Abstract

Three different nano-grating structures are designed as phase retarders that can transform linearly polarized light to circularly polarized emission for the wavelengths of 488 nm, 532 nm and 632.8 nm, respectively. Gold based nano-grating structures with various periods are fabricated by utilizing laser interference lithography. The ellipticity of all circularly polarized emission can reach around 90% such that the structure has great potential in the applications of three-dimensional (3D) display. The effects of the slit width and metal thickness modulations are simulated by rigorous coupled wave analysis (RCWA) method. Besides, the field intensity and phase of the transmitted TM and TE waves are also simulated to understand their polarization characteristics.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Sankaran, M. J. Everett, D. J. Maitland, J. T. Walsh., “Comparison of polarized-light propagation in biological tissue and phantoms,” Opt. Lett. 24(15), 1044–1046 (1999).
    [CrossRef] [PubMed]
  2. J. A. Delaire, K. Nakatani, “Linear and Nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100(5), 1817–1846 (2000).
    [CrossRef] [PubMed]
  3. J. Chen, D. L. Johnson, P. J. Bos, X. Wang, J. L. West, “Model of liquid crystal alignment by exposure to linearly polarized ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(2), 1599–1603 (1996).
    [CrossRef] [PubMed]
  4. H. H. Chen, Y. W. Jiang, Y. T. Wu, P. E. Chang, Y. T. Chang, H. F. Huang, S. C. Lee, “Narrow bandwidth and highly polarized ratio infrared thermal emitter,” Appl. Phys. Lett. 97(16), 163112 (2010).
    [CrossRef]
  5. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, J. Cho, “Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on(0001)oriented sapphire substrates,” Appl. Phys. Lett. 91(5), 051117 (2007).
    [CrossRef]
  6. T. Kim, A. Danner, K. Choquette, “Enhancement in external quantum efficiency of blue light-emitting diode by photonic crystal surface grating,” Electron. Lett. 41(20), 1138–1139 (2005).
    [CrossRef]
  7. L. Zhang, J. H. Teng, S. J. Chua, E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
    [CrossRef]
  8. F. T. Chuang, P. Y. Chen, Y. W. Jiang, M. Farhat, H. H. Chen, Y. C. Chen, S. C. Lee, “Nanoprojection lithography using self-assembled interference modules for manufacturing plasmonic gratings,” IEEE Photon. Technol. Lett. 24(15), 1273–1275 (2012).
    [CrossRef]
  9. M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, L. A. Wang, C. C. Wu, S. C. Lee, “White organic light emitting diode with linearly polarized emission,” IEEE Photon. Technol. Lett. 25(14), 1321–1323 (2013).
  10. Y. Yang, R. C. Costa, M. J. Fuchter, A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
    [CrossRef]
  11. Y. Yang, R. C. da Costa, D. M. Smilgies, A. J. Campbell, M. J. Fuchter, “Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant,” Adv. Mater. 25(18), 2624–2628 (2013).
    [CrossRef] [PubMed]
  12. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 μm,” Appl. Opt. 35(31), 6195–6202 (1996).
    [CrossRef] [PubMed]
  13. H. Kikuta, Y. Ohira, K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36(7), 1566–1572 (1997).
    [CrossRef] [PubMed]
  14. A. G. Lopez, H. G. Craighead, “Subwavelength surface-relief gratings fabricated by microcontact printing of self-assembled monolayers,” Appl. Opt. 40(13), 2068–2075 (2001).
    [CrossRef] [PubMed]
  15. W. Yu, A. Mizutani, H. Kikuta, T. Konishi, “Reduced wavelength-dependent quarter-wave plate fabricated by a multilayered subwavelength structure,” Appl. Opt. 45(12), 2601–2606 (2006).
    [CrossRef] [PubMed]
  16. G. P. Nordin, P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5(8), 163–168 (1999).
    [CrossRef] [PubMed]
  17. B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Express 16(21), 16334–16342 (2008).
    [CrossRef] [PubMed]
  18. A. G. Lopez, H. G. Craighead, “Wave-plate polarizing beam splitter based on a form-birefringent multilayer grating,” Opt. Lett. 23(20), 1627–1629 (1998).
    [CrossRef] [PubMed]
  19. S. Y. Hsu, K. L. Lee, E. H. Lin, M. C. Lee, P. K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
    [CrossRef]
  20. F. L. Kooi, A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2-3), 99–108 (2004).
    [CrossRef]
  21. L. Chen, Y. Tu, W. Liu, Q. Li, K. Teunissen, I. Heynderickx, “Investigation of crosstalk in a 2-view 3D display,” SID Symposium Digest of Technical Papers, 39, 1138–1141 (2008).
    [CrossRef]
  22. R. Kaptein, I. Heynderickx, “Effect of crosstalk in multi-view autostereoscopic 3D displays on perceived image quality,” SID Symposium Digest of Technical Papers, 38, 1220–1223 (2007).
    [CrossRef]
  23. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 1780–1787 (1986).
    [CrossRef]
  24. T. Tamir, S. Zhang, “Modal transmission-line theory of multilayered grating structures,” J. Lightwave Technol. 14(5), 914–927 (1996).
    [CrossRef]
  25. S. O. Kasap, Optoelectronics and Photonics (Prentice Hall, 2001), Chap. 1.
  26. Y. W. Jiang, L. D. C. Tzuang, Y. H. Ye, Y. T. Wu, M. W. Tsai, C. Y. Chen, S. C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express 17(4), 2631–2637 (2009).
    [CrossRef] [PubMed]
  27. L. Moreno, F. García-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Express 12(16), 3619–3628 (2004).
    [CrossRef] [PubMed]
  28. I. Barth, J. Manz, Y. Shigeta, K. Yagi, “Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for Mg-porphyrin,” J. Am. Chem. Soc. 128(21), 7043–7049 (2006).
    [CrossRef] [PubMed]
  29. D. K. Cheng, Field and wave electromagnetic (Addison-Wesley, 1989), Chap. 8.
  30. M. Y. Lin, Y. L. Kang, Y. C. Chen, T. H. Tsai, S. C. Lin, Y. H. Huang, Y. J. Chen, C. Y. Lu, H. Y. Lin, L. A. Wang, C. C. Wu, S. C. Lee, “Plasmonic ITO-free polymer solar cell,” Opt. Express 22(S2), A438–A445 (2014).
    [CrossRef]

2014 (1)

2013 (3)

M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, L. A. Wang, C. C. Wu, S. C. Lee, “White organic light emitting diode with linearly polarized emission,” IEEE Photon. Technol. Lett. 25(14), 1321–1323 (2013).

Y. Yang, R. C. Costa, M. J. Fuchter, A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[CrossRef]

Y. Yang, R. C. da Costa, D. M. Smilgies, A. J. Campbell, M. J. Fuchter, “Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant,” Adv. Mater. 25(18), 2624–2628 (2013).
[CrossRef] [PubMed]

2012 (1)

F. T. Chuang, P. Y. Chen, Y. W. Jiang, M. Farhat, H. H. Chen, Y. C. Chen, S. C. Lee, “Nanoprojection lithography using self-assembled interference modules for manufacturing plasmonic gratings,” IEEE Photon. Technol. Lett. 24(15), 1273–1275 (2012).
[CrossRef]

2010 (1)

H. H. Chen, Y. W. Jiang, Y. T. Wu, P. E. Chang, Y. T. Chang, H. F. Huang, S. C. Lee, “Narrow bandwidth and highly polarized ratio infrared thermal emitter,” Appl. Phys. Lett. 97(16), 163112 (2010).
[CrossRef]

2009 (3)

S. Y. Hsu, K. L. Lee, E. H. Lin, M. C. Lee, P. K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
[CrossRef]

L. Zhang, J. H. Teng, S. J. Chua, E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[CrossRef]

Y. W. Jiang, L. D. C. Tzuang, Y. H. Ye, Y. T. Wu, M. W. Tsai, C. Y. Chen, S. C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express 17(4), 2631–2637 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, J. Cho, “Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on(0001)oriented sapphire substrates,” Appl. Phys. Lett. 91(5), 051117 (2007).
[CrossRef]

2006 (2)

I. Barth, J. Manz, Y. Shigeta, K. Yagi, “Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for Mg-porphyrin,” J. Am. Chem. Soc. 128(21), 7043–7049 (2006).
[CrossRef] [PubMed]

W. Yu, A. Mizutani, H. Kikuta, T. Konishi, “Reduced wavelength-dependent quarter-wave plate fabricated by a multilayered subwavelength structure,” Appl. Opt. 45(12), 2601–2606 (2006).
[CrossRef] [PubMed]

2005 (1)

T. Kim, A. Danner, K. Choquette, “Enhancement in external quantum efficiency of blue light-emitting diode by photonic crystal surface grating,” Electron. Lett. 41(20), 1138–1139 (2005).
[CrossRef]

2004 (2)

2001 (1)

2000 (1)

J. A. Delaire, K. Nakatani, “Linear and Nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100(5), 1817–1846 (2000).
[CrossRef] [PubMed]

1999 (2)

1998 (1)

1997 (1)

1996 (3)

D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 μm,” Appl. Opt. 35(31), 6195–6202 (1996).
[CrossRef] [PubMed]

J. Chen, D. L. Johnson, P. J. Bos, X. Wang, J. L. West, “Model of liquid crystal alignment by exposure to linearly polarized ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(2), 1599–1603 (1996).
[CrossRef] [PubMed]

T. Tamir, S. Zhang, “Modal transmission-line theory of multilayered grating structures,” J. Lightwave Technol. 14(5), 914–927 (1996).
[CrossRef]

1986 (1)

Barth, I.

I. Barth, J. Manz, Y. Shigeta, K. Yagi, “Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for Mg-porphyrin,” J. Am. Chem. Soc. 128(21), 7043–7049 (2006).
[CrossRef] [PubMed]

Bos, P. J.

J. Chen, D. L. Johnson, P. J. Bos, X. Wang, J. L. West, “Model of liquid crystal alignment by exposure to linearly polarized ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(2), 1599–1603 (1996).
[CrossRef] [PubMed]

Brundrett, D. L.

Campbell, A. J.

Y. Yang, R. C. Costa, M. J. Fuchter, A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[CrossRef]

Y. Yang, R. C. da Costa, D. M. Smilgies, A. J. Campbell, M. J. Fuchter, “Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant,” Adv. Mater. 25(18), 2624–2628 (2013).
[CrossRef] [PubMed]

Chang, P. E.

H. H. Chen, Y. W. Jiang, Y. T. Wu, P. E. Chang, Y. T. Chang, H. F. Huang, S. C. Lee, “Narrow bandwidth and highly polarized ratio infrared thermal emitter,” Appl. Phys. Lett. 97(16), 163112 (2010).
[CrossRef]

Chang, Y. T.

H. H. Chen, Y. W. Jiang, Y. T. Wu, P. E. Chang, Y. T. Chang, H. F. Huang, S. C. Lee, “Narrow bandwidth and highly polarized ratio infrared thermal emitter,” Appl. Phys. Lett. 97(16), 163112 (2010).
[CrossRef]

Chen, C. Y.

Chen, H. H.

M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, L. A. Wang, C. C. Wu, S. C. Lee, “White organic light emitting diode with linearly polarized emission,” IEEE Photon. Technol. Lett. 25(14), 1321–1323 (2013).

F. T. Chuang, P. Y. Chen, Y. W. Jiang, M. Farhat, H. H. Chen, Y. C. Chen, S. C. Lee, “Nanoprojection lithography using self-assembled interference modules for manufacturing plasmonic gratings,” IEEE Photon. Technol. Lett. 24(15), 1273–1275 (2012).
[CrossRef]

H. H. Chen, Y. W. Jiang, Y. T. Wu, P. E. Chang, Y. T. Chang, H. F. Huang, S. C. Lee, “Narrow bandwidth and highly polarized ratio infrared thermal emitter,” Appl. Phys. Lett. 97(16), 163112 (2010).
[CrossRef]

Chen, J.

J. Chen, D. L. Johnson, P. J. Bos, X. Wang, J. L. West, “Model of liquid crystal alignment by exposure to linearly polarized ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(2), 1599–1603 (1996).
[CrossRef] [PubMed]

Chen, L.

L. Chen, Y. Tu, W. Liu, Q. Li, K. Teunissen, I. Heynderickx, “Investigation of crosstalk in a 2-view 3D display,” SID Symposium Digest of Technical Papers, 39, 1138–1141 (2008).
[CrossRef]

Chen, P. Y.

F. T. Chuang, P. Y. Chen, Y. W. Jiang, M. Farhat, H. H. Chen, Y. C. Chen, S. C. Lee, “Nanoprojection lithography using self-assembled interference modules for manufacturing plasmonic gratings,” IEEE Photon. Technol. Lett. 24(15), 1273–1275 (2012).
[CrossRef]

Chen, Y. C.

M. Y. Lin, Y. L. Kang, Y. C. Chen, T. H. Tsai, S. C. Lin, Y. H. Huang, Y. J. Chen, C. Y. Lu, H. Y. Lin, L. A. Wang, C. C. Wu, S. C. Lee, “Plasmonic ITO-free polymer solar cell,” Opt. Express 22(S2), A438–A445 (2014).
[CrossRef]

F. T. Chuang, P. Y. Chen, Y. W. Jiang, M. Farhat, H. H. Chen, Y. C. Chen, S. C. Lee, “Nanoprojection lithography using self-assembled interference modules for manufacturing plasmonic gratings,” IEEE Photon. Technol. Lett. 24(15), 1273–1275 (2012).
[CrossRef]

Chen, Y. J.

M. Y. Lin, Y. L. Kang, Y. C. Chen, T. H. Tsai, S. C. Lin, Y. H. Huang, Y. J. Chen, C. Y. Lu, H. Y. Lin, L. A. Wang, C. C. Wu, S. C. Lee, “Plasmonic ITO-free polymer solar cell,” Opt. Express 22(S2), A438–A445 (2014).
[CrossRef]

M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, L. A. Wang, C. C. Wu, S. C. Lee, “White organic light emitting diode with linearly polarized emission,” IEEE Photon. Technol. Lett. 25(14), 1321–1323 (2013).

Chhajed, S.

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, J. Cho, “Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on(0001)oriented sapphire substrates,” Appl. Phys. Lett. 91(5), 051117 (2007).
[CrossRef]

Cho, J.

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, J. Cho, “Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on(0001)oriented sapphire substrates,” Appl. Phys. Lett. 91(5), 051117 (2007).
[CrossRef]

Choquette, K.

T. Kim, A. Danner, K. Choquette, “Enhancement in external quantum efficiency of blue light-emitting diode by photonic crystal surface grating,” Electron. Lett. 41(20), 1138–1139 (2005).
[CrossRef]

Chua, S. J.

L. Zhang, J. H. Teng, S. J. Chua, E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[CrossRef]

Chuang, F. T.

F. T. Chuang, P. Y. Chen, Y. W. Jiang, M. Farhat, H. H. Chen, Y. C. Chen, S. C. Lee, “Nanoprojection lithography using self-assembled interference modules for manufacturing plasmonic gratings,” IEEE Photon. Technol. Lett. 24(15), 1273–1275 (2012).
[CrossRef]

Costa, R. C.

Y. Yang, R. C. Costa, M. J. Fuchter, A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[CrossRef]

Craighead, H. G.

da Costa, R. C.

Y. Yang, R. C. da Costa, D. M. Smilgies, A. J. Campbell, M. J. Fuchter, “Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant,” Adv. Mater. 25(18), 2624–2628 (2013).
[CrossRef] [PubMed]

Danner, A.

T. Kim, A. Danner, K. Choquette, “Enhancement in external quantum efficiency of blue light-emitting diode by photonic crystal surface grating,” Electron. Lett. 41(20), 1138–1139 (2005).
[CrossRef]

Deguzman, P. C.

Delaire, J. A.

J. A. Delaire, K. Nakatani, “Linear and Nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100(5), 1817–1846 (2000).
[CrossRef] [PubMed]

Everett, M. J.

Farhat, M.

F. T. Chuang, P. Y. Chen, Y. W. Jiang, M. Farhat, H. H. Chen, Y. C. Chen, S. C. Lee, “Nanoprojection lithography using self-assembled interference modules for manufacturing plasmonic gratings,” IEEE Photon. Technol. Lett. 24(15), 1273–1275 (2012).
[CrossRef]

Fitzgerald, E. A.

L. Zhang, J. H. Teng, S. J. Chua, E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[CrossRef]

Fuchter, M. J.

Y. Yang, R. C. da Costa, D. M. Smilgies, A. J. Campbell, M. J. Fuchter, “Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant,” Adv. Mater. 25(18), 2624–2628 (2013).
[CrossRef] [PubMed]

Y. Yang, R. C. Costa, M. J. Fuchter, A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[CrossRef]

García-Vidal, F.

Gaylord, T. K.

Glytsis, E. N.

Heynderickx, I.

L. Chen, Y. Tu, W. Liu, Q. Li, K. Teunissen, I. Heynderickx, “Investigation of crosstalk in a 2-view 3D display,” SID Symposium Digest of Technical Papers, 39, 1138–1141 (2008).
[CrossRef]

R. Kaptein, I. Heynderickx, “Effect of crosstalk in multi-view autostereoscopic 3D displays on perceived image quality,” SID Symposium Digest of Technical Papers, 38, 1220–1223 (2007).
[CrossRef]

Hsu, K. H.

M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, L. A. Wang, C. C. Wu, S. C. Lee, “White organic light emitting diode with linearly polarized emission,” IEEE Photon. Technol. Lett. 25(14), 1321–1323 (2013).

Hsu, S. Y.

S. Y. Hsu, K. L. Lee, E. H. Lin, M. C. Lee, P. K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
[CrossRef]

Huang, H. F.

H. H. Chen, Y. W. Jiang, Y. T. Wu, P. E. Chang, Y. T. Chang, H. F. Huang, S. C. Lee, “Narrow bandwidth and highly polarized ratio infrared thermal emitter,” Appl. Phys. Lett. 97(16), 163112 (2010).
[CrossRef]

Huang, Y. H.

M. Y. Lin, Y. L. Kang, Y. C. Chen, T. H. Tsai, S. C. Lin, Y. H. Huang, Y. J. Chen, C. Y. Lu, H. Y. Lin, L. A. Wang, C. C. Wu, S. C. Lee, “Plasmonic ITO-free polymer solar cell,” Opt. Express 22(S2), A438–A445 (2014).
[CrossRef]

M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, L. A. Wang, C. C. Wu, S. C. Lee, “White organic light emitting diode with linearly polarized emission,” IEEE Photon. Technol. Lett. 25(14), 1321–1323 (2013).

Iwata, K.

Jiang, Y. W.

F. T. Chuang, P. Y. Chen, Y. W. Jiang, M. Farhat, H. H. Chen, Y. C. Chen, S. C. Lee, “Nanoprojection lithography using self-assembled interference modules for manufacturing plasmonic gratings,” IEEE Photon. Technol. Lett. 24(15), 1273–1275 (2012).
[CrossRef]

H. H. Chen, Y. W. Jiang, Y. T. Wu, P. E. Chang, Y. T. Chang, H. F. Huang, S. C. Lee, “Narrow bandwidth and highly polarized ratio infrared thermal emitter,” Appl. Phys. Lett. 97(16), 163112 (2010).
[CrossRef]

Y. W. Jiang, L. D. C. Tzuang, Y. H. Ye, Y. T. Wu, M. W. Tsai, C. Y. Chen, S. C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express 17(4), 2631–2637 (2009).
[CrossRef] [PubMed]

Johnson, D. L.

J. Chen, D. L. Johnson, P. J. Bos, X. Wang, J. L. West, “Model of liquid crystal alignment by exposure to linearly polarized ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(2), 1599–1603 (1996).
[CrossRef] [PubMed]

Kang, Y. L.

Kaptein, R.

R. Kaptein, I. Heynderickx, “Effect of crosstalk in multi-view autostereoscopic 3D displays on perceived image quality,” SID Symposium Digest of Technical Papers, 38, 1220–1223 (2007).
[CrossRef]

Kikuta, H.

Kim, J. K.

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, J. Cho, “Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on(0001)oriented sapphire substrates,” Appl. Phys. Lett. 91(5), 051117 (2007).
[CrossRef]

Kim, T.

T. Kim, A. Danner, K. Choquette, “Enhancement in external quantum efficiency of blue light-emitting diode by photonic crystal surface grating,” Electron. Lett. 41(20), 1138–1139 (2005).
[CrossRef]

Konishi, T.

Kooi, F. L.

F. L. Kooi, A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2-3), 99–108 (2004).
[CrossRef]

Kuittinen, M.

Laakkonen, P.

Lee, K. L.

S. Y. Hsu, K. L. Lee, E. H. Lin, M. C. Lee, P. K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
[CrossRef]

Lee, M. C.

S. Y. Hsu, K. L. Lee, E. H. Lin, M. C. Lee, P. K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
[CrossRef]

Lee, S. C.

M. Y. Lin, Y. L. Kang, Y. C. Chen, T. H. Tsai, S. C. Lin, Y. H. Huang, Y. J. Chen, C. Y. Lu, H. Y. Lin, L. A. Wang, C. C. Wu, S. C. Lee, “Plasmonic ITO-free polymer solar cell,” Opt. Express 22(S2), A438–A445 (2014).
[CrossRef]

M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, L. A. Wang, C. C. Wu, S. C. Lee, “White organic light emitting diode with linearly polarized emission,” IEEE Photon. Technol. Lett. 25(14), 1321–1323 (2013).

F. T. Chuang, P. Y. Chen, Y. W. Jiang, M. Farhat, H. H. Chen, Y. C. Chen, S. C. Lee, “Nanoprojection lithography using self-assembled interference modules for manufacturing plasmonic gratings,” IEEE Photon. Technol. Lett. 24(15), 1273–1275 (2012).
[CrossRef]

H. H. Chen, Y. W. Jiang, Y. T. Wu, P. E. Chang, Y. T. Chang, H. F. Huang, S. C. Lee, “Narrow bandwidth and highly polarized ratio infrared thermal emitter,” Appl. Phys. Lett. 97(16), 163112 (2010).
[CrossRef]

Y. W. Jiang, L. D. C. Tzuang, Y. H. Ye, Y. T. Wu, M. W. Tsai, C. Y. Chen, S. C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express 17(4), 2631–2637 (2009).
[CrossRef] [PubMed]

Li, Q.

L. Chen, Y. Tu, W. Liu, Q. Li, K. Teunissen, I. Heynderickx, “Investigation of crosstalk in a 2-view 3D display,” SID Symposium Digest of Technical Papers, 39, 1138–1141 (2008).
[CrossRef]

Lin, E. H.

S. Y. Hsu, K. L. Lee, E. H. Lin, M. C. Lee, P. K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
[CrossRef]

Lin, H. Y.

M. Y. Lin, Y. L. Kang, Y. C. Chen, T. H. Tsai, S. C. Lin, Y. H. Huang, Y. J. Chen, C. Y. Lu, H. Y. Lin, L. A. Wang, C. C. Wu, S. C. Lee, “Plasmonic ITO-free polymer solar cell,” Opt. Express 22(S2), A438–A445 (2014).
[CrossRef]

M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, L. A. Wang, C. C. Wu, S. C. Lee, “White organic light emitting diode with linearly polarized emission,” IEEE Photon. Technol. Lett. 25(14), 1321–1323 (2013).

Lin, M. Y.

M. Y. Lin, Y. L. Kang, Y. C. Chen, T. H. Tsai, S. C. Lin, Y. H. Huang, Y. J. Chen, C. Y. Lu, H. Y. Lin, L. A. Wang, C. C. Wu, S. C. Lee, “Plasmonic ITO-free polymer solar cell,” Opt. Express 22(S2), A438–A445 (2014).
[CrossRef]

M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, L. A. Wang, C. C. Wu, S. C. Lee, “White organic light emitting diode with linearly polarized emission,” IEEE Photon. Technol. Lett. 25(14), 1321–1323 (2013).

Lin, S. C.

Liu, W.

L. Chen, Y. Tu, W. Liu, Q. Li, K. Teunissen, I. Heynderickx, “Investigation of crosstalk in a 2-view 3D display,” SID Symposium Digest of Technical Papers, 39, 1138–1141 (2008).
[CrossRef]

Lopez, A. G.

Lu, C. Y.

Maitland, D. J.

Manz, J.

I. Barth, J. Manz, Y. Shigeta, K. Yagi, “Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for Mg-porphyrin,” J. Am. Chem. Soc. 128(21), 7043–7049 (2006).
[CrossRef] [PubMed]

Mizutani, A.

Moharam, M. G.

Moreno, L.

Nakatani, K.

J. A. Delaire, K. Nakatani, “Linear and Nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100(5), 1817–1846 (2000).
[CrossRef] [PubMed]

Nordin, G. P.

Ohira, Y.

Päivänranta, B.

Passilly, N.

Pietarinen, J.

Sankaran, V.

Schubert, E. F.

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, J. Cho, “Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on(0001)oriented sapphire substrates,” Appl. Phys. Lett. 91(5), 051117 (2007).
[CrossRef]

Schubert, M. F.

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, J. Cho, “Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on(0001)oriented sapphire substrates,” Appl. Phys. Lett. 91(5), 051117 (2007).
[CrossRef]

Shigeta, Y.

I. Barth, J. Manz, Y. Shigeta, K. Yagi, “Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for Mg-porphyrin,” J. Am. Chem. Soc. 128(21), 7043–7049 (2006).
[CrossRef] [PubMed]

Smilgies, D. M.

Y. Yang, R. C. da Costa, D. M. Smilgies, A. J. Campbell, M. J. Fuchter, “Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant,” Adv. Mater. 25(18), 2624–2628 (2013).
[CrossRef] [PubMed]

Tamir, T.

T. Tamir, S. Zhang, “Modal transmission-line theory of multilayered grating structures,” J. Lightwave Technol. 14(5), 914–927 (1996).
[CrossRef]

Teng, J. H.

L. Zhang, J. H. Teng, S. J. Chua, E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[CrossRef]

Tervo, J.

Teunissen, K.

L. Chen, Y. Tu, W. Liu, Q. Li, K. Teunissen, I. Heynderickx, “Investigation of crosstalk in a 2-view 3D display,” SID Symposium Digest of Technical Papers, 39, 1138–1141 (2008).
[CrossRef]

Toet, A.

F. L. Kooi, A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2-3), 99–108 (2004).
[CrossRef]

Tsai, M. W.

Tsai, T. H.

Tu, Y.

L. Chen, Y. Tu, W. Liu, Q. Li, K. Teunissen, I. Heynderickx, “Investigation of crosstalk in a 2-view 3D display,” SID Symposium Digest of Technical Papers, 39, 1138–1141 (2008).
[CrossRef]

Tzuang, L. D. C.

Walsh, J. T.

Wang, L. A.

M. Y. Lin, Y. L. Kang, Y. C. Chen, T. H. Tsai, S. C. Lin, Y. H. Huang, Y. J. Chen, C. Y. Lu, H. Y. Lin, L. A. Wang, C. C. Wu, S. C. Lee, “Plasmonic ITO-free polymer solar cell,” Opt. Express 22(S2), A438–A445 (2014).
[CrossRef]

M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, L. A. Wang, C. C. Wu, S. C. Lee, “White organic light emitting diode with linearly polarized emission,” IEEE Photon. Technol. Lett. 25(14), 1321–1323 (2013).

Wang, X.

J. Chen, D. L. Johnson, P. J. Bos, X. Wang, J. L. West, “Model of liquid crystal alignment by exposure to linearly polarized ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(2), 1599–1603 (1996).
[CrossRef] [PubMed]

Wei, P. K.

S. Y. Hsu, K. L. Lee, E. H. Lin, M. C. Lee, P. K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
[CrossRef]

West, J. L.

J. Chen, D. L. Johnson, P. J. Bos, X. Wang, J. L. West, “Model of liquid crystal alignment by exposure to linearly polarized ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(2), 1599–1603 (1996).
[CrossRef] [PubMed]

Wu, C. C.

M. Y. Lin, Y. L. Kang, Y. C. Chen, T. H. Tsai, S. C. Lin, Y. H. Huang, Y. J. Chen, C. Y. Lu, H. Y. Lin, L. A. Wang, C. C. Wu, S. C. Lee, “Plasmonic ITO-free polymer solar cell,” Opt. Express 22(S2), A438–A445 (2014).
[CrossRef]

M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, L. A. Wang, C. C. Wu, S. C. Lee, “White organic light emitting diode with linearly polarized emission,” IEEE Photon. Technol. Lett. 25(14), 1321–1323 (2013).

Wu, Y. K.

M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, L. A. Wang, C. C. Wu, S. C. Lee, “White organic light emitting diode with linearly polarized emission,” IEEE Photon. Technol. Lett. 25(14), 1321–1323 (2013).

Wu, Y. T.

Yagi, K.

I. Barth, J. Manz, Y. Shigeta, K. Yagi, “Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for Mg-porphyrin,” J. Am. Chem. Soc. 128(21), 7043–7049 (2006).
[CrossRef] [PubMed]

Yang, Y.

Y. Yang, R. C. Costa, M. J. Fuchter, A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[CrossRef]

Y. Yang, R. C. da Costa, D. M. Smilgies, A. J. Campbell, M. J. Fuchter, “Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant,” Adv. Mater. 25(18), 2624–2628 (2013).
[CrossRef] [PubMed]

Ye, Y. H.

Yu, W.

Zhang, L.

L. Zhang, J. H. Teng, S. J. Chua, E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[CrossRef]

Zhang, S.

T. Tamir, S. Zhang, “Modal transmission-line theory of multilayered grating structures,” J. Lightwave Technol. 14(5), 914–927 (1996).
[CrossRef]

Adv. Mater. (1)

Y. Yang, R. C. da Costa, D. M. Smilgies, A. J. Campbell, M. J. Fuchter, “Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant,” Adv. Mater. 25(18), 2624–2628 (2013).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (4)

S. Y. Hsu, K. L. Lee, E. H. Lin, M. C. Lee, P. K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
[CrossRef]

H. H. Chen, Y. W. Jiang, Y. T. Wu, P. E. Chang, Y. T. Chang, H. F. Huang, S. C. Lee, “Narrow bandwidth and highly polarized ratio infrared thermal emitter,” Appl. Phys. Lett. 97(16), 163112 (2010).
[CrossRef]

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, J. Cho, “Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on(0001)oriented sapphire substrates,” Appl. Phys. Lett. 91(5), 051117 (2007).
[CrossRef]

L. Zhang, J. H. Teng, S. J. Chua, E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[CrossRef]

Chem. Rev. (1)

J. A. Delaire, K. Nakatani, “Linear and Nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100(5), 1817–1846 (2000).
[CrossRef] [PubMed]

Displays (1)

F. L. Kooi, A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2-3), 99–108 (2004).
[CrossRef]

Electron. Lett. (1)

T. Kim, A. Danner, K. Choquette, “Enhancement in external quantum efficiency of blue light-emitting diode by photonic crystal surface grating,” Electron. Lett. 41(20), 1138–1139 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

F. T. Chuang, P. Y. Chen, Y. W. Jiang, M. Farhat, H. H. Chen, Y. C. Chen, S. C. Lee, “Nanoprojection lithography using self-assembled interference modules for manufacturing plasmonic gratings,” IEEE Photon. Technol. Lett. 24(15), 1273–1275 (2012).
[CrossRef]

M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, L. A. Wang, C. C. Wu, S. C. Lee, “White organic light emitting diode with linearly polarized emission,” IEEE Photon. Technol. Lett. 25(14), 1321–1323 (2013).

J. Am. Chem. Soc. (1)

I. Barth, J. Manz, Y. Shigeta, K. Yagi, “Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for Mg-porphyrin,” J. Am. Chem. Soc. 128(21), 7043–7049 (2006).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

T. Tamir, S. Zhang, “Modal transmission-line theory of multilayered grating structures,” J. Lightwave Technol. 14(5), 914–927 (1996).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

Y. Yang, R. C. Costa, M. J. Fuchter, A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics 7(8), 634–638 (2013).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. Chen, D. L. Johnson, P. J. Bos, X. Wang, J. L. West, “Model of liquid crystal alignment by exposure to linearly polarized ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(2), 1599–1603 (1996).
[CrossRef] [PubMed]

Other (4)

S. O. Kasap, Optoelectronics and Photonics (Prentice Hall, 2001), Chap. 1.

D. K. Cheng, Field and wave electromagnetic (Addison-Wesley, 1989), Chap. 8.

L. Chen, Y. Tu, W. Liu, Q. Li, K. Teunissen, I. Heynderickx, “Investigation of crosstalk in a 2-view 3D display,” SID Symposium Digest of Technical Papers, 39, 1138–1141 (2008).
[CrossRef]

R. Kaptein, I. Heynderickx, “Effect of crosstalk in multi-view autostereoscopic 3D displays on perceived image quality,” SID Symposium Digest of Technical Papers, 38, 1220–1223 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) The schematic representation of the nano-grating structure for RCWA transmission calculation. (b) The geometry for grating diffraction calculation.

Fig. 2
Fig. 2

The simulated 0th order transmission spectra for TE and TM waves with various slit width of sample (a) A; (b) B; and (c) C. The images inserted in Figs. (a)–(c) are the structure parameters of the nano-grating structures.

Fig. 3
Fig. 3

The simulated 0th order transmission spectra and phase difference (ΔΦ) of TM and TE modes for sample (a) A; (b) B; and (c) C with different grid thickness.

Fig. 4
Fig. 4

(a) The schematic representation of the nano-grating structure and the propagation properties of the TE and TM waves. The electric field amplitude | E | of the TE and TM waves in all regions for sample (b) A; (c) B; and (d) C. The area between the black dash lines in Figs. 4(b)4(d) are the grid layers (region II). The horizontal axis of Figs. 4(b)4(d) corresponds to one grating period, shown in the purple dash square in Fig. 4(a).

Fig. 5
Fig. 5

The associated phase of the TE and TM waves in all regions for sample (a) A; (b) B; and (c) C. The area between the black dash lines in Figs. 5(a)5(c) are the grid layers (region II). The red dash line is the interface between glass and air.

Fig. 6
Fig. 6

The scanning electron microscope (SEM) image of sample (a) A; (b) B; and (c) C. The images inserted in Figs. 6(a)6(c) are the atomic force microscopy (AFM) spectrums of the nano-grating structure.

Fig. 7
Fig. 7

(a) The optical setup for measuring ellipticity of the circularly polarized emission light. The direction of red dash line in Fig. 7(a) is the polarization direction of the incident light. The polar figure of the theoretical and experimental data of samples (b) A; (c) B; and (d) C with various angles θ.

Fig. 8
Fig. 8

(a) The optical setup for measuring cross-talk of the circularly polarized emission light. The direction of the red dash line in Fig. 8(a) is the polarization direction of the incident light. The polar figure of the theoretical and experimental data of sample (b) A; (c) B; and (d) C with fixed quarter wave plate and various angles θ.

Fig. 9
Fig. 9

(a) The mixed images from 3D camera. (b) The simulated vision for left eye as the cross-talk of 3D system is 5%. (c) The simulated vision for right eye as the cross-talk of 3D system is 5%.

Tables (2)

Tables Icon

Table 1 Parameters of nano-grating structures

Tables Icon

Table 2 Simulated and experimental results of nano-grating structures

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε (x,z) = ε (x + a ,z) = p ε p ( z ) exp ( j p K x ) ,
E f = i t i exp{j[ k x,i,f x+ k z,i,f (zd)]},
T i = | t i | 2 ,
n T sin θ T = n i sin θ i + mλ a

Metrics