Abstract

A high-speed carrier-depletion silicon modulator based on a fringe field pn junction design is presented. Due to the strong fringe field, the size of heavily doped regions can be reduced and away from the waveguide core, whereas large modulation efficiency is still accomplishable. The VπL is 1.8 V-cm and the phase shifter loss is 1.3 dB/mm. The figure of merit (FOM), defined by the product of VπL and phase shifter loss, is estimated to be 23.4 dB-V. The modulation speed and depth are 11.8 GHz and 8.1 dB, respectively, which is mainly limited by the mobility of poly-Si.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
    [CrossRef]
  2. C. Dragone, C. A. Edwards, R. C. Kistler, “Integrated optics N*N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3(10), 896–899 (1991).
    [CrossRef]
  3. X. Fang, R. O. Claus, “Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer,” Opt. Lett. 20(20), 2146–2148 (1995).
    [CrossRef] [PubMed]
  4. D. W. Kim, A. Barkai, R. Jones, N. Elek, H. Nguyen, A. Liu, “Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach-Zehnder interferometers,” Opt. Lett. 33(5), 530–532 (2008).
    [CrossRef] [PubMed]
  5. H. Takahashi, K. Oda, H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on NxN optical interconnection,” J. Lightwave Technol. 14(6), 1097–1105 (1996).
    [CrossRef]
  6. H. Talahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightwave Technol. 13(3), 447–455 (1995).
    [CrossRef]
  7. W. C. Chiu, C. Y. Lu, M. C. M. Lee, “Monolithic integration of 2-D multimode interference couplers and silicon photonic wires,” IEEE J. Sel. Top. Quantum Electron. 17(3), 540–545 (2011).
    [CrossRef]
  8. X. Tu, T. Y. Liow, J. Song, M. Yu, G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express 19(19), 18029–18035 (2011).
    [CrossRef] [PubMed]
  9. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
    [CrossRef] [PubMed]
  10. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  11. W. M. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  12. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  13. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  14. M. Ziebell, D. Marris-Morini, G. Rasigade, J. M. Fédéli, P. Crozat, E. Cassan, D. Bouville, L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express 20(10), 10591–10596 (2012).
    [CrossRef] [PubMed]
  15. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [CrossRef] [PubMed]
  16. D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007).
    [CrossRef] [PubMed]
  17. C. K. Tseng, W. T. Chen, K. H. Chen, H. D. Liu, Y. Kang, N. Na, and M. C. M. Lee, “A self-assembled microbonded Germanium/Silicon heterojunction photodiodes for 25 Gb/s high-speed optical interconnects,” Scientific Report 3 (2013).
  18. T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
    [CrossRef]
  19. L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
    [CrossRef] [PubMed]
  20. T. T. Wu, C. Y. Chou, M. C. Lee, N. Na, “A critically coupled Germanium photodetector under vertical illumination,” Opt. Express 20(28), 29338–29346 (2012).
    [CrossRef] [PubMed]
  21. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013).
    [CrossRef]
  22. G. K. Reeves, H. B. Harrison, “Obtaining the Specific contact resistance from transmission-line model measurements,” IEEE Electron Device Lett. 3(5), 111–113 (1982).
    [CrossRef]
  23. T. Kamins, Polycrystalline Silicon for Integrated Circuits and Displays (Kluwer Academic Publishers, 1998).
  24. P. Sangwoo, S. Taichi, J. P. Denton, G. W. Neudeck, “Multiple layers of silicon- on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron Device Lett. 20(5), 194–196 (1999).
    [CrossRef]

2013 (1)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013).
[CrossRef]

2012 (2)

2011 (3)

2010 (1)

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (4)

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

1999 (1)

P. Sangwoo, S. Taichi, J. P. Denton, G. W. Neudeck, “Multiple layers of silicon- on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron Device Lett. 20(5), 194–196 (1999).
[CrossRef]

1996 (1)

H. Takahashi, K. Oda, H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on NxN optical interconnection,” J. Lightwave Technol. 14(6), 1097–1105 (1996).
[CrossRef]

1995 (2)

H. Talahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightwave Technol. 13(3), 447–455 (1995).
[CrossRef]

X. Fang, R. O. Claus, “Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer,” Opt. Lett. 20(20), 2146–2148 (1995).
[CrossRef] [PubMed]

1991 (2)

C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
[CrossRef]

C. Dragone, C. A. Edwards, R. C. Kistler, “Integrated optics N*N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3(10), 896–899 (1991).
[CrossRef]

1982 (1)

G. K. Reeves, H. B. Harrison, “Obtaining the Specific contact resistance from transmission-line model measurements,” IEEE Electron Device Lett. 3(5), 111–113 (1982).
[CrossRef]

Ahn, D.

Ang, K. W.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Barkai, A.

Beals, M.

Bouville, D.

Cassan, E.

Chen, J.

Chen, S. W.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013).
[CrossRef]

Chetrit, Y.

Chiu, W. C.

W. C. Chiu, C. Y. Lu, M. C. M. Lee, “Monolithic integration of 2-D multimode interference couplers and silicon photonic wires,” IEEE J. Sel. Top. Quantum Electron. 17(3), 540–545 (2011).
[CrossRef]

Chou, C. Y.

Ciftcioglu, B.

Claus, R. O.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Crozat, P.

Damlencourt, J. F.

Denton, J. P.

P. Sangwoo, S. Taichi, J. P. Denton, G. W. Neudeck, “Multiple layers of silicon- on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron Device Lett. 20(5), 194–196 (1999).
[CrossRef]

Dragone, C.

C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
[CrossRef]

C. Dragone, C. A. Edwards, R. C. Kistler, “Integrated optics N*N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3(10), 896–899 (1991).
[CrossRef]

Edwards, C. A.

C. Dragone, C. A. Edwards, R. C. Kistler, “Integrated optics N*N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3(10), 896–899 (1991).
[CrossRef]

Elek, N.

Fang, Q.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Fang, X.

Fedeli, J.-M.

Fédéli, J. M.

Fournier, M.

Gardes, F. Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013).
[CrossRef]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[CrossRef] [PubMed]

Giziewicz, W.

Green, W. M.

Grosse, P.

Harrison, H. B.

G. K. Reeves, H. B. Harrison, “Obtaining the Specific contact resistance from transmission-line model measurements,” IEEE Electron Device Lett. 3(5), 111–113 (1982).
[CrossRef]

Hong, C. Y.

Hsu, S. S.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013).
[CrossRef]

Hu, Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013).
[CrossRef]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[CrossRef] [PubMed]

Inoue, Y.

H. Talahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightwave Technol. 13(3), 447–455 (1995).
[CrossRef]

Izhaky, N.

Jones, R.

D. W. Kim, A. Barkai, R. Jones, N. Elek, H. Nguyen, A. Liu, “Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach-Zehnder interferometers,” Opt. Lett. 33(5), 530–532 (2008).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Kärtner, F. X.

Kim, D. W.

Kimerling, L. C.

Kistler, R. C.

C. Dragone, C. A. Edwards, R. C. Kistler, “Integrated optics N*N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3(10), 896–899 (1991).
[CrossRef]

Kwong, D. L.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Laval, S.

Lecunff, Y.

Lee, M. C.

Lee, M. C. M.

W. C. Chiu, C. Y. Lu, M. C. M. Lee, “Monolithic integration of 2-D multimode interference couplers and silicon photonic wires,” IEEE J. Sel. Top. Quantum Electron. 17(3), 540–545 (2011).
[CrossRef]

Li, K.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013).
[CrossRef]

Liao, L.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liow, T. Y.

X. Tu, T. Y. Liow, J. Song, M. Yu, G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express 19(19), 18029–18035 (2011).
[CrossRef] [PubMed]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Lipson, M.

Liu, A.

Liu, J.

Lo, G. Q.

X. Tu, T. Y. Liow, J. Song, M. Yu, G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express 19(19), 18029–18035 (2011).
[CrossRef] [PubMed]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Lu, C. Y.

W. C. Chiu, C. Y. Lu, M. C. M. Lee, “Monolithic integration of 2-D multimode interference couplers and silicon photonic wires,” IEEE J. Sel. Top. Quantum Electron. 17(3), 540–545 (2011).
[CrossRef]

Manipatruni, S.

Marris-Morini, D.

Mashanovich, G.

Mashanovich, G. Z.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013).
[CrossRef]

Michel, J.

Na, N.

Nedeljkovic, M.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013).
[CrossRef]

Neudeck, G. W.

P. Sangwoo, S. Taichi, J. P. Denton, G. W. Neudeck, “Multiple layers of silicon- on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron Device Lett. 20(5), 194–196 (1999).
[CrossRef]

Nguyen, H.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Oda, K.

H. Takahashi, K. Oda, H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on NxN optical interconnection,” J. Lightwave Technol. 14(6), 1097–1105 (1996).
[CrossRef]

H. Talahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightwave Technol. 13(3), 447–455 (1995).
[CrossRef]

Osmond, J.

Paniccia, M.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Rasigade, G.

Reed, G. T.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013).
[CrossRef]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[CrossRef] [PubMed]

Reeves, G. K.

G. K. Reeves, H. B. Harrison, “Obtaining the Specific contact resistance from transmission-line model measurements,” IEEE Electron Device Lett. 3(5), 111–113 (1982).
[CrossRef]

Rooks, M. J.

Rubin, D.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Sangwoo, P.

P. Sangwoo, S. Taichi, J. P. Denton, G. W. Neudeck, “Multiple layers of silicon- on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron Device Lett. 20(5), 194–196 (1999).
[CrossRef]

Schmidt, B.

Sekaric, L.

Shakya, J.

Song, J.

Song, J. F.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Taichi, S.

P. Sangwoo, S. Taichi, J. P. Denton, G. W. Neudeck, “Multiple layers of silicon- on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron Device Lett. 20(5), 194–196 (1999).
[CrossRef]

Takahashi, H.

H. Takahashi, K. Oda, H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on NxN optical interconnection,” J. Lightwave Technol. 14(6), 1097–1105 (1996).
[CrossRef]

Talahashi, H.

H. Talahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightwave Technol. 13(3), 447–455 (1995).
[CrossRef]

Thomson, D. J.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013).
[CrossRef]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[CrossRef] [PubMed]

Toba, H.

H. Takahashi, K. Oda, H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on NxN optical interconnection,” J. Lightwave Technol. 14(6), 1097–1105 (1996).
[CrossRef]

H. Talahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightwave Technol. 13(3), 447–455 (1995).
[CrossRef]

Tu, X.

Vivien, L.

Vlasov, Y. A.

Wilson, P. R.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013).
[CrossRef]

Wu, T. T.

Xiong, Y. Z.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Xu, Q.

Yu, M.

Yu, M. B.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Ziebell, M.

IEEE Electron Device Lett. (2)

G. K. Reeves, H. B. Harrison, “Obtaining the Specific contact resistance from transmission-line model measurements,” IEEE Electron Device Lett. 3(5), 111–113 (1982).
[CrossRef]

P. Sangwoo, S. Taichi, J. P. Denton, G. W. Neudeck, “Multiple layers of silicon- on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron Device Lett. 20(5), 194–196 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

W. C. Chiu, C. Y. Lu, M. C. M. Lee, “Monolithic integration of 2-D multimode interference couplers and silicon photonic wires,” IEEE J. Sel. Top. Quantum Electron. 17(3), 540–545 (2011).
[CrossRef]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
[CrossRef]

C. Dragone, C. A. Edwards, R. C. Kistler, “Integrated optics N*N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3(10), 896–899 (1991).
[CrossRef]

J. Lightwave Technol. (2)

H. Takahashi, K. Oda, H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on NxN optical interconnection,” J. Lightwave Technol. 14(6), 1097–1105 (1996).
[CrossRef]

H. Talahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightwave Technol. 13(3), 447–455 (1995).
[CrossRef]

Nanophotonics (1)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013).
[CrossRef]

Nature (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express (9)

M. Ziebell, D. Marris-Morini, G. Rasigade, J. M. Fédéli, P. Crozat, E. Cassan, D. Bouville, L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express 20(10), 10591–10596 (2012).
[CrossRef] [PubMed]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007).
[CrossRef] [PubMed]

W. M. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
[CrossRef] [PubMed]

T. T. Wu, C. Y. Chou, M. C. Lee, N. Na, “A critically coupled Germanium photodetector under vertical illumination,” Opt. Express 20(28), 29338–29346 (2012).
[CrossRef] [PubMed]

X. Tu, T. Y. Liow, J. Song, M. Yu, G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express 19(19), 18029–18035 (2011).
[CrossRef] [PubMed]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (2)

C. K. Tseng, W. T. Chen, K. H. Chen, H. D. Liu, Y. Kang, N. Na, and M. C. M. Lee, “A self-assembled microbonded Germanium/Silicon heterojunction photodiodes for 25 Gb/s high-speed optical interconnects,” Scientific Report 3 (2013).

T. Kamins, Polycrystalline Silicon for Integrated Circuits and Displays (Kluwer Academic Publishers, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Fringe-field carrier depletion modulators: device structure and doping profile.

Fig. 2
Fig. 2

Optical and electrical simulations: (a) optical mode profile inside the waveguide. (b) depletion region at zero bias (the shadow region), and (c) depletion region (the shadow region) at −6V reverse bias. (d-e) electric fields at zero and −6V reverse bias, respectively.

Fig. 3
Fig. 3

Comparison among different configurations of pn junctions for free-carrier dispersion modulation. The green arrows denote the direction of varied depletion region from 0 V to −6 V.

Fig. 4
Fig. 4

Device process flow (not including the backend process for metal contact).

Fig. 5
Fig. 5

Simulated phosphorus profiles (a) before and (b) after post-annealing. The simulation is done by the software TSUPREM-4

Fig. 6
Fig. 6

Scanning electron microscope image of the fabricated device (cross section).

Fig. 7
Fig. 7

(a) Transmission spectra of the asymmetric MZI modulator. (b) Phase shift versus bias voltages.

Fig. 8
Fig. 8

Extinction ratios of the asymmetric MZI modulator versus different bias voltages at 1556.3 nm.

Fig. 9
Fig. 9

Electrical properties of devices: (a) I-V and (b) C-V characteristics.

Fig. 10
Fig. 10

High-frequency measurement: (a) the dynamic response of device transmittance and (b) the eye diagram.

Tables (1)

Tables Icon

Table 1 Summary list of Si MZI modulators with different device configurations

Metrics