D. K. Agrawal, J. Woodhouse, and A. A. Seshia, “Observation of Locked Phase Dynamics and Enhanced Frequency Stability in Synchronized Micromechanical Oscillators,” Phys. Rev. Lett. 111, 084101 (2013).

[CrossRef]
[PubMed]

A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchronization in complex networks,” Phys. Rep. 469, 93–153 (2008).

[CrossRef]

D. G. Aronson, G. B. Ermentrout, and N. Kopell, “Amplitude response of coupled oscillators,” Physica D 41, 403–449 (1990).

[CrossRef]

J. Fell and J. Axmacher, “The role of phase synchronization in memory processes,” Nat. Rev. Neurosci. 12, 105–118 (2011).

[CrossRef]
[PubMed]

B. Kelleher, D. Goulding, B. Baselga Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).

[CrossRef]

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175–179 (2010).

[CrossRef]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).

[CrossRef]

M. Brunel, N. D. Lai, M. Vallet, A. Le Floch, F. Bretenaker, L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, and T. Merlet, “Generation of tunable high-purity microwave and terahertz signals by two-frequency solid state lasers,” Proc. SPIE 5466, Microwave and Terahertz Photonics, 131–139 (2004).

[CrossRef]

P. A. Braza and T. Erneux, “Constant phase, phase drift, and phase entrainment in lasers with an injected signal,” Phys. Rev. A 41, 6470–6479 (1990).

[CrossRef]
[PubMed]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).

[CrossRef]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Optical Review 4, 550–552 (1997).

[CrossRef]

M. Brunel, N. D. Lai, M. Vallet, A. Le Floch, F. Bretenaker, L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, and T. Merlet, “Generation of tunable high-purity microwave and terahertz signals by two-frequency solid state lasers,” Proc. SPIE 5466, Microwave and Terahertz Photonics, 131–139 (2004).

[CrossRef]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).

[CrossRef]

J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, and T. Erneux, “Resonance assisted synchronization of coupled oscillators: frequency locking without phase locking,” Phys. Rev. Lett. 107, 104101 (2011).

[CrossRef]
[PubMed]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).

[CrossRef]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Optical Review 4, 550–552 (1997).

[CrossRef]

M. Brunel, N. D. Lai, M. Vallet, A. Le Floch, F. Bretenaker, L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, and T. Merlet, “Generation of tunable high-purity microwave and terahertz signals by two-frequency solid state lasers,” Proc. SPIE 5466, Microwave and Terahertz Photonics, 131–139 (2004).

[CrossRef]

J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, and T. Erneux, “Phase and intensity dynamics of a two-frequency laser submitted to resonant frequency-shifted feedback,” Phys. Rev. A86, 033815 (2012).

[CrossRef]

T. Chakraborty and R. H. Rand, “The transition from phase locking to drift in a system of two weakly coupled van der Pol oscillators,” Int. J. Non-Linear Mech. 23, 369–376 (1988).

[CrossRef]

B. Lingnau, W. W. Chow, E. Schöll, and Kathy Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New Journal of Physics 15, 093031 (2013).

[CrossRef]

K. Wiesenfeld, P. Colet, and S. H. Strogatz, “Synchronization transition in a disordered Josephson series array,” Phys. Rev. Lett. 76, 404–407 (1996).

[CrossRef]
[PubMed]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).

[CrossRef]

R. E. Kronauer, C. A. Czeisler, S. F. Pilato, M. C. Moore-Ede, and E. D. Weitzman, “Mathematical model of the human circadian system with two interacting oscillators,” Am. J. Physiol. 242, R3–R17 (1982).

[PubMed]

A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchronization in complex networks,” Phys. Rep. 469, 93–153 (2008).

[CrossRef]

M. Brunel, N. D. Lai, M. Vallet, A. Le Floch, F. Bretenaker, L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, and T. Merlet, “Generation of tunable high-purity microwave and terahertz signals by two-frequency solid state lasers,” Proc. SPIE 5466, Microwave and Terahertz Photonics, 131–139 (2004).

[CrossRef]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Optical Review 4, 550–552 (1997).

[CrossRef]

M. Toiya, H. O. Gonzalez-Ochoa, V. K. Vanag, S. Fraden, and I. R. Epstein, “Synchronization of chemical micro-oscillators,” J. Phys. Chem. Lett. 1, 1241–1246 (2010).

[CrossRef]

D. G. Aronson, G. B. Ermentrout, and N. Kopell, “Amplitude response of coupled oscillators,” Physica D 41, 403–449 (1990).

[CrossRef]

J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, and T. Erneux, “Resonance assisted synchronization of coupled oscillators: frequency locking without phase locking,” Phys. Rev. Lett. 107, 104101 (2011).

[CrossRef]
[PubMed]

P. A. Braza and T. Erneux, “Constant phase, phase drift, and phase entrainment in lasers with an injected signal,” Phys. Rev. A 41, 6470–6479 (1990).

[CrossRef]
[PubMed]

J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, and T. Erneux, “Phase and intensity dynamics of a two-frequency laser submitted to resonant frequency-shifted feedback,” Phys. Rev. A86, 033815 (2012).

[CrossRef]

T. Erneux and P. Glorieux, Laser Dynamics (Cambridge University, 2010).

[CrossRef]

T. Erneux, Applied Delay Differential Equations, (Springer, 2009).

J. Fell and J. Axmacher, “The role of phase synchronization in memory processes,” Nat. Rev. Neurosci. 12, 105–118 (2011).

[CrossRef]
[PubMed]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Optical Review 4, 550–552 (1997).

[CrossRef]

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85, 421–470 (2013).

[CrossRef]

M. Toiya, H. O. Gonzalez-Ochoa, V. K. Vanag, S. Fraden, and I. R. Epstein, “Synchronization of chemical micro-oscillators,” J. Phys. Chem. Lett. 1, 1241–1246 (2010).

[CrossRef]

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85, 421–470 (2013).

[CrossRef]

M. Sciamanna, I. Gatare, A. Locquet, and K. Panajotov, “Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. E 75, 056213 (2007).

[CrossRef]

T. Erneux and P. Glorieux, Laser Dynamics (Cambridge University, 2010).

[CrossRef]

M. Toiya, H. O. Gonzalez-Ochoa, V. K. Vanag, S. Fraden, and I. R. Epstein, “Synchronization of chemical micro-oscillators,” J. Phys. Chem. Lett. 1, 1241–1246 (2010).

[CrossRef]

B. Kelleher, D. Goulding, B. Baselga Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).

[CrossRef]

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175–179 (2010).

[CrossRef]

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).

[CrossRef]

B. Kelleher, D. Goulding, B. Baselga Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).

[CrossRef]

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175–179 (2010).

[CrossRef]

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective Dynamics in Optomechanical Arrays,” Phys. Rev. Lett. 107, 043603 (2011).

[CrossRef]
[PubMed]

M. Brunel, N. D. Lai, M. Vallet, A. Le Floch, F. Bretenaker, L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, and T. Merlet, “Generation of tunable high-purity microwave and terahertz signals by two-frequency solid state lasers,” Proc. SPIE 5466, Microwave and Terahertz Photonics, 131–139 (2004).

[CrossRef]

B. Kelleher, D. Goulding, B. Baselga Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).

[CrossRef]

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175–179 (2010).

[CrossRef]

B. Kelleher, D. Goulding, B. Baselga Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).

[CrossRef]

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175–179 (2010).

[CrossRef]

D. G. Aronson, G. B. Ermentrout, and N. Kopell, “Amplitude response of coupled oscillators,” Physica D 41, 403–449 (1990).

[CrossRef]

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).

[CrossRef]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).

[CrossRef]

R. E. Kronauer, C. A. Czeisler, S. F. Pilato, M. C. Moore-Ede, and E. D. Weitzman, “Mathematical model of the human circadian system with two interacting oscillators,” Am. J. Physiol. 242, R3–R17 (1982).

[PubMed]

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective Dynamics in Optomechanical Arrays,” Phys. Rev. Lett. 107, 043603 (2011).

[CrossRef]
[PubMed]

A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchronization in complex networks,” Phys. Rep. 469, 93–153 (2008).

[CrossRef]

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University, 2003).

M. Brunel, N. D. Lai, M. Vallet, A. Le Floch, F. Bretenaker, L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, and T. Merlet, “Generation of tunable high-purity microwave and terahertz signals by two-frequency solid state lasers,” Proc. SPIE 5466, Microwave and Terahertz Photonics, 131–139 (2004).

[CrossRef]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Optical Review 4, 550–552 (1997).

[CrossRef]

M. Brunel, N. D. Lai, M. Vallet, A. Le Floch, F. Bretenaker, L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, and T. Merlet, “Generation of tunable high-purity microwave and terahertz signals by two-frequency solid state lasers,” Proc. SPIE 5466, Microwave and Terahertz Photonics, 131–139 (2004).

[CrossRef]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).

[CrossRef]

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).

[CrossRef]

B. Lingnau, W. W. Chow, E. Schöll, and Kathy Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New Journal of Physics 15, 093031 (2013).

[CrossRef]

M. Sciamanna, I. Gatare, A. Locquet, and K. Panajotov, “Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. E 75, 056213 (2007).

[CrossRef]

B. Lingnau, W. W. Chow, E. Schöll, and Kathy Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New Journal of Physics 15, 093031 (2013).

[CrossRef]

J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, and Kathy Lüdge, “Optically injected quantum dot lasers: impact of nonlinear carrier lifetimes on frequency-locking dynamics,” New Journal of Physics 14, 053018 (2012).

[CrossRef]

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective Dynamics in Optomechanical Arrays,” Phys. Rev. Lett. 107, 043603 (2011).

[CrossRef]
[PubMed]

J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, and Kathy Lüdge, “Optically injected quantum dot lasers: impact of nonlinear carrier lifetimes on frequency-locking dynamics,” New Journal of Physics 14, 053018 (2012).

[CrossRef]

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective Dynamics in Optomechanical Arrays,” Phys. Rev. Lett. 107, 043603 (2011).

[CrossRef]
[PubMed]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).

[CrossRef]

M. Brunel, N. D. Lai, M. Vallet, A. Le Floch, F. Bretenaker, L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, and T. Merlet, “Generation of tunable high-purity microwave and terahertz signals by two-frequency solid state lasers,” Proc. SPIE 5466, Microwave and Terahertz Photonics, 131–139 (2004).

[CrossRef]

M. Ozaki, H. Someya, T. Mihara, A. Uchida, S. Yoshimori, K. Panajotov, and M. Sciamanna, “Leader-laggard relationship of chaos synchronization in mutually coupled vertical-cavity surface-emitting lasers with time delay,” Phys. Rev. E 79, 026210 (2009).

[CrossRef]

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85, 421–470 (2013).

[CrossRef]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Optical Review 4, 550–552 (1997).

[CrossRef]

R. E. Kronauer, C. A. Czeisler, S. F. Pilato, M. C. Moore-Ede, and E. D. Weitzman, “Mathematical model of the human circadian system with two interacting oscillators,” Am. J. Physiol. 242, R3–R17 (1982).

[PubMed]

A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchronization in complex networks,” Phys. Rep. 469, 93–153 (2008).

[CrossRef]

M. Brunel, N. D. Lai, M. Vallet, A. Le Floch, F. Bretenaker, L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, and T. Merlet, “Generation of tunable high-purity microwave and terahertz signals by two-frequency solid state lasers,” Proc. SPIE 5466, Microwave and Terahertz Photonics, 131–139 (2004).

[CrossRef]

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).

[CrossRef]

H. G. Solari and G.-L. Oppo, “Laser with injected signal: perturbation of an invariant circle,” Opt. Commun. 111, 173–190 (1994).

[CrossRef]

J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, and Kathy Lüdge, “Optically injected quantum dot lasers: impact of nonlinear carrier lifetimes on frequency-locking dynamics,” New Journal of Physics 14, 053018 (2012).

[CrossRef]

M. Ozaki, H. Someya, T. Mihara, A. Uchida, S. Yoshimori, K. Panajotov, and M. Sciamanna, “Leader-laggard relationship of chaos synchronization in mutually coupled vertical-cavity surface-emitting lasers with time delay,” Phys. Rev. E 79, 026210 (2009).

[CrossRef]

M. Ozaki, H. Someya, T. Mihara, A. Uchida, S. Yoshimori, K. Panajotov, and M. Sciamanna, “Leader-laggard relationship of chaos synchronization in mutually coupled vertical-cavity surface-emitting lasers with time delay,” Phys. Rev. E 79, 026210 (2009).

[CrossRef]

M. Sciamanna, I. Gatare, A. Locquet, and K. Panajotov, “Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. E 75, 056213 (2007).

[CrossRef]

J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, and Kathy Lüdge, “Optically injected quantum dot lasers: impact of nonlinear carrier lifetimes on frequency-locking dynamics,” New Journal of Physics 14, 053018 (2012).

[CrossRef]

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University, 2003).

R. E. Kronauer, C. A. Czeisler, S. F. Pilato, M. C. Moore-Ede, and E. D. Weitzman, “Mathematical model of the human circadian system with two interacting oscillators,” Am. J. Physiol. 242, R3–R17 (1982).

[PubMed]

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).

[CrossRef]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).

[CrossRef]

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective Dynamics in Optomechanical Arrays,” Phys. Rev. Lett. 107, 043603 (2011).

[CrossRef]
[PubMed]

T. Chakraborty and R. H. Rand, “The transition from phase locking to drift in a system of two weakly coupled van der Pol oscillators,” Int. J. Non-Linear Mech. 23, 369–376 (1988).

[CrossRef]

J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, and T. Erneux, “Resonance assisted synchronization of coupled oscillators: frequency locking without phase locking,” Phys. Rev. Lett. 107, 104101 (2011).

[CrossRef]
[PubMed]

J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, and T. Erneux, “Phase and intensity dynamics of a two-frequency laser submitted to resonant frequency-shifted feedback,” Phys. Rev. A86, 033815 (2012).

[CrossRef]

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University, 2003).

E. Rubiola, Phase Noise and Frequency Stability in Oscillators (Cambridge University, 2008).

[CrossRef]

B. Lingnau, W. W. Chow, E. Schöll, and Kathy Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New Journal of Physics 15, 093031 (2013).

[CrossRef]

J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, and Kathy Lüdge, “Optically injected quantum dot lasers: impact of nonlinear carrier lifetimes on frequency-locking dynamics,” New Journal of Physics 14, 053018 (2012).

[CrossRef]

M. Ozaki, H. Someya, T. Mihara, A. Uchida, S. Yoshimori, K. Panajotov, and M. Sciamanna, “Leader-laggard relationship of chaos synchronization in mutually coupled vertical-cavity surface-emitting lasers with time delay,” Phys. Rev. E 79, 026210 (2009).

[CrossRef]

M. Sciamanna, I. Gatare, A. Locquet, and K. Panajotov, “Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. E 75, 056213 (2007).

[CrossRef]

D. K. Agrawal, J. Woodhouse, and A. A. Seshia, “Observation of Locked Phase Dynamics and Enhanced Frequency Stability in Synchronized Micromechanical Oscillators,” Phys. Rev. Lett. 111, 084101 (2013).

[CrossRef]
[PubMed]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).

[CrossRef]

H. G. Solari and G.-L. Oppo, “Laser with injected signal: perturbation of an invariant circle,” Opt. Commun. 111, 173–190 (1994).

[CrossRef]

M. Ozaki, H. Someya, T. Mihara, A. Uchida, S. Yoshimori, K. Panajotov, and M. Sciamanna, “Leader-laggard relationship of chaos synchronization in mutually coupled vertical-cavity surface-emitting lasers with time delay,” Phys. Rev. E 79, 026210 (2009).

[CrossRef]

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85, 421–470 (2013).

[CrossRef]

K. Wiesenfeld, P. Colet, and S. H. Strogatz, “Synchronization transition in a disordered Josephson series array,” Phys. Rev. Lett. 76, 404–407 (1996).

[CrossRef]
[PubMed]

S. H. Strogatz, Sync: How Order Emerges from Chaos in the Universe, Nature and Daily Life (Hyperion, 2003).

M. K. S. Yeung and S. H. Strogatz, “Nonlinear dynamics of a solid-state laser with injection,” Phys. Rev. E58, 4421–4435 (1998); M. K. S. Yeung and S. H. Strogatz, “Erratum: Nonlinear dynamics of a solid-state laser with injection,” Phys. Rev. E 61, 2154–2154 (2000).

[CrossRef]

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).

[CrossRef]

J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, and T. Erneux, “Resonance assisted synchronization of coupled oscillators: frequency locking without phase locking,” Phys. Rev. Lett. 107, 104101 (2011).

[CrossRef]
[PubMed]

J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, and T. Erneux, “Phase and intensity dynamics of a two-frequency laser submitted to resonant frequency-shifted feedback,” Phys. Rev. A86, 033815 (2012).

[CrossRef]

M. Toiya, H. O. Gonzalez-Ochoa, V. K. Vanag, S. Fraden, and I. R. Epstein, “Synchronization of chemical micro-oscillators,” J. Phys. Chem. Lett. 1, 1241–1246 (2010).

[CrossRef]

J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, and Kathy Lüdge, “Optically injected quantum dot lasers: impact of nonlinear carrier lifetimes on frequency-locking dynamics,” New Journal of Physics 14, 053018 (2012).

[CrossRef]

M. Ozaki, H. Someya, T. Mihara, A. Uchida, S. Yoshimori, K. Panajotov, and M. Sciamanna, “Leader-laggard relationship of chaos synchronization in mutually coupled vertical-cavity surface-emitting lasers with time delay,” Phys. Rev. E 79, 026210 (2009).

[CrossRef]

J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, and T. Erneux, “Resonance assisted synchronization of coupled oscillators: frequency locking without phase locking,” Phys. Rev. Lett. 107, 104101 (2011).

[CrossRef]
[PubMed]

J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, and T. Erneux, “Phase and intensity dynamics of a two-frequency laser submitted to resonant frequency-shifted feedback,” Phys. Rev. A86, 033815 (2012).

[CrossRef]

M. Brunel, N. D. Lai, M. Vallet, A. Le Floch, F. Bretenaker, L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, and T. Merlet, “Generation of tunable high-purity microwave and terahertz signals by two-frequency solid state lasers,” Proc. SPIE 5466, Microwave and Terahertz Photonics, 131–139 (2004).

[CrossRef]

M. Toiya, H. O. Gonzalez-Ochoa, V. K. Vanag, S. Fraden, and I. R. Epstein, “Synchronization of chemical micro-oscillators,” J. Phys. Chem. Lett. 1, 1241–1246 (2010).

[CrossRef]

R. E. Kronauer, C. A. Czeisler, S. F. Pilato, M. C. Moore-Ede, and E. D. Weitzman, “Mathematical model of the human circadian system with two interacting oscillators,” Am. J. Physiol. 242, R3–R17 (1982).

[PubMed]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).

[CrossRef]

K. Wiesenfeld, P. Colet, and S. H. Strogatz, “Synchronization transition in a disordered Josephson series array,” Phys. Rev. Lett. 76, 404–407 (1996).

[CrossRef]
[PubMed]

D. K. Agrawal, J. Woodhouse, and A. A. Seshia, “Observation of Locked Phase Dynamics and Enhanced Frequency Stability in Synchronized Micromechanical Oscillators,” Phys. Rev. Lett. 111, 084101 (2013).

[CrossRef]
[PubMed]

M. K. S. Yeung and S. H. Strogatz, “Nonlinear dynamics of a solid-state laser with injection,” Phys. Rev. E58, 4421–4435 (1998); M. K. S. Yeung and S. H. Strogatz, “Erratum: Nonlinear dynamics of a solid-state laser with injection,” Phys. Rev. E 61, 2154–2154 (2000).

[CrossRef]

M. Ozaki, H. Someya, T. Mihara, A. Uchida, S. Yoshimori, K. Panajotov, and M. Sciamanna, “Leader-laggard relationship of chaos synchronization in mutually coupled vertical-cavity surface-emitting lasers with time delay,” Phys. Rev. E 79, 026210 (2009).

[CrossRef]

A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchronization in complex networks,” Phys. Rep. 469, 93–153 (2008).

[CrossRef]

R. E. Kronauer, C. A. Czeisler, S. F. Pilato, M. C. Moore-Ede, and E. D. Weitzman, “Mathematical model of the human circadian system with two interacting oscillators,” Am. J. Physiol. 242, R3–R17 (1982).

[PubMed]

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175–179 (2010).

[CrossRef]

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).

[CrossRef]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).

[CrossRef]

T. Chakraborty and R. H. Rand, “The transition from phase locking to drift in a system of two weakly coupled van der Pol oscillators,” Int. J. Non-Linear Mech. 23, 369–376 (1988).

[CrossRef]

M. Toiya, H. O. Gonzalez-Ochoa, V. K. Vanag, S. Fraden, and I. R. Epstein, “Synchronization of chemical micro-oscillators,” J. Phys. Chem. Lett. 1, 1241–1246 (2010).

[CrossRef]

J. Fell and J. Axmacher, “The role of phase synchronization in memory processes,” Nat. Rev. Neurosci. 12, 105–118 (2011).

[CrossRef]
[PubMed]

J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, and Kathy Lüdge, “Optically injected quantum dot lasers: impact of nonlinear carrier lifetimes on frequency-locking dynamics,” New Journal of Physics 14, 053018 (2012).

[CrossRef]

B. Lingnau, W. W. Chow, E. Schöll, and Kathy Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New Journal of Physics 15, 093031 (2013).

[CrossRef]

H. G. Solari and G.-L. Oppo, “Laser with injected signal: perturbation of an invariant circle,” Opt. Commun. 111, 173–190 (1994).

[CrossRef]

Y. Hung, C. Chu, and S. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013).

[CrossRef]
[PubMed]

L. Kervevan, H. Gilles, S. Girard, and M. Laroche, “Beat-note jitter suppression in a dual-frequency laser using optical feedback,” Opt. Lett. 32, 1099–1101 (2007).

[CrossRef]
[PubMed]

M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Optical Review 4, 550–552 (1997).

[CrossRef]

A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchronization in complex networks,” Phys. Rep. 469, 93–153 (2008).

[CrossRef]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).

[CrossRef]

P. A. Braza and T. Erneux, “Constant phase, phase drift, and phase entrainment in lasers with an injected signal,” Phys. Rev. A 41, 6470–6479 (1990).

[CrossRef]
[PubMed]

M. Sciamanna, I. Gatare, A. Locquet, and K. Panajotov, “Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. E 75, 056213 (2007).

[CrossRef]

M. Ozaki, H. Someya, T. Mihara, A. Uchida, S. Yoshimori, K. Panajotov, and M. Sciamanna, “Leader-laggard relationship of chaos synchronization in mutually coupled vertical-cavity surface-emitting lasers with time delay,” Phys. Rev. E 79, 026210 (2009).

[CrossRef]

B. Kelleher, D. Goulding, B. Baselga Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).

[CrossRef]

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective Dynamics in Optomechanical Arrays,” Phys. Rev. Lett. 107, 043603 (2011).

[CrossRef]
[PubMed]

D. K. Agrawal, J. Woodhouse, and A. A. Seshia, “Observation of Locked Phase Dynamics and Enhanced Frequency Stability in Synchronized Micromechanical Oscillators,” Phys. Rev. Lett. 111, 084101 (2013).

[CrossRef]
[PubMed]

K. Wiesenfeld, P. Colet, and S. H. Strogatz, “Synchronization transition in a disordered Josephson series array,” Phys. Rev. Lett. 76, 404–407 (1996).

[CrossRef]
[PubMed]

J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, and T. Erneux, “Resonance assisted synchronization of coupled oscillators: frequency locking without phase locking,” Phys. Rev. Lett. 107, 104101 (2011).

[CrossRef]
[PubMed]

D. G. Aronson, G. B. Ermentrout, and N. Kopell, “Amplitude response of coupled oscillators,” Physica D 41, 403–449 (1990).

[CrossRef]

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85, 421–470 (2013).

[CrossRef]

T. Erneux, Applied Delay Differential Equations, (Springer, 2009).

J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, and T. Erneux, “Phase and intensity dynamics of a two-frequency laser submitted to resonant frequency-shifted feedback,” Phys. Rev. A86, 033815 (2012).

[CrossRef]

M. Brunel, N. D. Lai, M. Vallet, A. Le Floch, F. Bretenaker, L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, and T. Merlet, “Generation of tunable high-purity microwave and terahertz signals by two-frequency solid state lasers,” Proc. SPIE 5466, Microwave and Terahertz Photonics, 131–139 (2004).

[CrossRef]

E. Rubiola, Phase Noise and Frequency Stability in Oscillators (Cambridge University, 2008).

[CrossRef]

IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology, IEEE Standard 1139–2008.

M. K. S. Yeung and S. H. Strogatz, “Nonlinear dynamics of a solid-state laser with injection,” Phys. Rev. E58, 4421–4435 (1998); M. K. S. Yeung and S. H. Strogatz, “Erratum: Nonlinear dynamics of a solid-state laser with injection,” Phys. Rev. E 61, 2154–2154 (2000).

[CrossRef]

T. Erneux and P. Glorieux, Laser Dynamics (Cambridge University, 2010).

[CrossRef]

S. H. Strogatz, Sync: How Order Emerges from Chaos in the Universe, Nature and Daily Life (Hyperion, 2003).

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University, 2003).