRef] [PubMed]
  13. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490–3497 (2003).
    [CrossRef] [PubMed]
  14. G. van Soest, J. G. Bosch, A. F. van der Steen, “Azimuthal registration of image sequences affected by nonuniform rotation distortion,” IEEE Trans. Info.Tech. Biomed. 12, 348–355 (2008).
    [CrossRef]
  15. V.X.D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, A. I. Vitkin, “High speed, wide velocity dynamic range doppler optical coherence tomography (part i): System design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
    [CrossRef] [PubMed]
  16. H. Ren, X. Li, “Clutter rejection filters for optical doppler tomography,” Opt. Express 14, 6103–6112 (2006).
    [CrossRef] [PubMed]
  17. D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. Lee, T.-R. Kiehl, B. C. Wilson, M. G. Fehlings, V. X. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3, 911–919 (2012).
    [CrossRef] [PubMed]
  18. V.X.D. Yang, M. L. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. C. Wilson, A. I. Vitkin, “High speed, wide velocity dynamic range doppler optical coherence tomography (part ii): Imaging in vivo cardiac dynamics of xenopus laevis,” Opt. Express 11, 1650–1658 (2003).
    [CrossRef] [PubMed]
  19. J. A. Jensen, Estimation of blood velocities using ultrasound: a signal processing approach (Cambridge University Press, 1996).
  20. R. S. Cobbold, Foundations of biomedical ultrasound (Oxford University Press on Demand, 2007).
  21. S. Yun, G. Tearney, J. De Boer, B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
    [CrossRef] [PubMed]
  22. E. W. Beasley, H. R. Ward, “A quantitative analysis of sea clutter decorrelation with frequency agility,” Aerospace and Electronic Systems, IEEE Transactions on pp. 468–473 (1968).
    [CrossRef]
  23. P. Karpur, O. J. Canelones, “Split spectrum processing: a new filtering approach for improved signal-to-noise ratio enhancement of ultrasonic signals,” Ultrasonics 30, 351–357 (1992).
    [CrossRef]
  24. G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, A. F. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt. 17, 0760181–0760187 (2012).
    [CrossRef]
  25. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, D. Haung, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20, 4710–4725 (2012).
    [CrossRef] [PubMed]
  26. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
    [CrossRef]
  27. V. X. Yang, M. Gordon, S.-j. Tang, N. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar et al., “High speed, wide velocity dynamic range doppler optical coherence tomography (part iii): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts,” Opt. Express 11, 2416–2424 (2003).
    [CrossRef] [PubMed]
  28. K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomedical Opt. Express 3, 1557–1564 (2012).
    [CrossRef]
  29. S. Makita, F. Jaillon, I. Jahan, Y. Yasuno, “Noise statistics of phase-resolved optical coherence tomography imaging: single-and dual-beam-scan doppler optical coherence tomography,” Opt. Express 22, 4830–4848 (2014).
    [CrossRef]
  30. S. Yazdanfar, C. Yang, M. Sarunic, J. Izatt, “Frequency estimation precision in doppler optical coherence tomography using the cramer-rao lower bound,” Opt. Express 13, 410–416 (2005).
    [CrossRef] [PubMed]
  31. B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μ m,” Opt. Express 13, 3931–3944 (2005).
    [CrossRef] [PubMed]
  32. V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. Alex Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
    [CrossRef]
  33. D. Rockwell, “Vortex-body interactions,” Annual review of fluid mechanics 30, 199–229 (1998).
    [CrossRef]
  34. J. E. Moore, J. L. Berry, “Fluid and solid mechanical implications of vascular stenting,” Annals of biomedical engineering 30, 498–508 (2002).
    [CrossRef] [PubMed]

2014 (1)

2013 (1)

A. M. Lee, K. Ohtani, C. MacAulay, A. McWilliams, T. Shaipanich, V. X. Yang, S. Lam, P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color doppler optical coherence tomography,” J. Biomed. Opt. 18, 050501 (2013).
[CrossRef]

2012 (7)

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, A. F. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt. 17, 0760181–0760187 (2012).
[CrossRef]

K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomedical Opt. Express 3, 1557–1564 (2012).
[CrossRef]

Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
[CrossRef] [PubMed]

K. H. Cheng, C. Sun, B. Vuong, K. K. Lee, A. Mariampillai, T. R. Marotta, J. Spears, W. J. Montanera, P. R. Herman, T.-R. Kiehl et al., “Endovascular optical coherence tomography intensity kurtosis: visualization of vasa vasorum in porcine carotid artery,” Biomed. Opt. Express 3, 388–399 (2012).
[CrossRef] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, D. Haung, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20, 4710–4725 (2012).
[CrossRef] [PubMed]

D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. Lee, T.-R. Kiehl, B. C. Wilson, M. G. Fehlings, V. X. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3, 911–919 (2012).
[CrossRef] [PubMed]

C. Sun, F. Nolte, K. H. Cheng, B. Vuong, K. K. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, V. X. Yang, “In vivo feasibility of endovascular doppler optical coherence tomography,” Biomed. Opt. Express 3, 2600–2610 (2012).
[CrossRef] [PubMed]

2011 (1)

2008 (1)

G. van Soest, J. G. Bosch, A. F. van der Steen, “Azimuthal registration of image sequences affected by nonuniform rotation distortion,” IEEE Trans. Info.Tech. Biomed. 12, 348–355 (2008).
[CrossRef]

2007 (2)

N. F. Voelkel, I. S. Douglas, M. Nicolls, “Angiogenesis in chronic lung disease,” CHEST Journal 131, 874–879 (2007).
[CrossRef]

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video),” Gastrointestinal endoscopy 65, 898–905 (2007).
[CrossRef]

2006 (1)

2005 (3)

2004 (1)

2003 (4)

2002 (3)

J. E. Moore, J. L. Berry, “Fluid and solid mechanical implications of vascular stenting,” Annals of biomedical engineering 30, 498–508 (2002).
[CrossRef] [PubMed]

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. Alex Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
[CrossRef]

2001 (1)

1999 (1)

M. J. McCarthy, I. M. Loftus, M. M. Thompson, L. Jones, N. J. London, P. R. Bell, A. R. Naylor, N. P. Brindle, “Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology,” J. Vascular Surgery 30, 261–268 (1999).
[CrossRef]

1998 (1)

D. Rockwell, “Vortex-body interactions,” Annual review of fluid mechanics 30, 199–229 (1998).
[CrossRef]

1996 (1)

1994 (1)

A. Yuan, D.-B. Chang, C.-J. Yu, S. Kuo, K. Luh, P. Yang, “Color doppler sonography of benign and malignant pulmonary masses.” AJR. American journal of roentgenology 163, 545–549 (1994).
[CrossRef] [PubMed]

1992 (1)

P. Karpur, O. J. Canelones, “Split spectrum processing: a new filtering approach for improved signal-to-noise ratio enhancement of ultrasonic signals,” Ultrasonics 30, 351–357 (1992).
[CrossRef]

Alex Vitkin, I.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. Alex Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Beasley, E. W.

E. W. Beasley, H. R. Ward, “A quantitative analysis of sea clutter decorrelation with frequency agility,” Aerospace and Electronic Systems, IEEE Transactions on pp. 468–473 (1968).
[CrossRef]

Bell, P. R.

M. J. McCarthy, I. M. Loftus, M. M. Thompson, L. Jones, N. J. London, P. R. Bell, A. R. Naylor, N. P. Brindle, “Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology,” J. Vascular Surgery 30, 261–268 (1999).
[CrossRef]

Berry, J. L.

J. E. Moore, J. L. Berry, “Fluid and solid mechanical implications of vascular stenting,” Annals of biomedical engineering 30, 498–508 (2002).
[CrossRef] [PubMed]

Bisland, S.

Boppart, S.

Bosch, J. G.

G. van Soest, J. G. Bosch, A. F. van der Steen, “Azimuthal registration of image sequences affected by nonuniform rotation distortion,” IEEE Trans. Info.Tech. Biomed. 12, 348–355 (2008).
[CrossRef]

Bouma, B.

Bouma, B. E.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, A. F. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt. 17, 0760181–0760187 (2012).
[CrossRef]

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video),” Gastrointestinal endoscopy 65, 898–905 (2007).
[CrossRef]

Braaf, B.

Brezinski, M.

Brindle, N. P.

M. J. McCarthy, I. M. Loftus, M. M. Thompson, L. Jones, N. J. London, P. R. Bell, A. R. Naylor, N. P. Brindle, “Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology,” J. Vascular Surgery 30, 261–268 (1999).
[CrossRef]

Cadotte, A.

Cadotte, D. W.

D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. Lee, T.-R. Kiehl, B. C. Wilson, M. G. Fehlings, V. X. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3, 911–919 (2012).
[CrossRef] [PubMed]

K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomedical Opt. Express 3, 1557–1564 (2012).
[CrossRef]

Canelones, O. J.

P. Karpur, O. J. Canelones, “Split spectrum processing: a new filtering approach for improved signal-to-noise ratio enhancement of ultrasonic signals,” Ultrasonics 30, 351–357 (1992).
[CrossRef]

Cense, B.

Chang, D.-B.

A. Yuan, D.-B. Chang, C.-J. Yu, S. Kuo, K. Luh, P. Yang, “Color doppler sonography of benign and malignant pulmonary masses.” AJR. American journal of roentgenology 163, 545–549 (1994).
[CrossRef] [PubMed]

Chen, T.

Chen, Z.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. Alex Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Cheng, K. H.

Cobbold, R. S.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. Alex Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

R. S. Cobbold, Foundations of biomedical ultrasound (Oxford University Press on Demand, 2007).

Courtney, B.

De Boer, J.

de Boer, J. F.

Desjardins, A. E.

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video),” Gastrointestinal endoscopy 65, 898–905 (2007).
[CrossRef]

Douglas, I. S.

N. F. Voelkel, I. S. Douglas, M. Nicolls, “Angiogenesis in chronic lung disease,” CHEST Journal 131, 874–879 (2007).
[CrossRef]

Evans, J. A.

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video),” Gastrointestinal endoscopy 65, 898–905 (2007).
[CrossRef]

Fehlings, M. G.

Fercher, A.

Fujimoto, J.

Fujimoto, J. G.

Gardiner, G.

Gordon, M.

Gordon, M. L.

Haung, D.

Herman, P. R.

Hong, Y.-J.

Hornegger, J.

Itoh, M.

Izatt, J.

Jahan, I.

Jaillon, F.

Jensen, J. A.

J. A. Jensen, Estimation of blood velocities using ultrasound: a signal processing approach (Cambridge University Press, 1996).

Jia, Y.

Jones, L.

M. J. McCarthy, I. M. Loftus, M. M. Thompson, L. Jones, N. J. London, P. R. Bell, A. R. Naylor, N. P. Brindle, “Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology,” J. Vascular Surgery 30, 261–268 (1999).
[CrossRef]

Ju, M. J.

Karpur, P.

P. Karpur, O. J. Canelones, “Split spectrum processing: a new filtering approach for improved signal-to-noise ratio enhancement of ultrasonic signals,” Ultrasonics 30, 351–357 (1992).
[CrossRef]

Kiehl, T.-R.

Ko, T. H.

Kowalczyk, A.

Kraus, M. F.

Kuo, S.

A. Yuan, D.-B. Chang, C.-J. Yu, S. Kuo, K. Luh, P. Yang, “Color doppler sonography of benign and malignant pulmonary masses.” AJR. American journal of roentgenology 163, 545–549 (1994).
[CrossRef] [PubMed]

Lam, S.

A. M. Lee, K. Ohtani, C. MacAulay, A. McWilliams, T. Shaipanich, V. X. Yang, S. Lam, P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color doppler optical coherence tomography,” J. Biomed. Opt. 18, 050501 (2013).
[CrossRef]

Lane, P.

A. M. Lee, K. Ohtani, C. MacAulay, A. McWilliams, T. Shaipanich, V. X. Yang, S. Lam, P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color doppler optical coherence tomography,” J. Biomed. Opt. 18, 050501 (2013).
[CrossRef]

Lee, A. M.

A. M. Lee, K. Ohtani, C. MacAulay, A. McWilliams, T. Shaipanich, V. X. Yang, S. Lam, P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color doppler optical coherence tomography,” J. Biomed. Opt. 18, 050501 (2013).
[CrossRef]

Lee, B. H.

Lee, K. K.

Leitgeb, R.

Li, X.

Liu, J. J.

Lo, S.

Loftus, I. M.

M. J. McCarthy, I. M. Loftus, M. M. Thompson, L. Jones, N. J. London, P. R. Bell, A. R. Naylor, N. P. Brindle, “Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology,” J. Vascular Surgery 30, 261–268 (1999).
[CrossRef]

London, N. J.

M. J. McCarthy, I. M. Loftus, M. M. Thompson, L. Jones, N. J. London, P. R. Bell, A. R. Naylor, N. P. Brindle, “Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology,” J. Vascular Surgery 30, 261–268 (1999).
[CrossRef]

Luh, K.

A. Yuan, D.-B. Chang, C.-J. Yu, S. Kuo, K. Luh, P. Yang, “Color doppler sonography of benign and malignant pulmonary masses.” AJR. American journal of roentgenology 163, 545–549 (1994).
[CrossRef] [PubMed]

MacAulay, C.

A. M. Lee, K. Ohtani, C. MacAulay, A. McWilliams, T. Shaipanich, V. X. Yang, S. Lam, P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color doppler optical coherence tomography,” J. Biomed. Opt. 18, 050501 (2013).
[CrossRef]

Makita, S.

Marcon, N.

Mariampillai, A.

Marotta, T. R.

McCarthy, M. J.

M. J. McCarthy, I. M. Loftus, M. M. Thompson, L. Jones, N. J. London, P. R. Bell, A. R. Naylor, N. P. Brindle, “Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology,” J. Vascular Surgery 30, 261–268 (1999).
[CrossRef]

McWilliams, A.

A. M. Lee, K. Ohtani, C. MacAulay, A. McWilliams, T. Shaipanich, V. X. Yang, S. Lam, P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color doppler optical coherence tomography,” J. Biomed. Opt. 18, 050501 (2013).
[CrossRef]

Min, E. J.

Miura, M.

Mok, A.

Montanera, W. J.

Moore, J. E.

J. E. Moore, J. L. Berry, “Fluid and solid mechanical implications of vascular stenting,” Annals of biomedical engineering 30, 498–508 (2002).
[CrossRef] [PubMed]

Mujat, M.

Nassif, N.

Naylor, A. R.

M. J. McCarthy, I. M. Loftus, M. M. Thompson, L. Jones, N. J. London, P. R. Bell, A. R. Naylor, N. P. Brindle, “Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology,” J. Vascular Surgery 30, 261–268 (1999).
[CrossRef]

Nicolls, M.

N. F. Voelkel, I. S. Douglas, M. Nicolls, “Angiogenesis in chronic lung disease,” CHEST Journal 131, 874–879 (2007).
[CrossRef]

Nishioka, N. S.

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video),” Gastrointestinal endoscopy 65, 898–905 (2007).
[CrossRef]

Nolte, F.

Oh, W.-Y.

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video),” Gastrointestinal endoscopy 65, 898–905 (2007).
[CrossRef]

Ohtani, K.

A. M. Lee, K. Ohtani, C. MacAulay, A. McWilliams, T. Shaipanich, V. X. Yang, S. Lam, P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color doppler optical coherence tomography,” J. Biomed. Opt. 18, 050501 (2013).
[CrossRef]

Park, B.

Pekar, J.

Pierce, M.

Pierce, M. C.

Potsaid, B.

Qi, B.

Regar, E.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, A. F. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt. 17, 0760181–0760187 (2012).
[CrossRef]

Ren, H.

Rockwell, D.

D. Rockwell, “Vortex-body interactions,” Annual review of fluid mechanics 30, 199–229 (1998).
[CrossRef]

Sarunic, M.

Seng-Yue, E.

Shaipanich, T.

A. M. Lee, K. Ohtani, C. MacAulay, A. McWilliams, T. Shaipanich, V. X. Yang, S. Lam, P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color doppler optical coherence tomography,” J. Biomed. Opt. 18, 050501 (2013).
[CrossRef]

Shishko, M.

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video),” Gastrointestinal endoscopy 65, 898–905 (2007).
[CrossRef]

Sicam, V. A. D.

Southern, J.

Spears, J.

Standish, B. A.

C. Sun, F. Nolte, K. H. Cheng, B. Vuong, K. K. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, V. X. Yang, “In vivo feasibility of endovascular doppler optical coherence tomography,” Biomed. Opt. Express 3, 2600–2610 (2012).
[CrossRef] [PubMed]

K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomedical Opt. Express 3, 1557–1564 (2012).
[CrossRef]

Subhash, H.

Sun, C.

Suter, M. J.

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video),” Gastrointestinal endoscopy 65, 898–905 (2007).
[CrossRef]

Tan, O.

Tang, S.-j.

Tearney, G.

Tearney, G. J.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, A. F. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt. 17, 0760181–0760187 (2012).
[CrossRef]

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video),” Gastrointestinal endoscopy 65, 898–905 (2007).
[CrossRef]

Thompson, M. M.

M. J. McCarthy, I. M. Loftus, M. M. Thompson, L. Jones, N. J. London, P. R. Bell, A. R. Naylor, N. P. Brindle, “Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology,” J. Vascular Surgery 30, 261–268 (1999).
[CrossRef]

Tokayer, J.

Vakoc, B.

Vakoc, B. J.

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video),” Gastrointestinal endoscopy 65, 898–905 (2007).
[CrossRef]

van der Steen, A. F.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, A. F. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt. 17, 0760181–0760187 (2012).
[CrossRef]

G. van Soest, J. G. Bosch, A. F. van der Steen, “Azimuthal registration of image sequences affected by nonuniform rotation distortion,” IEEE Trans. Info.Tech. Biomed. 12, 348–355 (2008).
[CrossRef]

van Meurs, J. C.

van Soest, G.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, A. F. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt. 17, 0760181–0760187 (2012).
[CrossRef]

G. van Soest, J. G. Bosch, A. F. van der Steen, “Azimuthal registration of image sequences affected by nonuniform rotation distortion,” IEEE Trans. Info.Tech. Biomed. 12, 348–355 (2008).
[CrossRef]

van Zeeburg, E.

Vermeer, K. A.

Villiger, M.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, A. F. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt. 17, 0760181–0760187 (2012).
[CrossRef]

Vitkin, A. I.

Voelkel, N. F.

N. F. Voelkel, I. S. Douglas, M. Nicolls, “Angiogenesis in chronic lung disease,” CHEST Journal 131, 874–879 (2007).
[CrossRef]

Vuong, B.

Wang, Y.

Ward, H. R.

E. W. Beasley, H. R. Ward, “A quantitative analysis of sea clutter decorrelation with frequency agility,” Aerospace and Electronic Systems, IEEE Transactions on pp. 468–473 (1968).
[CrossRef]

Weissman, N.

White, B.

Wilson, B. C.

Wojtkowski, M.

Yang, C.

Yang, P.

A. Yuan, D.-B. Chang, C.-J. Yu, S. Kuo, K. Luh, P. Yang, “Color doppler sonography of benign and malignant pulmonary masses.” AJR. American journal of roentgenology 163, 545–549 (1994).
[CrossRef] [PubMed]

Yang, V. X.

A. M. Lee, K. Ohtani, C. MacAulay, A. McWilliams, T. Shaipanich, V. X. Yang, S. Lam, P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color doppler optical coherence tomography,” J. Biomed. Opt. 18, 050501 (2013).
[CrossRef]

K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomedical Opt. Express 3, 1557–1564 (2012).
[CrossRef]

D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. Lee, T.-R. Kiehl, B. C. Wilson, M. G. Fehlings, V. X. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3, 911–919 (2012).
[CrossRef] [PubMed]

C. Sun, F. Nolte, K. H. Cheng, B. Vuong, K. K. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, V. X. Yang, “In vivo feasibility of endovascular doppler optical coherence tomography,” Biomed. Opt. Express 3, 2600–2610 (2012).
[CrossRef] [PubMed]

V. X. Yang, M. Gordon, S.-j. Tang, N. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar et al., “High speed, wide velocity dynamic range doppler optical coherence tomography (part iii): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts,” Opt. Express 11, 2416–2424 (2003).
[CrossRef] [PubMed]

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. Alex Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Yang, V.X.D.

Yasuno, Y.

Yazdanfar, S.

Yu, C.-J.

A. Yuan, D.-B. Chang, C.-J. Yu, S. Kuo, K. Luh, P. Yang, “Color doppler sonography of benign and malignant pulmonary masses.” AJR. American journal of roentgenology 163, 545–549 (1994).
[CrossRef] [PubMed]

Yu, J. X.

K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomedical Opt. Express 3, 1557–1564 (2012).
[CrossRef]

Yuan, A.

A. Yuan, D.-B. Chang, C.-J. Yu, S. Kuo, K. Luh, P. Yang, “Color doppler sonography of benign and malignant pulmonary masses.” AJR. American journal of roentgenology 163, 545–549 (1994).
[CrossRef] [PubMed]

Yun, S.

Yun, S. H.

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video),” Gastrointestinal endoscopy 65, 898–905 (2007).
[CrossRef]

Yun, S.-H.

Zhao, Y.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. Alex Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

AJR. American journal of roentgenology (1)

A. Yuan, D.-B. Chang, C.-J. Yu, S. Kuo, K. Luh, P. Yang, “Color doppler sonography of benign and malignant pulmonary masses.” AJR. American journal of roentgenology 163, 545–549 (1994).
[CrossRef] [PubMed]

Annals of biomedical engineering (1)

J. E. Moore, J. L. Berry, “Fluid and solid mechanical implications of vascular stenting,” Annals of biomedical engineering 30, 498–508 (2002).
[CrossRef] [PubMed]

Annual review of fluid mechanics (1)

D. Rockwell, “Vortex-body interactions,” Annual review of fluid mechanics 30, 199–229 (1998).
[CrossRef]

Biomed. Opt. Express (3)

Biomedical Opt. Express (1)

K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomedical Opt. Express 3, 1557–1564 (2012).
[CrossRef]

CHEST Journal (1)

N. F. Voelkel, I. S. Douglas, M. Nicolls, “Angiogenesis in chronic lung disease,” CHEST Journal 131, 874–879 (2007).
[CrossRef]

Gastrointestinal endoscopy (1)

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video),” Gastrointestinal endoscopy 65, 898–905 (2007).
[CrossRef]

IEEE Trans. Info.Tech. Biomed. (1)

G. van Soest, J. G. Bosch, A. F. van der Steen, “Azimuthal registration of image sequences affected by nonuniform rotation distortion,” IEEE Trans. Info.Tech. Biomed. 12, 348–355 (2008).
[CrossRef]

J. Biomed. Opt. (2)

A. M. Lee, K. Ohtani, C. MacAulay, A. McWilliams, T. Shaipanich, V. X. Yang, S. Lam, P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color doppler optical coherence tomography,” J. Biomed. Opt. 18, 050501 (2013).
[CrossRef]

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, A. F. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt. 17, 0760181–0760187 (2012).
[CrossRef]

J. Vascular Surgery (1)

M. J. McCarthy, I. M. Loftus, M. M. Thompson, L. Jones, N. J. London, P. R. Bell, A. R. Naylor, N. P. Brindle, “Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology,” J. Vascular Surgery 30, 261–268 (1999).
[CrossRef]

Opt. Commun. (1)

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. Alex Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Opt. Express (13)

S. Makita, F. Jaillon, I. Jahan, Y. Yasuno, “Noise statistics of phase-resolved optical coherence tomography imaging: single-and dual-beam-scan doppler optical coherence tomography,” Opt. Express 22, 4830–4848 (2014).
[CrossRef]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, D. Haung, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20, 4710–4725 (2012).
[CrossRef] [PubMed]

V.X.D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, A. I. Vitkin, “High speed, wide velocity dynamic range doppler optical coherence tomography (part i): System design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
[CrossRef] [PubMed]

V.X.D. Yang, M. L. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. C. Wilson, A. I. Vitkin, “High speed, wide velocity dynamic range doppler optical coherence tomography (part ii): Imaging in vivo cardiac dynamics of xenopus laevis,” Opt. Express 11, 1650–1658 (2003).
[CrossRef] [PubMed]

V. X. Yang, M. Gordon, S.-j. Tang, N. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar et al., “High speed, wide velocity dynamic range doppler optical coherence tomography (part iii): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts,” Opt. Express 11, 2416–2424 (2003).
[CrossRef] [PubMed]

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490–3497 (2003).
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. De Boer, B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
[CrossRef] [PubMed]

S. Yazdanfar, C. Yang, M. Sarunic, J. Izatt, “Frequency estimation precision in doppler optical coherence tomography using the cramer-rao lower bound,” Opt. Express 13, 410–416 (2005).
[CrossRef] [PubMed]

B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μ m,” Opt. Express 13, 3931–3944 (2005).
[CrossRef] [PubMed]

B. Vakoc, S. Yun, J. De Boer, G. Tearney, B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005).
[CrossRef] [PubMed]

H. Ren, X. Li, “Clutter rejection filters for optical doppler tomography,” Opt. Express 14, 6103–6112 (2006).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μ m for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886–20903 (2011).
[CrossRef] [PubMed]

Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
[CrossRef] [PubMed]

Opt. Lett. (3)

Ultrasonics (1)

P. Karpur, O. J. Canelones, “Split spectrum processing: a new filtering approach for improved signal-to-noise ratio enhancement of ultrasonic signals,” Ultrasonics 30, 351–357 (1992).
[CrossRef]

Other (3)

J. A. Jensen, Estimation of blood velocities using ultrasound: a signal processing approach (Cambridge University Press, 1996).

R. S. Cobbold, Foundations of biomedical ultrasound (Oxford University Press on Demand, 2007).

E. W. Beasley, H. R. Ward, “A quantitative analysis of sea clutter decorrelation with frequency agility,” Aerospace and Electronic Systems, IEEE Transactions on pp. 468–473 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Normalized standard deviation of phase shift (σΔΦ) verses flow velocity. The result of Eq. (21) with the coherence length (lc) of the system from [15] was plotted. Coherence length was increased by a factor of 2 and 4 (spectral bandwidth decreases to 50% and 25%) via fractional bandwidth (FBW) and the respective phase noise (σΔΦ) of were plotted as well.

Fig. 2
Fig. 2

Data acquisition and processing scheme. The OCT rotary catheter was inserted into a vessel and images were acquired during blood flow. Multiple narrow window bands with different center frequencies were multiplied with the interferogram. These windowed spectra were stored into the corresponding windowed band frame and the mean phase shift was calculated by evaluating the phase difference between axial scans within the frame (Eq. (23)).

Fig. 3
Fig. 3

A series of 20 structural OCT images were taken in B-mode of a stationary tissue phantom. (a) and (b): mean measurements of background phase noise (standard deviation of ΔΦ) using DOCT and ssDOCT at different fractional bandwidth (FBW) for high SNR(approx. 6dB) region and low SNR (approx. 2dB) region at an ensemble length N=10. In all ssDOCT calculations, M=1. The catheter beam was then set at a static position and 20 structural OCT images were taken in M-mode. (c) and (d): mean measurements of background phase noise using DOCT and ssDOCT at various ensemble lengths (N) for high SNR region and low SNR region.

Fig. 4
Fig. 4

(a) Structural image of a slow flow phantom with 1.5% diluted blood mixture realized using the full length apodization window (B=1, M=2, N=10). (b) The corresponding structural SSP-OCT image (B=4, M=1, N=10). (c) and (d) The Doppler shift of the slow flow phantom evaluated by DOCT and ssDOCT, respectively. Doppler artefacts were present in both images. (e) and (f) The corrected Doppler image computed from DOCT and ssDOCT techniques, respectively. The relative phase from (g) DOCT and (h) ssDOCT were then visualized by subtracting the averaged velocity profile. More phase noise is present in DOCT compared to ssDOCT. Scale bar = 1mm.

Fig. 5
Fig. 5

(a) An ANSYS simulation fitted phase shift model of Figure 4 was generated. Scale = 1mm (b) The axial profile was taken (dashed line in (a)) from the center of the catheter (arrow) and the mean & standard deviation were compared. The expected velocity profile was then plotted against the measured phase shift of (c) DOCT (B=1, M=2, FBW=100%) and (d) ssDOCT (B=4, M=1, FBW=44%). The expected phase shift (red) and mean & standard deviation (blue) were plotted.

Fig. 6
Fig. 6

The structural OCT image overlapped with Doppler image of a high flow region in a porcine carotid artery. (a) Doppler images produced by DOCT (B=1, M=4, FBW=100%). (b) The corresponding ssDOCT (B=2, M=1, FBW=60%) with approximately similar phase noise performance as shown in Figure 3(a). The arrows indicate less degradation in the visualization of the aliasing rings comparing (b) to (a). The unwrapped value in both DOCT and ssDOCT showed a peak velocity of 18.7π (asterisk). Scale bar = 1mm.

Fig. 7
Fig. 7

(a) Structural image of a deployed stent in the carotid artery using the full length apodization window (B=1, M=4, N=20). (b) The corresponding structural SSP-OCT image (B=2, M=1, N=20, FBW=60%). (c) and (d) The corrected Doppler image computed from DOCT and ssDOCT techniques, respectively. (e) DOCT and (f) ssDOCT were thresholded at the same phase value. Note the two detected flow profiles (upper * & lower *). The upper flow profile (*) may be caused from a stent strut upstream from the location of the OCT catheter imaging plane. The arrows denote the Doppler signal from the remaining two stent struts. Scale bar = 1mm.

Fig. 8
Fig. 8

(OCT imaging from an in-vivo human airway. (a) Structural OCT image with DOCT overlay (B=1, M=8, N=32). (b) Split spectrum processing (B=4, M=2, N=32, FBW=60%) of the same imaging frame. Both images have identical Doppler display thresholds. The green circle indicates a true blood vessel confirmed by continuity between imaging frames. The red circle shows a Doppler artefact that was suppressed in the split spectrum processed image. The color-coded CDOCT scale bar spans +/−8.5 mm/s. Scale bar = 0.5mm.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

σ D 2 2 T prf 2 ( 1 | R ( T prf ) | R ( 0 ) )
t s = 2 v z c T prf
Δ z = v z T = v z f a
F ( Z ) γ P o d x d y d z r ( x , y , z ) g ( x x b , y y b ) exp ( i 2 k o Z ) exp ( 4 ln 2 k 2 ( 2 k 1 T σ ) 2 ) exp ( i ( 2 k o + k ) ( Z z o v z 2 k 1 k ) ) d k
F ( Z ) γ P o d x d y d z r ( x , y , z ) exp ( i 2 k o z o ) exp ( 4 ln 2 ( x x b ) 2 w o 2 ) exp ( 4 ln 2 ( y y b ) 2 w o 2 ) exp ( 4 ln 2 ( Z [ z o + ( k o / k 1 T ) Δ z ] ) 2 δ z o 2 ( 1 + 4 σ 2 Δ z 2 / δ z o 2 ) )
ϒ = γ P o d x d y d z r ( x , y , z ) exp ( i 2 k o z o ) exp ( 4 ln 2 ( x x b ) 2 w o 2 ) exp ( 4 ln 2 ( y y b ) 2 w o 2 )
F ( Z ) ϒ exp ( 4 ln 2 ( Z [ z o + ( k o / k 1 T ) Δ z ] ) 2 δ z o 2 ( 1 + 4 σ 2 Δ z 2 / δ z o 2 ) )
z = z o + z D
z D = k o k 1 T Δ z = π σ 2 ln 2 δ z o λ Δ z
F ( Z ) ϒ exp ( 4 ln 2 ( Z z ) 2 δ z o 2 ( 1 + 4 σ 2 Δ z 2 / δ z o 2 ) )
F ( Z ) ¯ F ( Z ) = R g g ( τ ) = f ( τ ) f ( τ + t ) d τ
F T o ( Z ) ϒ exp ( 4 ln 2 ( Z z T o ' ) 2 δ z o 2 ( 1 + 4 σ 2 Δ z 2 / δ z o 2 ) )
F T 1 ( Z ) ϒ exp ( 4 ln 2 ( Z z T 1 ' ) 2 δ z o 2 ( 1 + 4 σ 2 Δ z 2 / δ z o 2 ) )
F T 1 ( Z ) ¯ F T o ( Z ) = ϒ ¯ exp ( 4 ln 2 ( Z z T 1 ' ) 2 δ z o 2 ( 1 + 4 σ 2 Δ z 2 / δ z o 2 ) ) ϒ exp ( 4 ln 2 ( Z z T o ' ) 2 δ z o 2 ( 1 + 4 σ 2 Δ z 2 / δ z o 2 ) )
= | ϒ | 2 exp ( 4 ln 2 2 Z Δ z δ z o 2 ( 1 + 4 σ 2 Δ z 2 / δ z o 2 ) ) exp ( 4 ln 2 z T 1 ' 2 z T o ' 2 δ z o 2 ( 1 + 4 σ 2 Δ z 2 / δ z o 2 ) )
R g g ( Δ z ) = | ϒ | 2 exp ( 4 ln 2 2 Δ z 2 δ z o 2 ( 1 + 4 σ 2 Δ z 2 / δ z o 2 ) ) exp ( 4 ln 2 z T 1 ' 2 z T o ' 2 δ z o 2 ( 1 + 4 σ 2 Δ z 2 / δ z o 2 ) )
R g g ( 0 ) = | ϒ | 2 exp ( 4 ln 2 z T 1 ' 2 z T o ' 2 δ z o 2 ( 1 + 4 σ 2 Δ z 2 / δ z o 2 ) )
σ D 2 2 f a 2 ( 1 | R ( Δ z ) | R ( 0 ) )
2 f a 2 ( 1 exp ( 4 ln 2 2 Δ z 2 δ z o 2 ( 1 + 4 σ 2 Δ z 2 / δ z o 2 ) ) )
2 f a 2 ( 1 exp ( 4 ln 2 2 ( v z T ) 2 δ z o 2 ( 1 + 4 σ 2 ( v z T ) 2 / δ z o 2 ) ) )
σ D f a 2 ( 1 exp ( 4 ln 2 2 ( v z T ) 2 δ z o 2 ( 1 + 4 σ 2 ( v z T ) 2 / δ z o 2 ) ) )
S b ( z ) = F 1 [ W b ( k , k o ) S ( k ) ] = I b ( z ) + j Q b ( z )
f D = f a 2 π arctan { 1 B M ( N 1 ) b = 1 B m = 1 M n = 1 N 1 ( I b , m , n + 1 Q b , m , n Q b , m , n + 1 I b , m , n ) 1 B M ( N 1 ) b = 1 B m = 1 M n = 1 N 1 ( Q b , m , n + 1 Q b , m , n + I b , m , n + 1 I b , m , n ) } = f a 2 π arctan { 1 B b = 1 B X b 1 B b = 1 B Y b }
S 2 = 1 B M N b = 1 B m = 1 M n = 1 N [ I b , m , n 2 + Q b , m , n 2 ]

Metrics