Abstract

The polarimetric sensing characteristics of multi-mode-fiber based tilted fiber Bragg gratings (MMF-TFBG) have been analyzed and experimentally demonstrated. The larger diameter fiber core and graded index core/cladding profile enable the tilted gratings to excite multiple high-order core modes with significantly different polarization dependence and to form a well-defined “comb” of spectrally separated resonances at different wavelengths. Orientation-recognized twist/rotation measurements (−90° to 90°) have been achieved with sensitivity of 0.075 dB/deg by using intensity monitoring of two orthogonally polarized odd core-modes (LP11 and LP12). The proposed sensor is compact, works in reflection (a short section of MMF-TFBG spliced with a leading-in single mode fiber without any offset or tapering), is insensitive to temperature (intensity detection instead of wavelength monitoring) and is immune to unwanted intensity fluctuations (differential intensity measurement). Other TFBG sensing modalities, such as lateral pressure and surrounding refractive index are demonstrated separately with the same device configuration and interrogation principles.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. W. Morey, and W. H. Glenn, “In-fiber Bragg grating tap,” Optical Fiber Communication Conference, TUG1 (1990).
  2. T. Erdogan, J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996).
    [CrossRef]
  3. J. Albert, L. Y. Shao, C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [CrossRef]
  4. K. Zhou, G. Simpson, X. Chen, L. Zhang, I. Bennion, “High extinction ratio in-fiber polarizers based on 45 ° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
    [CrossRef] [PubMed]
  5. T. Guo, A. Ivanov, C. K. Chen, J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33(9), 1004–1006 (2008).
    [CrossRef] [PubMed]
  6. T. Guo, L. B. Shang, Y. Ran, B. O. Guan, J. Albert, “Fiber-optic vector vibroscope,” Opt. Lett. 37(13), 2703–2705 (2012).
    [CrossRef] [PubMed]
  7. T. Guo, L. Y. Shao, H. Y. Tam, P. A. Krug, J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express 17(23), 20651–20660 (2009).
    [CrossRef] [PubMed]
  8. Y. X. Jin, C. C. Chan, X. Y. Dong, Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
    [CrossRef]
  9. L. Y. Shao, J. Albert, “Compact fiber-optic vector inclinometer,” Opt. Lett. 35(7), 1034–1036 (2010).
    [CrossRef] [PubMed]
  10. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
    [CrossRef] [PubMed]
  11. T. Guo, H. Y. Tam, P. A. Krug, J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
    [CrossRef] [PubMed]
  12. Y. C. Lu, R. Geng, C. C. Wang, F. Zhang, C. Liu, T. G. Ning, S. S. Jian, “Polarization effects in tilted fiber Bragg grating refractometers,” J. Lightwave Technol. 28(11), 1677–1684 (2010).
    [CrossRef]
  13. C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
    [CrossRef]
  14. S. Maguis, G. Laffont, P. Ferdinand, B. Carbonnier, K. Kham, T. Mekhalif, M. C. Millot, “Biofunctionalized tilted Fiber Bragg gratings for label-free immunosensing,” Opt. Express 16(23), 19049–19062 (2008).
    [CrossRef] [PubMed]
  15. Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
    [CrossRef] [PubMed]
  16. V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
    [CrossRef] [PubMed]
  17. C. G. Liu, Y. P. Cui, “Fiber Bragg grating spectra in multimode optical fibers,” J. Lightwave Technol. 24(1), 598–604 (2006).
    [CrossRef]
  18. X. F. Yang, C. L. Zhao, J. Q. Zhou, X. Guo, J. H. Ng, X. Q. Zhou, C. Lu, “The characteristics of fiber slanted gratings in multimode fiber,” Opt. Commun. 229(1–6), 161–165 (2004).
    [CrossRef]
  19. X. F. Chen, K. M. Zhou, L. Zhang, I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photon. Technol. Lett. 17(4), 864–866 (2005).
    [CrossRef]
  20. C. L. Zhao, X. F. Yang, M. S. Demokan, W. Jin, “Simultaneous temperature and refractive index measurement using 3° slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24(2), 879–883 (2006).
    [CrossRef]
  21. D. Y. Li, Y. Gong, Y. Wu, “Tilted fiber Bragg grating in graded-index multimode fiber and its sensing characteristics,” Photon. Sens. 3(2), 112–117 (2013).
    [CrossRef]
  22. K. Zhou, L. Zhang, X. F. Chen, I. Bennion, “Low thermal sensitivity grating devices based on ex-45° tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24(12), 5087–5094 (2006).
    [CrossRef]
  23. D. Lesnik, D. Donlagic, “In-line, fiber-optic polarimetric twist/torsion sensor,” Opt. Lett. 38(9), 1494–1496 (2013).
    [CrossRef] [PubMed]
  24. T. Guo, F. Liu, F. Du, Z. C. Zhang, C. J. Li, B. O. Guan, J. Albert, “VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor,” Opt. Express 21(16), 19097–19102 (2013).
    [CrossRef] [PubMed]

2014

V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[CrossRef] [PubMed]

2013

J. Albert, L. Y. Shao, C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[CrossRef]

D. Y. Li, Y. Gong, Y. Wu, “Tilted fiber Bragg grating in graded-index multimode fiber and its sensing characteristics,” Photon. Sens. 3(2), 112–117 (2013).
[CrossRef]

D. Lesnik, D. Donlagic, “In-line, fiber-optic polarimetric twist/torsion sensor,” Opt. Lett. 38(9), 1494–1496 (2013).
[CrossRef] [PubMed]

T. Guo, F. Liu, F. Du, Z. C. Zhang, C. J. Li, B. O. Guan, J. Albert, “VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor,” Opt. Express 21(16), 19097–19102 (2013).
[CrossRef] [PubMed]

2012

2011

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[CrossRef] [PubMed]

2010

2009

2008

2007

2006

2005

X. F. Chen, K. M. Zhou, L. Zhang, I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photon. Technol. Lett. 17(4), 864–866 (2005).
[CrossRef]

K. Zhou, G. Simpson, X. Chen, L. Zhang, I. Bennion, “High extinction ratio in-fiber polarizers based on 45 ° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
[CrossRef] [PubMed]

2004

X. F. Yang, C. L. Zhao, J. Q. Zhou, X. Guo, J. H. Ng, X. Q. Zhou, C. Lu, “The characteristics of fiber slanted gratings in multimode fiber,” Opt. Commun. 229(1–6), 161–165 (2004).
[CrossRef]

1996

Albert, J.

J. Albert, L. Y. Shao, C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[CrossRef]

T. Guo, F. Liu, F. Du, Z. C. Zhang, C. J. Li, B. O. Guan, J. Albert, “VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor,” Opt. Express 21(16), 19097–19102 (2013).
[CrossRef] [PubMed]

T. Guo, L. B. Shang, Y. Ran, B. O. Guan, J. Albert, “Fiber-optic vector vibroscope,” Opt. Lett. 37(13), 2703–2705 (2012).
[CrossRef] [PubMed]

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[CrossRef] [PubMed]

L. Y. Shao, J. Albert, “Compact fiber-optic vector inclinometer,” Opt. Lett. 35(7), 1034–1036 (2010).
[CrossRef] [PubMed]

T. Guo, L. Y. Shao, H. Y. Tam, P. A. Krug, J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express 17(23), 20651–20660 (2009).
[CrossRef] [PubMed]

T. Guo, H. Y. Tam, P. A. Krug, J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
[CrossRef] [PubMed]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[CrossRef]

T. Guo, A. Ivanov, C. K. Chen, J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33(9), 1004–1006 (2008).
[CrossRef] [PubMed]

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

Bennion, I.

Bette, S.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[CrossRef]

Blair, D. A. D.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[CrossRef] [PubMed]

Carbonnier, B.

Caucheteur, C.

V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[CrossRef] [PubMed]

J. Albert, L. Y. Shao, C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[CrossRef]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[CrossRef]

Chan, C. C.

Y. X. Jin, C. C. Chan, X. Y. Dong, Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[CrossRef]

Chan, C. F.

Chen, C.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[CrossRef]

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

Chen, C. K.

Chen, X.

Chen, X. F.

K. Zhou, L. Zhang, X. F. Chen, I. Bennion, “Low thermal sensitivity grating devices based on ex-45° tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24(12), 5087–5094 (2006).
[CrossRef]

X. F. Chen, K. M. Zhou, L. Zhang, I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photon. Technol. Lett. 17(4), 864–866 (2005).
[CrossRef]

Cui, Y. P.

Damman, P.

V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[CrossRef] [PubMed]

Demokan, M. S.

DeRosa, M. C.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[CrossRef] [PubMed]

Dong, X. Y.

Y. X. Jin, C. C. Chan, X. Y. Dong, Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[CrossRef]

Donlagic, D.

Du, F.

Erdogan, T.

Ferdinand, P.

Francis, T. J.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[CrossRef] [PubMed]

Geng, R.

Gong, Y.

D. Y. Li, Y. Gong, Y. Wu, “Tilted fiber Bragg grating in graded-index multimode fiber and its sensing characteristics,” Photon. Sens. 3(2), 112–117 (2013).
[CrossRef]

Guan, B. O.

Guo, T.

Guo, X.

X. F. Yang, C. L. Zhao, J. Q. Zhou, X. Guo, J. H. Ng, X. Q. Zhou, C. Lu, “The characteristics of fiber slanted gratings in multimode fiber,” Opt. Commun. 229(1–6), 161–165 (2004).
[CrossRef]

Ivanov, A.

Jafari, A.

Jian, S. S.

Jin, W.

Jin, Y. X.

Y. X. Jin, C. C. Chan, X. Y. Dong, Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[CrossRef]

Kham, K.

Krug, P. A.

Laffont, G.

Laronche, A.

Lesnik, D.

Li, C. J.

Li, D. Y.

D. Y. Li, Y. Gong, Y. Wu, “Tilted fiber Bragg grating in graded-index multimode fiber and its sensing characteristics,” Photon. Sens. 3(2), 112–117 (2013).
[CrossRef]

Liu, C.

Liu, C. G.

Liu, F.

Lu, C.

X. F. Yang, C. L. Zhao, J. Q. Zhou, X. Guo, J. H. Ng, X. Q. Zhou, C. Lu, “The characteristics of fiber slanted gratings in multimode fiber,” Opt. Commun. 229(1–6), 161–165 (2004).
[CrossRef]

Lu, Y. C.

Maguis, S.

Megret, P.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[CrossRef]

Mégret, P.

V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[CrossRef] [PubMed]

Mekhalif, T.

Millot, M. C.

Ng, J. H.

X. F. Yang, C. L. Zhao, J. Q. Zhou, X. Guo, J. H. Ng, X. Q. Zhou, C. Lu, “The characteristics of fiber slanted gratings in multimode fiber,” Opt. Commun. 229(1–6), 161–165 (2004).
[CrossRef]

Ning, T. G.

Pilate, J.

V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[CrossRef] [PubMed]

Ran, Y.

Shang, L. B.

Shao, L. Y.

Shevchenko, Y.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[CrossRef] [PubMed]

Simpson, G.

Sipe, J. E.

Tam, H. Y.

Thomson, D. J.

Voisin, V.

V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[CrossRef] [PubMed]

Walsh, R.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[CrossRef] [PubMed]

Wang, C. C.

Wu, Y.

D. Y. Li, Y. Gong, Y. Wu, “Tilted fiber Bragg grating in graded-index multimode fiber and its sensing characteristics,” Photon. Sens. 3(2), 112–117 (2013).
[CrossRef]

Wuilpart, M.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[CrossRef]

Yang, X. F.

C. L. Zhao, X. F. Yang, M. S. Demokan, W. Jin, “Simultaneous temperature and refractive index measurement using 3° slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24(2), 879–883 (2006).
[CrossRef]

X. F. Yang, C. L. Zhao, J. Q. Zhou, X. Guo, J. H. Ng, X. Q. Zhou, C. Lu, “The characteristics of fiber slanted gratings in multimode fiber,” Opt. Commun. 229(1–6), 161–165 (2004).
[CrossRef]

Zhang, F.

Zhang, L.

Zhang, Y. F.

Y. X. Jin, C. C. Chan, X. Y. Dong, Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[CrossRef]

Zhang, Z. C.

Zhao, C. L.

C. L. Zhao, X. F. Yang, M. S. Demokan, W. Jin, “Simultaneous temperature and refractive index measurement using 3° slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24(2), 879–883 (2006).
[CrossRef]

X. F. Yang, C. L. Zhao, J. Q. Zhou, X. Guo, J. H. Ng, X. Q. Zhou, C. Lu, “The characteristics of fiber slanted gratings in multimode fiber,” Opt. Commun. 229(1–6), 161–165 (2004).
[CrossRef]

Zhou, J. Q.

X. F. Yang, C. L. Zhao, J. Q. Zhou, X. Guo, J. H. Ng, X. Q. Zhou, C. Lu, “The characteristics of fiber slanted gratings in multimode fiber,” Opt. Commun. 229(1–6), 161–165 (2004).
[CrossRef]

Zhou, K.

Zhou, K. M.

X. F. Chen, K. M. Zhou, L. Zhang, I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photon. Technol. Lett. 17(4), 864–866 (2005).
[CrossRef]

Zhou, X. Q.

X. F. Yang, C. L. Zhao, J. Q. Zhou, X. Guo, J. H. Ng, X. Q. Zhou, C. Lu, “The characteristics of fiber slanted gratings in multimode fiber,” Opt. Commun. 229(1–6), 161–165 (2004).
[CrossRef]

Anal. Chem.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[CrossRef] [PubMed]

Appl. Opt.

Biosens. Bioelectron.

V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[CrossRef]

X. F. Chen, K. M. Zhou, L. Zhang, I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photon. Technol. Lett. 17(4), 864–866 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Laser Photonics Rev.

J. Albert, L. Y. Shao, C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[CrossRef]

Opt. Commun.

Y. X. Jin, C. C. Chan, X. Y. Dong, Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[CrossRef]

X. F. Yang, C. L. Zhao, J. Q. Zhou, X. Guo, J. H. Ng, X. Q. Zhou, C. Lu, “The characteristics of fiber slanted gratings in multimode fiber,” Opt. Commun. 229(1–6), 161–165 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Photon. Sens.

D. Y. Li, Y. Gong, Y. Wu, “Tilted fiber Bragg grating in graded-index multimode fiber and its sensing characteristics,” Photon. Sens. 3(2), 112–117 (2013).
[CrossRef]

Other

G. Meltz, W. W. Morey, and W. H. Glenn, “In-fiber Bragg grating tap,” Optical Fiber Communication Conference, TUG1 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison between SMF-TFBG and MMF-TFBG: (I) schematic diagram of SMF-TFBG (Δ = 0.36% step index profile with core/cladding diameters of 9/125 μm, tilted angle 4°) and (II) MMF-TFBG (Δ = 2% graded index profile with core/cladding diameters of 62.5/125 μm, tilted angle 4°); (a) experimental transmission spectra of 4° SMF-TFBG (with single core mode and strong claddings modes) and (b) 4° MMF-TFBG (with multiple core modes and weak cladding modes); (c) simulation spectra of ghost modes and core mode of SMF-TFBG with component azimuthal mode families LP0m and LP1n and that of (d) multiple core modes of MMF-TFBG, insets show the transverse electric field amplitude distributions of each mode.

Fig. 2
Fig. 2

MMF-TFBG characteristics: (a) experimental transmission spectra of MMF-TFBG with the tilt angle range from 2° to 16°, (b) spectral response (cladding modes in transmission) of 12° MMF-TFBG versus surrounding RI, (c) spectral response (core modes in reflection) of 4° MMF-TFBG versus two orthogonal lateral pressure (X- and Y-axis).

Fig. 3
Fig. 3

Schematic diagram of orthogonal-polarimetric vector rotation sensing system.

Fig. 4
Fig. 4

Spectral response of orthogonal-polarimetric MMF-TFBG core-modes: (a) reflection spectra of rotation over 0° to 90°, (b) differential spectral response (Ip-p) versus rotation, (c) differential intensity response of orthogonal-polarimetric core modes (LP11 and LP12) versus clockwise and anticlockwise rotation.

Metrics