Abstract

The fabrication of NanoTube Black, a Vertically Aligned carbon NanoTube Array (VANTA) on aluminium substrates is reported for the first time. The coating on aluminium was realised using a process that employs top down thermal radiation to assist growth, enabling deposition at temperatures below the substrate’s melting point. The NanoTube Black coatings were shown to exhibit directional hemispherical reflectance values of typically less than 1% across wavelengths in the 2.5 µm to 15 µm range. VANTA-coated aluminium substrates were subjected to space qualification testing (mass loss, outgassing, shock, vibration and temperature cycling) before their optical properties were re-assessed. Within measurement uncertainty, no changes to hemispherical reflectance were detected, confirming that NanoTube Black coatings on aluminium are good candidates for Earth Observation (EO) applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Blevin, J. Geist, “Influence of black coatings on pyroelectric detectors,” Appl. Opt. 13(5), 1171–1178 (1974).
    [CrossRef] [PubMed]
  2. M. J. Persky, “Review of black surfaces for space-borne infrared systems,” Rev. Sci. Instrum. 70(5), 2193–2217 (1999).
    [CrossRef]
  3. S. M. Pompea, D. W. Bergener, and D. F. Shepard, “Optically black coating with improved infrared absorption and process of formation,” United states Patent Number 4,589,972 (1986).
  4. K. A. Karki, “Process for forming an optical black surface and surface formed thereby,” Patent application number US 05/946,786 (1979).
  5. S. Kodama, M. Horiuchi, T. Kunii, K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas. 39(1), 230–232 (1990).
    [CrossRef]
  6. R. J. C. Brown, P. J. Brewer, M. J. T. Milton, “The physical and chemical properties of electroless nickel-phosphorous alloys and low reflectance nickel-phosphorous black surfaces,” J. Mater. Chem. 12(9), 2749–2754 (2002).
    [CrossRef]
  7. F. J. García-Vidal, J. M. Pitarke, J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78(22), 4289–4292 (1997).
    [CrossRef]
  8. Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
    [CrossRef] [PubMed]
  9. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
    [CrossRef] [PubMed]
  10. M. A. Quijada, J. G. Hagopian, S. Getty, R. E. Kinzer, and E. J. Wollack, “Hemispherical reflectance and emittance properties of Carbon nanotube coatings at infrared wavelengths,” Proc. of SPIE 8150 (2011).
  11. Z. P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, S. Y. Lin, “Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array,” Appl. Opt. 50(13), 1850–1855 (2011).
    [CrossRef] [PubMed]
  12. E. Theocharous, R. Deshpande, A. C. Dillon, J. Lehman, “Evaluation of a pyroelectric detector with a carbon multiwalled nanotube black coating in the infrared,” Appl. Opt. 45(6), 1093–1097 (2006).
    [CrossRef] [PubMed]
  13. S. P. Theocharous, E. Theocharous, J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infr. Phys. & Tech. 55(4), 299–305 (2012).
    [CrossRef]
  14. C. J. Chunnilall, J. H. Lehman, E. Theocharous, A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50 µm wavelength region,” Carbon 50(14), 5348–5350 (2012).
    [CrossRef]
  15. J. H. Lehman, B. Lee, E. N. Grossman, “Far infrared thermal detectors for laser radiometry using a carbon nanotube array,” Appl. Opt. 50(21), 4099–4104 (2011).
    [CrossRef] [PubMed]
  16. M. A. Quijada, M. Wilson, E. Waluschka, C. R. McClain, “Optical component performance for the Ocean Radiometer for Carbon Assessment (ORCA),” Proc. SPIE 8153, Earth Observing SystemsXVI, (2011), doi:.
    [CrossRef]
  17. P. J. Gero, J. A. Dykema, J. G. Anderson, “A Blackbody design for SI-traceable radiometry for Earth Observation,” J. Atmos. Ocean. Technol. 25(11), 2046–2054 (2008).
    [CrossRef]
  18. I. M. Mason, P. H. Sheather, J. A. Bowles, G. Davies, “Blackbody calibration sources of high accuracy for a spaceborne infrared instrument: the Along Track Scanning Radiometer,” Appl. Opt. 35(4), 629–639 (1996).
    [CrossRef] [PubMed]
  19. C. Lijie, R. Vajtai, P. M. Ajayan, “Vertically Aligned Large-Diameter Double-Walled Carbon Nanotube Arrays Having Ultralow Density,” J. Phys. Chem. C 111(26), 9077–9080 (2007).
    [CrossRef]
  20. N. G. Shang, Y. Y. Tan, V. Stolojan, P. Papakonstantinou, S. R. P. Silva, “High-rate low-temperature growth of vertically aligned carbon nanotubes,” Nanotechnology 21(50), 505604 (2010).
    [CrossRef] [PubMed]
  21. G. Y. Chen, B. Jensen, V. Stolojan, S. R. P. Silva, “Growth of carbon nanotubes at temperatures compatible with integrated circuit technologies,” Carbon 49(1), 280–285 (2011).
    [CrossRef]
  22. C. Chunnilall, E. Theocharous, “Infrared hemispherical reflectance measurements in the 2.5 μm to 50 μm wavelength region using an FT spectrometer,” Metrologia 49, S73–S80 (2012).
    [CrossRef]
  23. J. M. Palmer, “The measurement of transmission absorption emission and reflection,” in Handbook of Optics, 2nd edition, M. Bass, editor (McGraw-Hill, 1994), Part II, Chapter 25.
  24. F. J. J. Clarke, D. J. Parry, “Helmholtz reciprocity: Its validity and application to reflectometry,” Light. Res. Technol 17, 1–11 (1985).
  25. S. Berber, Y. K. Kwon, D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84(20), 4613–4616 (2000).
    [CrossRef] [PubMed]
  26. A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Tanemura, G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49(1), 294–298 (2011).
    [CrossRef]

2012 (3)

S. P. Theocharous, E. Theocharous, J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infr. Phys. & Tech. 55(4), 299–305 (2012).
[CrossRef]

C. J. Chunnilall, J. H. Lehman, E. Theocharous, A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50 µm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[CrossRef]

C. Chunnilall, E. Theocharous, “Infrared hemispherical reflectance measurements in the 2.5 μm to 50 μm wavelength region using an FT spectrometer,” Metrologia 49, S73–S80 (2012).
[CrossRef]

2011 (4)

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Tanemura, G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49(1), 294–298 (2011).
[CrossRef]

J. H. Lehman, B. Lee, E. N. Grossman, “Far infrared thermal detectors for laser radiometry using a carbon nanotube array,” Appl. Opt. 50(21), 4099–4104 (2011).
[CrossRef] [PubMed]

G. Y. Chen, B. Jensen, V. Stolojan, S. R. P. Silva, “Growth of carbon nanotubes at temperatures compatible with integrated circuit technologies,” Carbon 49(1), 280–285 (2011).
[CrossRef]

Z. P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, S. Y. Lin, “Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array,” Appl. Opt. 50(13), 1850–1855 (2011).
[CrossRef] [PubMed]

2010 (1)

N. G. Shang, Y. Y. Tan, V. Stolojan, P. Papakonstantinou, S. R. P. Silva, “High-rate low-temperature growth of vertically aligned carbon nanotubes,” Nanotechnology 21(50), 505604 (2010).
[CrossRef] [PubMed]

2009 (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

2008 (2)

P. J. Gero, J. A. Dykema, J. G. Anderson, “A Blackbody design for SI-traceable radiometry for Earth Observation,” J. Atmos. Ocean. Technol. 25(11), 2046–2054 (2008).
[CrossRef]

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[CrossRef] [PubMed]

2007 (1)

C. Lijie, R. Vajtai, P. M. Ajayan, “Vertically Aligned Large-Diameter Double-Walled Carbon Nanotube Arrays Having Ultralow Density,” J. Phys. Chem. C 111(26), 9077–9080 (2007).
[CrossRef]

2006 (1)

2002 (1)

R. J. C. Brown, P. J. Brewer, M. J. T. Milton, “The physical and chemical properties of electroless nickel-phosphorous alloys and low reflectance nickel-phosphorous black surfaces,” J. Mater. Chem. 12(9), 2749–2754 (2002).
[CrossRef]

2000 (1)

S. Berber, Y. K. Kwon, D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84(20), 4613–4616 (2000).
[CrossRef] [PubMed]

1999 (1)

M. J. Persky, “Review of black surfaces for space-borne infrared systems,” Rev. Sci. Instrum. 70(5), 2193–2217 (1999).
[CrossRef]

1997 (1)

F. J. García-Vidal, J. M. Pitarke, J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78(22), 4289–4292 (1997).
[CrossRef]

1996 (1)

1990 (1)

S. Kodama, M. Horiuchi, T. Kunii, K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas. 39(1), 230–232 (1990).
[CrossRef]

1985 (1)

F. J. J. Clarke, D. J. Parry, “Helmholtz reciprocity: Its validity and application to reflectometry,” Light. Res. Technol 17, 1–11 (1985).

1974 (1)

Ajayan, P. M.

Z. P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, S. Y. Lin, “Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array,” Appl. Opt. 50(13), 1850–1855 (2011).
[CrossRef] [PubMed]

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[CrossRef] [PubMed]

C. Lijie, R. Vajtai, P. M. Ajayan, “Vertically Aligned Large-Diameter Double-Walled Carbon Nanotube Arrays Having Ultralow Density,” J. Phys. Chem. C 111(26), 9077–9080 (2007).
[CrossRef]

Akoshima, M.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Tanemura, G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49(1), 294–298 (2011).
[CrossRef]

Anderson, J. G.

P. J. Gero, J. A. Dykema, J. G. Anderson, “A Blackbody design for SI-traceable radiometry for Earth Observation,” J. Atmos. Ocean. Technol. 25(11), 2046–2054 (2008).
[CrossRef]

Berber, S.

S. Berber, Y. K. Kwon, D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84(20), 4613–4616 (2000).
[CrossRef] [PubMed]

Blevin, W. R.

Bowles, J. A.

Brewer, P. J.

R. J. C. Brown, P. J. Brewer, M. J. T. Milton, “The physical and chemical properties of electroless nickel-phosphorous alloys and low reflectance nickel-phosphorous black surfaces,” J. Mater. Chem. 12(9), 2749–2754 (2002).
[CrossRef]

Brown, R. J. C.

R. J. C. Brown, P. J. Brewer, M. J. T. Milton, “The physical and chemical properties of electroless nickel-phosphorous alloys and low reflectance nickel-phosphorous black surfaces,” J. Mater. Chem. 12(9), 2749–2754 (2002).
[CrossRef]

Bur, J. A.

Z. P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, S. Y. Lin, “Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array,” Appl. Opt. 50(13), 1850–1855 (2011).
[CrossRef] [PubMed]

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[CrossRef] [PubMed]

Chen, G. Y.

G. Y. Chen, B. Jensen, V. Stolojan, S. R. P. Silva, “Growth of carbon nanotubes at temperatures compatible with integrated circuit technologies,” Carbon 49(1), 280–285 (2011).
[CrossRef]

Chunnilall, C.

C. Chunnilall, E. Theocharous, “Infrared hemispherical reflectance measurements in the 2.5 μm to 50 μm wavelength region using an FT spectrometer,” Metrologia 49, S73–S80 (2012).
[CrossRef]

Chunnilall, C. J.

C. J. Chunnilall, J. H. Lehman, E. Theocharous, A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50 µm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[CrossRef]

Ci, L.

Z. P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, S. Y. Lin, “Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array,” Appl. Opt. 50(13), 1850–1855 (2011).
[CrossRef] [PubMed]

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[CrossRef] [PubMed]

Clarke, F. J. J.

F. J. J. Clarke, D. J. Parry, “Helmholtz reciprocity: Its validity and application to reflectometry,” Light. Res. Technol 17, 1–11 (1985).

Davies, G.

Deshpande, R.

Dillon, A. C.

Dykema, J. A.

P. J. Gero, J. A. Dykema, J. G. Anderson, “A Blackbody design for SI-traceable radiometry for Earth Observation,” J. Atmos. Ocean. Technol. 25(11), 2046–2054 (2008).
[CrossRef]

Futaba, D. N.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

García-Vidal, F. J.

F. J. García-Vidal, J. M. Pitarke, J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78(22), 4289–4292 (1997).
[CrossRef]

Geist, J.

Gero, P. J.

P. J. Gero, J. A. Dykema, J. G. Anderson, “A Blackbody design for SI-traceable radiometry for Earth Observation,” J. Atmos. Ocean. Technol. 25(11), 2046–2054 (2008).
[CrossRef]

Grossman, E. N.

Gunjishima, I.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Tanemura, G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49(1), 294–298 (2011).
[CrossRef]

Hanssen, L. M.

Hata, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Horiuchi, M.

S. Kodama, M. Horiuchi, T. Kunii, K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas. 39(1), 230–232 (1990).
[CrossRef]

Hsieh, M. L.

Inoue, T.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Tanemura, G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49(1), 294–298 (2011).
[CrossRef]

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Jensen, B.

G. Y. Chen, B. Jensen, V. Stolojan, S. R. P. Silva, “Growth of carbon nanotubes at temperatures compatible with integrated circuit technologies,” Carbon 49(1), 280–285 (2011).
[CrossRef]

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Kodama, S.

S. Kodama, M. Horiuchi, T. Kunii, K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas. 39(1), 230–232 (1990).
[CrossRef]

Kunii, T.

S. Kodama, M. Horiuchi, T. Kunii, K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas. 39(1), 230–232 (1990).
[CrossRef]

Kuroda, K.

S. Kodama, M. Horiuchi, T. Kunii, K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas. 39(1), 230–232 (1990).
[CrossRef]

Kwon, Y. K.

S. Berber, Y. K. Kwon, D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84(20), 4613–4616 (2000).
[CrossRef] [PubMed]

Lee, B.

Lehman, J.

Lehman, J. H.

C. J. Chunnilall, J. H. Lehman, E. Theocharous, A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50 µm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[CrossRef]

S. P. Theocharous, E. Theocharous, J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infr. Phys. & Tech. 55(4), 299–305 (2012).
[CrossRef]

J. H. Lehman, B. Lee, E. N. Grossman, “Far infrared thermal detectors for laser radiometry using a carbon nanotube array,” Appl. Opt. 50(21), 4099–4104 (2011).
[CrossRef] [PubMed]

Lijie, C.

C. Lijie, R. Vajtai, P. M. Ajayan, “Vertically Aligned Large-Diameter Double-Walled Carbon Nanotube Arrays Having Ultralow Density,” J. Phys. Chem. C 111(26), 9077–9080 (2007).
[CrossRef]

Lin, S. Y.

Z. P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, S. Y. Lin, “Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array,” Appl. Opt. 50(13), 1850–1855 (2011).
[CrossRef] [PubMed]

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[CrossRef] [PubMed]

Mason, I. M.

McClain, C. R.

M. A. Quijada, M. Wilson, E. Waluschka, C. R. McClain, “Optical component performance for the Ocean Radiometer for Carbon Assessment (ORCA),” Proc. SPIE 8153, Earth Observing SystemsXVI, (2011), doi:.
[CrossRef]

Milton, M. J. T.

R. J. C. Brown, P. J. Brewer, M. J. T. Milton, “The physical and chemical properties of electroless nickel-phosphorous alloys and low reflectance nickel-phosphorous black surfaces,” J. Mater. Chem. 12(9), 2749–2754 (2002).
[CrossRef]

Miyagawa, H.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Tanemura, G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49(1), 294–298 (2011).
[CrossRef]

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Nakano, T.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Tanemura, G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49(1), 294–298 (2011).
[CrossRef]

Okamoto, A.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Tanemura, G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49(1), 294–298 (2011).
[CrossRef]

Oomi, G.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Tanemura, G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49(1), 294–298 (2011).
[CrossRef]

Papakonstantinou, P.

N. G. Shang, Y. Y. Tan, V. Stolojan, P. Papakonstantinou, S. R. P. Silva, “High-rate low-temperature growth of vertically aligned carbon nanotubes,” Nanotechnology 21(50), 505604 (2010).
[CrossRef] [PubMed]

Parry, D. J.

F. J. J. Clarke, D. J. Parry, “Helmholtz reciprocity: Its validity and application to reflectometry,” Light. Res. Technol 17, 1–11 (1985).

Pendry, J. B.

F. J. García-Vidal, J. M. Pitarke, J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78(22), 4289–4292 (1997).
[CrossRef]

Persky, M. J.

M. J. Persky, “Review of black surfaces for space-borne infrared systems,” Rev. Sci. Instrum. 70(5), 2193–2217 (1999).
[CrossRef]

Pitarke, J. M.

F. J. García-Vidal, J. M. Pitarke, J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78(22), 4289–4292 (1997).
[CrossRef]

Quijada, M. A.

M. A. Quijada, M. Wilson, E. Waluschka, C. R. McClain, “Optical component performance for the Ocean Radiometer for Carbon Assessment (ORCA),” Proc. SPIE 8153, Earth Observing SystemsXVI, (2011), doi:.
[CrossRef]

Sanders, A.

C. J. Chunnilall, J. H. Lehman, E. Theocharous, A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50 µm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[CrossRef]

Shang, N. G.

N. G. Shang, Y. Y. Tan, V. Stolojan, P. Papakonstantinou, S. R. P. Silva, “High-rate low-temperature growth of vertically aligned carbon nanotubes,” Nanotechnology 21(50), 505604 (2010).
[CrossRef] [PubMed]

Sheather, P. H.

Silva, S. R. P.

G. Y. Chen, B. Jensen, V. Stolojan, S. R. P. Silva, “Growth of carbon nanotubes at temperatures compatible with integrated circuit technologies,” Carbon 49(1), 280–285 (2011).
[CrossRef]

N. G. Shang, Y. Y. Tan, V. Stolojan, P. Papakonstantinou, S. R. P. Silva, “High-rate low-temperature growth of vertically aligned carbon nanotubes,” Nanotechnology 21(50), 505604 (2010).
[CrossRef] [PubMed]

Stolojan, V.

G. Y. Chen, B. Jensen, V. Stolojan, S. R. P. Silva, “Growth of carbon nanotubes at temperatures compatible with integrated circuit technologies,” Carbon 49(1), 280–285 (2011).
[CrossRef]

N. G. Shang, Y. Y. Tan, V. Stolojan, P. Papakonstantinou, S. R. P. Silva, “High-rate low-temperature growth of vertically aligned carbon nanotubes,” Nanotechnology 21(50), 505604 (2010).
[CrossRef] [PubMed]

Tan, Y. Y.

N. G. Shang, Y. Y. Tan, V. Stolojan, P. Papakonstantinou, S. R. P. Silva, “High-rate low-temperature growth of vertically aligned carbon nanotubes,” Nanotechnology 21(50), 505604 (2010).
[CrossRef] [PubMed]

Tanemura, T.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Tanemura, G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49(1), 294–298 (2011).
[CrossRef]

Theocharous, E.

C. Chunnilall, E. Theocharous, “Infrared hemispherical reflectance measurements in the 2.5 μm to 50 μm wavelength region using an FT spectrometer,” Metrologia 49, S73–S80 (2012).
[CrossRef]

S. P. Theocharous, E. Theocharous, J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infr. Phys. & Tech. 55(4), 299–305 (2012).
[CrossRef]

C. J. Chunnilall, J. H. Lehman, E. Theocharous, A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50 µm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[CrossRef]

E. Theocharous, R. Deshpande, A. C. Dillon, J. Lehman, “Evaluation of a pyroelectric detector with a carbon multiwalled nanotube black coating in the infrared,” Appl. Opt. 45(6), 1093–1097 (2006).
[CrossRef] [PubMed]

Theocharous, S. P.

S. P. Theocharous, E. Theocharous, J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infr. Phys. & Tech. 55(4), 299–305 (2012).
[CrossRef]

Tomanek, D.

S. Berber, Y. K. Kwon, D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84(20), 4613–4616 (2000).
[CrossRef] [PubMed]

Vajtai, R.

C. Lijie, R. Vajtai, P. M. Ajayan, “Vertically Aligned Large-Diameter Double-Walled Carbon Nanotube Arrays Having Ultralow Density,” J. Phys. Chem. C 111(26), 9077–9080 (2007).
[CrossRef]

Waluschka, E.

M. A. Quijada, M. Wilson, E. Waluschka, C. R. McClain, “Optical component performance for the Ocean Radiometer for Carbon Assessment (ORCA),” Proc. SPIE 8153, Earth Observing SystemsXVI, (2011), doi:.
[CrossRef]

Wilson, M.

M. A. Quijada, M. Wilson, E. Waluschka, C. R. McClain, “Optical component performance for the Ocean Radiometer for Carbon Assessment (ORCA),” Proc. SPIE 8153, Earth Observing SystemsXVI, (2011), doi:.
[CrossRef]

Wilthan, B.

Yang, Z. P.

Z. P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, S. Y. Lin, “Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array,” Appl. Opt. 50(13), 1850–1855 (2011).
[CrossRef] [PubMed]

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[CrossRef] [PubMed]

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Appl. Opt. (5)

Carbon (3)

C. J. Chunnilall, J. H. Lehman, E. Theocharous, A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50 µm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[CrossRef]

G. Y. Chen, B. Jensen, V. Stolojan, S. R. P. Silva, “Growth of carbon nanotubes at temperatures compatible with integrated circuit technologies,” Carbon 49(1), 280–285 (2011).
[CrossRef]

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Tanemura, G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49(1), 294–298 (2011).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

S. Kodama, M. Horiuchi, T. Kunii, K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas. 39(1), 230–232 (1990).
[CrossRef]

Infr. Phys. & Tech. (1)

S. P. Theocharous, E. Theocharous, J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infr. Phys. & Tech. 55(4), 299–305 (2012).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

P. J. Gero, J. A. Dykema, J. G. Anderson, “A Blackbody design for SI-traceable radiometry for Earth Observation,” J. Atmos. Ocean. Technol. 25(11), 2046–2054 (2008).
[CrossRef]

J. Mater. Chem. (1)

R. J. C. Brown, P. J. Brewer, M. J. T. Milton, “The physical and chemical properties of electroless nickel-phosphorous alloys and low reflectance nickel-phosphorous black surfaces,” J. Mater. Chem. 12(9), 2749–2754 (2002).
[CrossRef]

J. Phys. Chem. C (1)

C. Lijie, R. Vajtai, P. M. Ajayan, “Vertically Aligned Large-Diameter Double-Walled Carbon Nanotube Arrays Having Ultralow Density,” J. Phys. Chem. C 111(26), 9077–9080 (2007).
[CrossRef]

Light. Res. Technol (1)

F. J. J. Clarke, D. J. Parry, “Helmholtz reciprocity: Its validity and application to reflectometry,” Light. Res. Technol 17, 1–11 (1985).

Metrologia (1)

C. Chunnilall, E. Theocharous, “Infrared hemispherical reflectance measurements in the 2.5 μm to 50 μm wavelength region using an FT spectrometer,” Metrologia 49, S73–S80 (2012).
[CrossRef]

Nano Lett. (1)

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[CrossRef] [PubMed]

Nanotechnology (1)

N. G. Shang, Y. Y. Tan, V. Stolojan, P. Papakonstantinou, S. R. P. Silva, “High-rate low-temperature growth of vertically aligned carbon nanotubes,” Nanotechnology 21(50), 505604 (2010).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

F. J. García-Vidal, J. M. Pitarke, J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78(22), 4289–4292 (1997).
[CrossRef]

S. Berber, Y. K. Kwon, D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84(20), 4613–4616 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. J. Persky, “Review of black surfaces for space-borne infrared systems,” Rev. Sci. Instrum. 70(5), 2193–2217 (1999).
[CrossRef]

Other (5)

S. M. Pompea, D. W. Bergener, and D. F. Shepard, “Optically black coating with improved infrared absorption and process of formation,” United states Patent Number 4,589,972 (1986).

K. A. Karki, “Process for forming an optical black surface and surface formed thereby,” Patent application number US 05/946,786 (1979).

M. A. Quijada, J. G. Hagopian, S. Getty, R. E. Kinzer, and E. J. Wollack, “Hemispherical reflectance and emittance properties of Carbon nanotube coatings at infrared wavelengths,” Proc. of SPIE 8150 (2011).

M. A. Quijada, M. Wilson, E. Waluschka, C. R. McClain, “Optical component performance for the Ocean Radiometer for Carbon Assessment (ORCA),” Proc. SPIE 8153, Earth Observing SystemsXVI, (2011), doi:.
[CrossRef]

J. M. Palmer, “The measurement of transmission absorption emission and reflection,” in Handbook of Optics, 2nd edition, M. Bass, editor (McGraw-Hill, 1994), Part II, Chapter 25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Wide area view of a VANTA coating grown on an aluminium substrate. The VANTA growth mirrors the underlying substrate microstructure exactly.

Fig. 2
Fig. 2

Assembly CAD model of the aluminium sample box for vibration testing. The blackened sample (1) is mounted face down and the seal is made between lid (2) and base (4) using a PTFE gasket (3).

Fig. 3
Fig. 3

Out-of-plane axis random vibration response (solid blue line) for a mass dummy during jig tailoring exercise. This is the profile which the blackened coupons were subsequently subjected to. Solid red line shows the response from analysis of flight hardware when subjected to random vibration in out-of-plane axis; this profile was the target for coupon vibration.

Fig. 4
Fig. 4

SRS requirement (shown as a solid black line), tolerance envelope (red and brown lines) and tri-axial accelerometer response during the shock event (blue, green and orange lines).

Fig. 5
Fig. 5

SEM of a VANTA coating grown on an aluminium substrate before to it was subjected to the space qualification tests.

Fig. 6
Fig. 6

SEM of a VANTA coating grown on an aluminium substrate after to it was subjected to the space qualification tests.

Fig. 7
Fig. 7

Hemispherical reflectance of sample 1 measured before and after the space qualification tests.

Fig. 8
Fig. 8

Absolute change in the hemispherical reflectance of sample 1 due to the space qualification tests.

Fig. 9
Fig. 9

Hemispherical reflectance of sample 2 measured before and after the space qualification tests.

Fig. 10
Fig. 10

Absolute change in the hemispherical reflectance of sample 2 due to the space qualification tests.

Fig. 11
Fig. 11

Hemispherical reflectance of sample 4 measured before and after the space qualification tests.

Fig. 12
Fig. 12

Absolute change in the hemispherical reflectance of sample 4 due to the space qualification tests.

Fig. 13
Fig. 13

Hemispherical reflectance of sample 5 measured before and after the space qualification tests.

Fig. 14
Fig. 14

Absolute change in the hemispherical reflectance of sample 5 due to the space qualification tests.

Fig. 15
Fig. 15

Hemispherical reflectance of sample 6 measured before and after the space qualification tests.

Fig. 16
Fig. 16

Absolute change in the hemispherical reflectance of sample 6 due to the space qualification tests.

Fig. 17
Fig. 17

Hemispherical reflectance of sample 3 measured before and after space qualification tests (to which it was not subjected).

Fig. 18
Fig. 18

Absolute change in the hemispherical reflectance of sample 3 during the period of the space qualification tests to which it was not subjected.

Fig. 19
Fig. 19

Hemispherical reflectance of the Enhanced Martin Black reference sample measured before and after space the space qualification tests (to which it was not subjected).

Fig. 20
Fig. 20

Absolute change in the hemispherical reflectance of the Enhanced Martin Black reference sample measured before and after space the space qualification tests (to which it was not subjected).

Fig. 21
Fig. 21

The hemispherical reflectance of the six samples measured before they were subjected to the space qualification tests.

Tables (4)

Tables Icon

Table 1 Mass loss and outgassing test results (highest values taken)

Tables Icon

Table 2 Shock response spectrum requirement (tolerance + 6dB −6dB)

Tables Icon

Table 3 TV cycling limits

Tables Icon

Table 4 Summary of Some of the Conditions Which a Black Coating Has to Satisfy Before it is Adopted as a Blackbody Cavity Coating for EO Applications, Together with Comments Indicating How Well NanoTube Black Coatings Satisfy Each Condition

Metrics