Abstract

We investigate the interaction of polarized electromagnetic waves with hyperbolic metamaterial structures, whereby the in-plane permittivity component εx is opposite in sign to the normal component εz. We find that when the thickness of the metamaterial is smaller than the wavelength of the incident wave, hyperbolic metamaterials can absorb significantly higher amounts of electromagnetic energy compared to their conventional counterparts. We also demonstrate that for wavelengths leading to ℜ(εz) ≈ 0, near-perfect absorption arises and persists over a range of frequencies and subwavelength structure thicknesses.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
    [CrossRef]
  2. M. G. Silveirinha, N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials”, Phys. Rev. Lett. 97(15), 157403 (2006).
    [CrossRef] [PubMed]
  3. K. Halterman, S. Feng, “Resonant transmission of electromagnetic fields through subwavelength zero-ε slits,” Phys. Rev. A 78, 021805 (2008).
    [CrossRef]
  4. K. Halterman, S. Feng, V. C. Nguyen, “Controlled leaky wave radiation from anisotropic epsilon near zero metamaterials,” Phys. Rev. B 84, 075162 (2011).
    [CrossRef]
  5. S. Feng, K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86, 165103 (2012).
    [CrossRef]
  6. S. Molesky, C. J. Dewalt, Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).
    [CrossRef] [PubMed]
  7. D. Schurig, D. R. Smith, “Spatial filtering using media with indefinite permittivity and permeability tensors,” Appl. Phys. Lett. 82, 2215–2217 (2003).
    [CrossRef]
  8. C. L. Cortes, W. Newman, S. Molesky, Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
    [CrossRef]
  9. Y. Liu, G. Bartal, X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
    [CrossRef] [PubMed]
  10. I. Nefedov, S. Tretyakov, “Ultrabroadband electromagnetically indenite medium formed by aligned carbon nanotubes,” Phys. Rev. B 84(11), 113410 (2011).
    [CrossRef]
  11. X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19(25), 25242–25254 (2011).
    [CrossRef]
  12. S. Savoia, G. Castaldi, V. Galdi, “Optical nonlocality in multilayered hyperbolic metamaterials based on Thue-Morse superlattices,” Phys. Rev. B 87, 235116 (2013).
    [CrossRef]
  13. O. Kidwai, S. V. Zhukovsky, J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A 85(5), 053842 (2012).
    [CrossRef]
  14. W. Yan, M. Wubs, N. A. Mortensen, “Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity,” Phys. Rev. B 86, 205429 (2012).
    [CrossRef]
  15. T. Tumkur, L. Gu, J. Kitur, E. Narimanov, M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100, 161103 (2012).
    [CrossRef]
  16. F. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
    [CrossRef]
  17. W. Li, Z. Liu, X. Zhang, X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100, 1611084 (2012).
    [CrossRef]
  18. C. Rizza, A. Ciattoni, E. Spinozzi, L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic metamaterials,” Opt. Lett. 37, 3345–3347 (2012).
    [CrossRef]
  19. C. Rizza, A. Ciattoni, L. Columbo, M. Brambilla, F. Prati, “Terahertz optically tunable dielectric metamaterials without microfabrication,” Opt. Lett. 38, 1307 (2013).
    [CrossRef] [PubMed]
  20. W. Yan, L. Shen, L. Ran, J. A. Kong, “Surface modes at the interfaces between isotropic media and indefinite media,” J. Opt. Soc. Am. A 24, 530 (2007).
    [CrossRef]
  21. K.V. Sreekanth, A. De Luca, G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
    [CrossRef] [PubMed]
  22. E. Narimanov, M. A. Noginov, H. Li, Y. Barnakov, “Darker than Black: Radiation-absorbing Metamaterial,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA6.
    [CrossRef]
  23. T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101, 091105 (2012).
    [CrossRef]
  24. J. M. Zhao, Y. Chen, Y. J. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
    [CrossRef]
  25. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109, (23)8834–8838 (2012).
    [CrossRef] [PubMed]
  26. J. P. Berenger, “A perfect matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  27. Z. Sacks, D. M. Kingsland, R. Lee, J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Ant. Prop. 43, 1460–1463, (1995).
    [CrossRef]
  28. J. Merle Elson, “Propagation in planar waveguides and the effects of wall roughness,” Opt. Express 9, 461–475 (2001).
    [CrossRef] [PubMed]
  29. J. M. Elson, Proc. SPIE 4780, Surface Scattering and Diffraction for Advanced Metrology II, 32, (October1, 2002).
  30. Y. Jin, S. Xiao, N.A. Mortensen, S. He, “Arbitrarily thin metamaterial structure for perfect absorption and giant magnification,” Opt. Express 19, 11114 (2011).
    [CrossRef] [PubMed]
  31. See, for example, J. D. Jackson, Classical Electrodynamics, 3 (Wiley and Sons, 1998).
  32. D. R. Smith, D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
    [CrossRef] [PubMed]
  33. I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, S. Ilvonen, “BW media media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001).
    [CrossRef]
  34. J. Yang, X. Hu, X. Li, Z. Liu, X. Jiang, J. Zi, “Cancellation of reflection and transmission at metamaterial surfaces,” Opt. Lett. 35, 16 (2010).
    [CrossRef] [PubMed]
  35. H. Hu, D. Ji, X. Zeng, K. Liu, Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3, 1249 (2013).
    [CrossRef] [PubMed]
  36. W. T. Lu, S. Sridhar, “Slow light, open-cavity formation, and large longitudinal electric eld on a slab waveguide made of indenite permittivity metamaterials,” Phys. Rev. A 82, 013811 (2010).
    [CrossRef]
  37. C. Rizza, A. Ciattoni, E. Palange, “Two-peaked and flat-top perfect bright solitons in nonlinear metamaterials with epsilon near zero,” Phys. Rev. A 83, 053805 (2011).
    [CrossRef]
  38. M. A. Vincenti, D. de Ceglia, A. Ciattoni, M. Scalora, “Singularity-driven second- and third-harmonic generation at ε-near-zero crossing points,” Phys. Rev. A 84, 063826 (2011).
    [CrossRef]
  39. A. Ciattoni, C. Rizza, E. Palange, “Transverse power flow reversing of guided waves in extreme nonlinear metamaterials,” Opt. Lett. 18, 11911 (2010).
  40. A. Ciattoni, C. Rizza, E. Palange, “Transmissivity directional hysteresis of a nonlinear metamaterial slab with very small linear permittivity,” Opt. Lett. 35, 2130 (2010).
    [CrossRef] [PubMed]
  41. R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A.V. Zayats, V.A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
    [CrossRef] [PubMed]
  42. A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
    [CrossRef]
  43. D. J. Bergman, “The dielectric constant of a composite material - a problem in classical physics,” Phys. Rep. 43, 377–407 (1978).
    [CrossRef]

2013

S. Savoia, G. Castaldi, V. Galdi, “Optical nonlocality in multilayered hyperbolic metamaterials based on Thue-Morse superlattices,” Phys. Rev. B 87, 235116 (2013).
[CrossRef]

F. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[CrossRef]

K.V. Sreekanth, A. De Luca, G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
[CrossRef] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3, 1249 (2013).
[CrossRef] [PubMed]

S. Molesky, C. J. Dewalt, Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).
[CrossRef] [PubMed]

C. Rizza, A. Ciattoni, L. Columbo, M. Brambilla, F. Prati, “Terahertz optically tunable dielectric metamaterials without microfabrication,” Opt. Lett. 38, 1307 (2013).
[CrossRef] [PubMed]

2012

C. Rizza, A. Ciattoni, E. Spinozzi, L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic metamaterials,” Opt. Lett. 37, 3345–3347 (2012).
[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109, (23)8834–8838 (2012).
[CrossRef] [PubMed]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101, 091105 (2012).
[CrossRef]

W. Li, Z. Liu, X. Zhang, X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100, 1611084 (2012).
[CrossRef]

O. Kidwai, S. V. Zhukovsky, J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A 85(5), 053842 (2012).
[CrossRef]

W. Yan, M. Wubs, N. A. Mortensen, “Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity,” Phys. Rev. B 86, 205429 (2012).
[CrossRef]

T. Tumkur, L. Gu, J. Kitur, E. Narimanov, M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100, 161103 (2012).
[CrossRef]

S. Feng, K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86, 165103 (2012).
[CrossRef]

C. L. Cortes, W. Newman, S. Molesky, Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[CrossRef]

2011

I. Nefedov, S. Tretyakov, “Ultrabroadband electromagnetically indenite medium formed by aligned carbon nanotubes,” Phys. Rev. B 84(11), 113410 (2011).
[CrossRef]

K. Halterman, S. Feng, V. C. Nguyen, “Controlled leaky wave radiation from anisotropic epsilon near zero metamaterials,” Phys. Rev. B 84, 075162 (2011).
[CrossRef]

C. Rizza, A. Ciattoni, E. Palange, “Two-peaked and flat-top perfect bright solitons in nonlinear metamaterials with epsilon near zero,” Phys. Rev. A 83, 053805 (2011).
[CrossRef]

M. A. Vincenti, D. de Ceglia, A. Ciattoni, M. Scalora, “Singularity-driven second- and third-harmonic generation at ε-near-zero crossing points,” Phys. Rev. A 84, 063826 (2011).
[CrossRef]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

Y. Jin, S. Xiao, N.A. Mortensen, S. He, “Arbitrarily thin metamaterial structure for perfect absorption and giant magnification,” Opt. Express 19, 11114 (2011).
[CrossRef] [PubMed]

X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19(25), 25242–25254 (2011).
[CrossRef]

2010

J. Yang, X. Hu, X. Li, Z. Liu, X. Jiang, J. Zi, “Cancellation of reflection and transmission at metamaterial surfaces,” Opt. Lett. 35, 16 (2010).
[CrossRef] [PubMed]

A. Ciattoni, C. Rizza, E. Palange, “Transmissivity directional hysteresis of a nonlinear metamaterial slab with very small linear permittivity,” Opt. Lett. 35, 2130 (2010).
[CrossRef] [PubMed]

A. Ciattoni, C. Rizza, E. Palange, “Transverse power flow reversing of guided waves in extreme nonlinear metamaterials,” Opt. Lett. 18, 11911 (2010).

W. T. Lu, S. Sridhar, “Slow light, open-cavity formation, and large longitudinal electric eld on a slab waveguide made of indenite permittivity metamaterials,” Phys. Rev. A 82, 013811 (2010).
[CrossRef]

2009

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A.V. Zayats, V.A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef] [PubMed]

2008

K. Halterman, S. Feng, “Resonant transmission of electromagnetic fields through subwavelength zero-ε slits,” Phys. Rev. A 78, 021805 (2008).
[CrossRef]

J. M. Zhao, Y. Chen, Y. J. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[CrossRef]

Y. Liu, G. Bartal, X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[CrossRef] [PubMed]

2007

2006

M. G. Silveirinha, N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials”, Phys. Rev. Lett. 97(15), 157403 (2006).
[CrossRef] [PubMed]

2003

D. Schurig, D. R. Smith, “Spatial filtering using media with indefinite permittivity and permeability tensors,” Appl. Phys. Lett. 82, 2215–2217 (2003).
[CrossRef]

D. R. Smith, D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[CrossRef] [PubMed]

2001

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, S. Ilvonen, “BW media media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001).
[CrossRef]

J. Merle Elson, “Propagation in planar waveguides and the effects of wall roughness,” Opt. Express 9, 461–475 (2001).
[CrossRef] [PubMed]

1999

D. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

1995

Z. Sacks, D. M. Kingsland, R. Lee, J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Ant. Prop. 43, 1460–1463, (1995).
[CrossRef]

1994

J. P. Berenger, “A perfect matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

1978

D. J. Bergman, “The dielectric constant of a composite material - a problem in classical physics,” Phys. Rep. 43, 377–407 (1978).
[CrossRef]

Alexopolous, N. G.

D. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Atkinson, R.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A.V. Zayats, V.A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef] [PubMed]

Barnakov, Y.

E. Narimanov, M. A. Noginov, H. Li, Y. Barnakov, “Darker than Black: Radiation-absorbing Metamaterial,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA6.
[CrossRef]

Bartal, G.

Belov, P. A.

F. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[CrossRef]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

Berenger, J. P.

J. P. Berenger, “A perfect matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Bergman, D. J.

D. J. Bergman, “The dielectric constant of a composite material - a problem in classical physics,” Phys. Rep. 43, 377–407 (1978).
[CrossRef]

Boltasseva, A.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109, (23)8834–8838 (2012).
[CrossRef] [PubMed]

Brambilla, M.

Broas, R.

D. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Castaldi, G.

S. Savoia, G. Castaldi, V. Galdi, “Optical nonlocality in multilayered hyperbolic metamaterials based on Thue-Morse superlattices,” Phys. Rev. B 87, 235116 (2013).
[CrossRef]

Chen, Y.

J. M. Zhao, Y. Chen, Y. J. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[CrossRef]

Chu, B.

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101, 091105 (2012).
[CrossRef]

Ciattoni, A.

C. Rizza, A. Ciattoni, L. Columbo, M. Brambilla, F. Prati, “Terahertz optically tunable dielectric metamaterials without microfabrication,” Opt. Lett. 38, 1307 (2013).
[CrossRef] [PubMed]

C. Rizza, A. Ciattoni, E. Spinozzi, L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic metamaterials,” Opt. Lett. 37, 3345–3347 (2012).
[CrossRef]

M. A. Vincenti, D. de Ceglia, A. Ciattoni, M. Scalora, “Singularity-driven second- and third-harmonic generation at ε-near-zero crossing points,” Phys. Rev. A 84, 063826 (2011).
[CrossRef]

C. Rizza, A. Ciattoni, E. Palange, “Two-peaked and flat-top perfect bright solitons in nonlinear metamaterials with epsilon near zero,” Phys. Rev. A 83, 053805 (2011).
[CrossRef]

A. Ciattoni, C. Rizza, E. Palange, “Transmissivity directional hysteresis of a nonlinear metamaterial slab with very small linear permittivity,” Opt. Lett. 35, 2130 (2010).
[CrossRef] [PubMed]

A. Ciattoni, C. Rizza, E. Palange, “Transverse power flow reversing of guided waves in extreme nonlinear metamaterials,” Opt. Lett. 18, 11911 (2010).

Columbo, L.

Cortes, C. L.

C. L. Cortes, W. Newman, S. Molesky, Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[CrossRef]

de Ceglia, D.

M. A. Vincenti, D. de Ceglia, A. Ciattoni, M. Scalora, “Singularity-driven second- and third-harmonic generation at ε-near-zero crossing points,” Phys. Rev. A 84, 063826 (2011).
[CrossRef]

De Luca, A.

K.V. Sreekanth, A. De Luca, G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
[CrossRef] [PubMed]

Dewalt, C. J.

Elson, J. M.

J. M. Elson, Proc. SPIE 4780, Surface Scattering and Diffraction for Advanced Metrology II, 32, (October1, 2002).

Elson, J. Merle

Engheta, N.

M. G. Silveirinha, N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials”, Phys. Rev. Lett. 97(15), 157403 (2006).
[CrossRef] [PubMed]

Evans, P. R.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A.V. Zayats, V.A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef] [PubMed]

Feng, S.

S. Feng, K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86, 165103 (2012).
[CrossRef]

K. Halterman, S. Feng, V. C. Nguyen, “Controlled leaky wave radiation from anisotropic epsilon near zero metamaterials,” Phys. Rev. B 84, 075162 (2011).
[CrossRef]

K. Halterman, S. Feng, “Resonant transmission of electromagnetic fields through subwavelength zero-ε slits,” Phys. Rev. A 78, 021805 (2008).
[CrossRef]

Feng, Y. J.

J. M. Zhao, Y. Chen, Y. J. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[CrossRef]

Galdi, V.

S. Savoia, G. Castaldi, V. Galdi, “Optical nonlocality in multilayered hyperbolic metamaterials based on Thue-Morse superlattices,” Phys. Rev. B 87, 235116 (2013).
[CrossRef]

Gan, Q.

H. Hu, D. Ji, X. Zeng, K. Liu, Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3, 1249 (2013).
[CrossRef] [PubMed]

Gu, L.

T. Tumkur, L. Gu, J. Kitur, E. Narimanov, M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100, 161103 (2012).
[CrossRef]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101, 091105 (2012).
[CrossRef]

Halterman, K.

S. Feng, K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86, 165103 (2012).
[CrossRef]

K. Halterman, S. Feng, V. C. Nguyen, “Controlled leaky wave radiation from anisotropic epsilon near zero metamaterials,” Phys. Rev. B 84, 075162 (2011).
[CrossRef]

K. Halterman, S. Feng, “Resonant transmission of electromagnetic fields through subwavelength zero-ε slits,” Phys. Rev. A 78, 021805 (2008).
[CrossRef]

Han, S.

He, S.

Hendren, W. R.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A.V. Zayats, V.A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef] [PubMed]

Hu, H.

H. Hu, D. Ji, X. Zeng, K. Liu, Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3, 1249 (2013).
[CrossRef] [PubMed]

Hu, X.

Ilvonen, S.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, S. Ilvonen, “BW media media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001).
[CrossRef]

Iorsh, F. V.

F. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[CrossRef]

Ishii, S.

Jackson, J. D.

See, for example, J. D. Jackson, Classical Electrodynamics, 3 (Wiley and Sons, 1998).

Jacob, Z.

Ji, D.

H. Hu, D. Ji, X. Zeng, K. Liu, Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3, 1249 (2013).
[CrossRef] [PubMed]

Jiang, X.

W. Li, Z. Liu, X. Zhang, X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100, 1611084 (2012).
[CrossRef]

J. Yang, X. Hu, X. Li, Z. Liu, X. Jiang, J. Zi, “Cancellation of reflection and transmission at metamaterial surfaces,” Opt. Lett. 35, 16 (2010).
[CrossRef] [PubMed]

Jin, Y.

Kidwai, O.

O. Kidwai, S. V. Zhukovsky, J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A 85(5), 053842 (2012).
[CrossRef]

Kildishev, A. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109, (23)8834–8838 (2012).
[CrossRef] [PubMed]

X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19(25), 25242–25254 (2011).
[CrossRef]

Kingsland, D. M.

Z. Sacks, D. M. Kingsland, R. Lee, J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Ant. Prop. 43, 1460–1463, (1995).
[CrossRef]

Kitur, J.

T. Tumkur, L. Gu, J. Kitur, E. Narimanov, M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100, 161103 (2012).
[CrossRef]

Kitur, J. K.

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101, 091105 (2012).
[CrossRef]

Kivshar, Y. S.

F. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[CrossRef]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

Kong, J. A.

Lee, J. F.

Z. Sacks, D. M. Kingsland, R. Lee, J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Ant. Prop. 43, 1460–1463, (1995).
[CrossRef]

Lee, R.

Z. Sacks, D. M. Kingsland, R. Lee, J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Ant. Prop. 43, 1460–1463, (1995).
[CrossRef]

Lee, S.

Li, H.

E. Narimanov, M. A. Noginov, H. Li, Y. Barnakov, “Darker than Black: Radiation-absorbing Metamaterial,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA6.
[CrossRef]

Li, W.

W. Li, Z. Liu, X. Zhang, X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100, 1611084 (2012).
[CrossRef]

Li, X.

Lindell, I. V.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, S. Ilvonen, “BW media media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001).
[CrossRef]

Liu, J.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109, (23)8834–8838 (2012).
[CrossRef] [PubMed]

Liu, K.

H. Hu, D. Ji, X. Zeng, K. Liu, Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3, 1249 (2013).
[CrossRef] [PubMed]

Liu, Y.

Liu, Z.

W. Li, Z. Liu, X. Zhang, X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100, 1611084 (2012).
[CrossRef]

J. Yang, X. Hu, X. Li, Z. Liu, X. Jiang, J. Zi, “Cancellation of reflection and transmission at metamaterial surfaces,” Opt. Lett. 35, 16 (2010).
[CrossRef] [PubMed]

Lu, W. T.

W. T. Lu, S. Sridhar, “Slow light, open-cavity formation, and large longitudinal electric eld on a slab waveguide made of indenite permittivity metamaterials,” Phys. Rev. A 82, 013811 (2010).
[CrossRef]

Molesky, S.

Mortensen, N. A.

W. Yan, M. Wubs, N. A. Mortensen, “Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity,” Phys. Rev. B 86, 205429 (2012).
[CrossRef]

Mortensen, N.A.

Mukhin, I. S.

F. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[CrossRef]

Murphy, A.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A.V. Zayats, V.A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef] [PubMed]

Naik, G. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109, (23)8834–8838 (2012).
[CrossRef] [PubMed]

Narimanov, E.

T. Tumkur, L. Gu, J. Kitur, E. Narimanov, M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100, 161103 (2012).
[CrossRef]

E. Narimanov, M. A. Noginov, H. Li, Y. Barnakov, “Darker than Black: Radiation-absorbing Metamaterial,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA6.
[CrossRef]

Narimanov, E. E.

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101, 091105 (2012).
[CrossRef]

Nefedov, I.

I. Nefedov, S. Tretyakov, “Ultrabroadband electromagnetically indenite medium formed by aligned carbon nanotubes,” Phys. Rev. B 84(11), 113410 (2011).
[CrossRef]

Newman, W.

C. L. Cortes, W. Newman, S. Molesky, Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[CrossRef]

Nguyen, V. C.

K. Halterman, S. Feng, V. C. Nguyen, “Controlled leaky wave radiation from anisotropic epsilon near zero metamaterials,” Phys. Rev. B 84, 075162 (2011).
[CrossRef]

Ni, X.

Nikoskinen, K. I.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, S. Ilvonen, “BW media media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001).
[CrossRef]

Noginov, M.

T. Tumkur, L. Gu, J. Kitur, E. Narimanov, M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100, 161103 (2012).
[CrossRef]

Noginov, M. A.

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101, 091105 (2012).
[CrossRef]

E. Narimanov, M. A. Noginov, H. Li, Y. Barnakov, “Darker than Black: Radiation-absorbing Metamaterial,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA6.
[CrossRef]

Orlov, A. A.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

Palange, E.

C. Rizza, A. Ciattoni, E. Palange, “Two-peaked and flat-top perfect bright solitons in nonlinear metamaterials with epsilon near zero,” Phys. Rev. A 83, 053805 (2011).
[CrossRef]

A. Ciattoni, C. Rizza, E. Palange, “Transmissivity directional hysteresis of a nonlinear metamaterial slab with very small linear permittivity,” Opt. Lett. 35, 2130 (2010).
[CrossRef] [PubMed]

A. Ciattoni, C. Rizza, E. Palange, “Transverse power flow reversing of guided waves in extreme nonlinear metamaterials,” Opt. Lett. 18, 11911 (2010).

Podolskiy, V. A.

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101, 091105 (2012).
[CrossRef]

Podolskiy, V.A.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A.V. Zayats, V.A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef] [PubMed]

Pollard, R. J.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A.V. Zayats, V.A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef] [PubMed]

Prati, F.

Ran, L.

Rizza, C.

Sacks, Z.

Z. Sacks, D. M. Kingsland, R. Lee, J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Ant. Prop. 43, 1460–1463, (1995).
[CrossRef]

Savoia, S.

S. Savoia, G. Castaldi, V. Galdi, “Optical nonlocality in multilayered hyperbolic metamaterials based on Thue-Morse superlattices,” Phys. Rev. B 87, 235116 (2013).
[CrossRef]

Scalora, M.

M. A. Vincenti, D. de Ceglia, A. Ciattoni, M. Scalora, “Singularity-driven second- and third-harmonic generation at ε-near-zero crossing points,” Phys. Rev. A 84, 063826 (2011).
[CrossRef]

Schurig, D.

D. Schurig, D. R. Smith, “Spatial filtering using media with indefinite permittivity and permeability tensors,” Appl. Phys. Lett. 82, 2215–2217 (2003).
[CrossRef]

D. R. Smith, D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[CrossRef] [PubMed]

Shadrivov, I. V.

F. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[CrossRef]

Shalaev, V. M.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109, (23)8834–8838 (2012).
[CrossRef] [PubMed]

X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19(25), 25242–25254 (2011).
[CrossRef]

Shen, L.

Sievenpiper, D.

D. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Silveirinha, M. G.

M. G. Silveirinha, N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials”, Phys. Rev. Lett. 97(15), 157403 (2006).
[CrossRef] [PubMed]

Sipe, J. E.

O. Kidwai, S. V. Zhukovsky, J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A 85(5), 053842 (2012).
[CrossRef]

Smith, D. R.

D. R. Smith, D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[CrossRef] [PubMed]

D. Schurig, D. R. Smith, “Spatial filtering using media with indefinite permittivity and permeability tensors,” Appl. Phys. Lett. 82, 2215–2217 (2003).
[CrossRef]

Spinozzi, E.

Sreekanth, K.V.

K.V. Sreekanth, A. De Luca, G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
[CrossRef] [PubMed]

Sridhar, S.

W. T. Lu, S. Sridhar, “Slow light, open-cavity formation, and large longitudinal electric eld on a slab waveguide made of indenite permittivity metamaterials,” Phys. Rev. A 82, 013811 (2010).
[CrossRef]

Strangi, G.

K.V. Sreekanth, A. De Luca, G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
[CrossRef] [PubMed]

Thoreson, M. D.

Tretyakov, S.

I. Nefedov, S. Tretyakov, “Ultrabroadband electromagnetically indenite medium formed by aligned carbon nanotubes,” Phys. Rev. B 84(11), 113410 (2011).
[CrossRef]

Tretyakov, S. A.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, S. Ilvonen, “BW media media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001).
[CrossRef]

Tumkur, T.

T. Tumkur, L. Gu, J. Kitur, E. Narimanov, M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100, 161103 (2012).
[CrossRef]

Tumkur, T. U.

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101, 091105 (2012).
[CrossRef]

Vincenti, M. A.

M. A. Vincenti, D. de Ceglia, A. Ciattoni, M. Scalora, “Singularity-driven second- and third-harmonic generation at ε-near-zero crossing points,” Phys. Rev. A 84, 063826 (2011).
[CrossRef]

Voroshilov, P. M.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

Wubs, M.

W. Yan, M. Wubs, N. A. Mortensen, “Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity,” Phys. Rev. B 86, 205429 (2012).
[CrossRef]

Wurtz, G. A.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A.V. Zayats, V.A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef] [PubMed]

Xiao, S.

Yablonovitch, E.

D. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Yan, W.

W. Yan, M. Wubs, N. A. Mortensen, “Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity,” Phys. Rev. B 86, 205429 (2012).
[CrossRef]

W. Yan, L. Shen, L. Ran, J. A. Kong, “Surface modes at the interfaces between isotropic media and indefinite media,” J. Opt. Soc. Am. A 24, 530 (2007).
[CrossRef]

Yang, J.

Zayats, A.V.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A.V. Zayats, V.A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef] [PubMed]

Zeng, X.

H. Hu, D. Ji, X. Zeng, K. Liu, Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3, 1249 (2013).
[CrossRef] [PubMed]

Zhang, L.

D. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Zhang, X.

Zhao, J. M.

J. M. Zhao, Y. Chen, Y. J. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[CrossRef]

Zhukovsky, S. V.

O. Kidwai, S. V. Zhukovsky, J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A 85(5), 053842 (2012).
[CrossRef]

Zi, J.

Appl. Phys. Lett.

D. Schurig, D. R. Smith, “Spatial filtering using media with indefinite permittivity and permeability tensors,” Appl. Phys. Lett. 82, 2215–2217 (2003).
[CrossRef]

T. Tumkur, L. Gu, J. Kitur, E. Narimanov, M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100, 161103 (2012).
[CrossRef]

W. Li, Z. Liu, X. Zhang, X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100, 1611084 (2012).
[CrossRef]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101, 091105 (2012).
[CrossRef]

J. M. Zhao, Y. Chen, Y. J. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[CrossRef]

IEEE Trans. Ant. Prop.

Z. Sacks, D. M. Kingsland, R. Lee, J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Ant. Prop. 43, 1460–1463, (1995).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

D. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

J. Comput. Phys.

J. P. Berenger, “A perfect matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Opt.

C. L. Cortes, W. Newman, S. Molesky, Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[CrossRef]

J. Opt. Soc. Am. A

Microw. Opt. Technol. Lett

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, S. Ilvonen, “BW media media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

D. J. Bergman, “The dielectric constant of a composite material - a problem in classical physics,” Phys. Rep. 43, 377–407 (1978).
[CrossRef]

Phys. Rev. A

W. T. Lu, S. Sridhar, “Slow light, open-cavity formation, and large longitudinal electric eld on a slab waveguide made of indenite permittivity metamaterials,” Phys. Rev. A 82, 013811 (2010).
[CrossRef]

C. Rizza, A. Ciattoni, E. Palange, “Two-peaked and flat-top perfect bright solitons in nonlinear metamaterials with epsilon near zero,” Phys. Rev. A 83, 053805 (2011).
[CrossRef]

M. A. Vincenti, D. de Ceglia, A. Ciattoni, M. Scalora, “Singularity-driven second- and third-harmonic generation at ε-near-zero crossing points,” Phys. Rev. A 84, 063826 (2011).
[CrossRef]

K. Halterman, S. Feng, “Resonant transmission of electromagnetic fields through subwavelength zero-ε slits,” Phys. Rev. A 78, 021805 (2008).
[CrossRef]

O. Kidwai, S. V. Zhukovsky, J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A 85(5), 053842 (2012).
[CrossRef]

Phys. Rev. B

W. Yan, M. Wubs, N. A. Mortensen, “Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity,” Phys. Rev. B 86, 205429 (2012).
[CrossRef]

F. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[CrossRef]

K. Halterman, S. Feng, V. C. Nguyen, “Controlled leaky wave radiation from anisotropic epsilon near zero metamaterials,” Phys. Rev. B 84, 075162 (2011).
[CrossRef]

S. Feng, K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86, 165103 (2012).
[CrossRef]

I. Nefedov, S. Tretyakov, “Ultrabroadband electromagnetically indenite medium formed by aligned carbon nanotubes,” Phys. Rev. B 84(11), 113410 (2011).
[CrossRef]

S. Savoia, G. Castaldi, V. Galdi, “Optical nonlocality in multilayered hyperbolic metamaterials based on Thue-Morse superlattices,” Phys. Rev. B 87, 235116 (2013).
[CrossRef]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

Phys. Rev. Lett.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A.V. Zayats, V.A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009).
[CrossRef] [PubMed]

D. R. Smith, D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[CrossRef] [PubMed]

M. G. Silveirinha, N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials”, Phys. Rev. Lett. 97(15), 157403 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109, (23)8834–8838 (2012).
[CrossRef] [PubMed]

Sci. Rep.

K.V. Sreekanth, A. De Luca, G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
[CrossRef] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3, 1249 (2013).
[CrossRef] [PubMed]

Other

See, for example, J. D. Jackson, Classical Electrodynamics, 3 (Wiley and Sons, 1998).

J. M. Elson, Proc. SPIE 4780, Surface Scattering and Diffraction for Advanced Metrology II, 32, (October1, 2002).

E. Narimanov, M. A. Noginov, H. Li, Y. Barnakov, “Darker than Black: Radiation-absorbing Metamaterial,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA6.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the hyperbolic metamaterial configuration: The HMM layer of thickness τ is bordered by a semi-infinite superstrate and substrate. The permittivites εi (i=1,2,3) are in general anisotropic. The incident field is polarized in the xz plane at an angle θ. (b) Dispersion contours for a type-2 HMM where εx<0, and εz>0 and (c) for a type-1 HMM with εx>0, and εz<0.

Fig. 2
Fig. 2

Absorption as a function of incident angle θ. The superstrate is air, and the HMM layer is supported by a perfectly conducting substrate. In (a) and (b) a range of HMM widths τ are studied (legend units are in microns). In (a) ℜ(ε2x) > 0 and ℜ(ε2z) < 0 (type-1 HMM), and in (b) ℜ(ε2x) < 0, and ℜ(ε2z) > 0 (type-2 HMM). For both panels (a) and (b), λλz so that ℜ(ε2z) ≈ 0. Panels (c) and (d) show the effects of varying λ for both the type-1 and type-2 cases respectively. For those cases τ is fixed at 0.16 μm. For normal incidence (θ = 0°), there is generally little absorption (high reflectance). Remarkably, for a range of HMM widths and wavelengths there are strong absorption peaks spanning a broad range of θ.

Fig. 3
Fig. 3

Density plots showing absorption as a function of incident wavelength λ and angle θ. Bright regions correspond to high absorption. The HMM thickness in both plots is τ = 0.16μm. The characteristic wavelength, λz = 1.6μm separates the HMM regions according to (a) type-1: εx2 > 0 and εz2 < 0 for λ > 1.6μm, and (b) type 2: εx2 < 0, and εz2 > 0 for λ < 1.6μm. Thus we find that when the metamaterial is effectively hyperbolic, absorption can be strongly enhanced.

Fig. 4
Fig. 4

Absorption as a function of incident angle θ (a) and wavelength λ (b) extracted from the high absorption regions of the density plots in Fig. 3(a) and (b).

Fig. 5
Fig. 5

The power P in the HMM, normalized by the incident power in the z-direction, and plotted as a function of θ. In (a) λ = 1.7 μm (type-1 HMM) and in (b) λ = 1.5 μm (type-2 HMM). The material parameters are the same as in Fig. 4(c). Panel (a) reveals that energy flow parallel to the interface (Px2) in the type-1 HMM is negative, which is opposite that of the vacuum region containing the incident beam.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

2 E x z 2 + [ ( ω c ) 2 ε x μ y ( ε x ε z ) k x 2 ] E x = 0 ,
2 E y z 2 + [ ( ω c ) 2 ε y μ x ( μ x μ z ) k x 2 ] E y = 0 .
r = β [ ( k ^ z 1 ε x 2 k ^ z 2 ε x 1 ) ( k ^ z 2 ε x 3 + k ^ z 3 ε x 2 ) e i ϕ 2 + ( k ^ z 1 ε x 2 + k ^ z 2 ε x 1 ) ( k ^ z 2 ε x 3 k ^ z 3 ε x 2 ) e i ϕ 2 ( k ^ z 1 ε x 2 k ^ z 2 ε x 1 ) ( k ^ z 2 ε x 3 k ^ z 3 ε x 2 ) e i ϕ 2 + ( k ^ z 1 ε x 2 + k ^ z 2 ε x 1 ) ( k ^ z 2 ε x 3 + k ^ z 3 ε x 2 ) e i ϕ 2 ] ,
β = exp ( 2 i ϕ 3 ) ,
ϕ j ( ω / c ) k ^ z j τ ,
k ^ z j 2 ε x j μ y j ( ε x j / ε z j ) k ^ x 2 .
k ^ x 2 = ε z 2 ( ε x 2 μ y 2 ε z 2 ε x 2 1 ) ; k ^ z 2 2 = ε x 2 2 ( ε z 2 μ y 2 1 ε z 2 ε x 2 1 )
k ^ x 2 = ε z 2 μ y 2 ( ε z 2 ε x 2 ) ( n λ 2 τ ) 2 ; k ^ z 2 2 = ( n λ 2 τ ) 2 ,
r = e 2 i ϕ [ ( k ^ z 2 + k ^ z ε x 2 ) e i ϕ 2 ( k ^ z 2 k ^ z ε x 2 ) e i ϕ 2 ( k ^ z 2 k ^ z ε x 2 ) e i ϕ 2 ( k ^ z 2 + k ^ z ε x 2 ) e i ϕ 2 ] ,
r = k ^ z + i 2 π τ ^ ( 1 k ^ x 2 / ε z 2 ) k ^ z + i 2 π τ ^ ( 1 k ^ x 2 / ε z 2 ) ,
θ c = cos 1 [ ( i ε z 2 + ( 2 τ ^ ) 2 ( 1 ε z 2 ) ε z 2 2 ) / ( 2 τ ^ ) ] .
4 π c V d v E J * = V d v ( E × H * ) i ω c V d v [ ε x 2 * | E x 2 | 2 + ε z 2 * | E z 2 | 2 | H y 2 | 2 ] .
2 E x z 2 + [ ( ω c ) 2 ε x μ y ( ε x ε z ) k x 2 ] E x = 0 .
E 1 = [ A { x ^ + z ^ ( k ^ x ε x 1 k ^ z 1 ε z 1 ) } e i k z 1 z ] e i k x x ,
E 2 = [ G { x ^ z ^ ( k ^ x ε x 2 k ^ z 2 ε z 2 ) } e i k z 2 z + F { x ^ + z ^ ( k ^ x ε x 2 k ^ z 2 ε z 2 ) } e i k z 2 z ] e i k x x ,
E 3 = [ C { x ^ z ^ ( k ^ x ε x 3 k ^ z 3 ε z 3 ) } e i k z 3 z + I { x ^ + z ^ ( k ^ x ε x 3 k ^ z 3 ε z 3 ) } e i k z 3 z ] e i k x x .
H 1 = y ^ ( ε x 1 k ^ z 1 ) A e i k z 1 z e i k x x ,
H 2 = y ^ ( ε x 2 k ^ z 2 ) [ G e i k z 2 z F e i k z 2 z ] e i k x x ,
H 3 = y ^ ( ε x 3 k ^ z 3 ) [ C e i k z 3 z I e i k z 3 z ] e i k x x .
A = 4 e i ϕ 3 k ^ z 1 k ^ z 2 ε x 2 ε x 3 𝒢 e i ϕ 2 + 𝒢 + + e i ϕ 2 ; C = β [ 𝒢 + e i ϕ 2 + 𝒢 + e i ϕ 2 𝒢 e i ϕ 2 + 𝒢 + + e i ϕ 2 ] ,
= 2 e i ϕ 3 k ^ z 2 ε x 3 𝒢 + 𝒢 e i ϕ 2 + 𝒢 + + e i ϕ 2 ; 𝒢 = 2 e i ϕ 3 k ^ z 2 ε x 3 𝒢 𝒢 e i ϕ 2 + 𝒢 + + e i ϕ 2 ,
± = k ^ z 3 ε x 2 ± k ^ z 2 ε x 3 ,
𝒢 ± = k ^ z 2 ε x 1 ± k ^ z 1 ε x 2 ,
1 2 4 π c V d v E J * = 1 2 V d v ( E × H * ) i ω 2 c V d v [ E D * H * B ] ,
× H = 4 π c J i ω c D ; × E = i ω c B .
i ω 2 c 0 τ d z E 2 x D 2 x * = i ε 2 x * 2 [ | G | 2 ( e 2 τ ( k 2 z ) 1 2 ( k ^ 2 z ) ) + | F | 2 ( e 2 τ ( k 2 z ) 1 2 ( k ^ 2 z ) ) + 2 { G F * ( e 2 i τ ( k 2 z ) 1 2 i ( k ^ 2 z ) ) } ] ,
i ω 2 c 0 τ d z E 2 x D 2 x * = i ε 2 z * 2 | k ^ x ε 2 x k ^ 2 z ε 2 z | 2 [ | G | 2 ( e 2 τ ( k 2 z ) 1 2 ( k ^ 2 z ) ) + | F | 2 ( e 2 τ ( k 2 z ) 1 2 ( k ^ 2 z ) ) 2 { G F * ( e 2 i τ ( k 2 z ) 1 2 i ( k ^ 2 z ) ) } ] ,
i ω 2 c 0 τ d z H 2 y * B 2 y = i μ 2 y 2 | ε 2 x k ^ 2 z | 2 [ | G | 2 ( e 2 τ ( k 2 z ) 1 2 ( k ^ 2 z ) ) + | F | 2 ( e 2 τ ( k 2 z ) 1 2 ( k ^ 2 z ) ) 2 { G F * ( e 2 i τ ( k 2 z ) 1 2 i ( k ^ 2 z ) ) } ] ,
S 2 x ( z ) = ( k ^ x ε z 2 ) | ε x 2 k ^ z 2 | 2 [ | G | 2 e 2 z ( k z 2 ) + | F | 2 e 2 z ( k z 2 ) 2 ( G F * e 2 i z ( k z 2 ) ) ] ,
S 2 z ( z ) = ( ε x 2 k ^ z 2 ) * [ | G | 2 e 2 z ( k z 2 ) + | F | 2 e 2 z ( k z 2 ) 2 i ( G F * e 2 i z ( k z 2 ) ) ] .

Metrics