Abstract

Four-wave-mixing (FWM) due to the fiber nonlinearity is a major limiting factor in coherent optical OFDM transmission. We propose to apply power pre-emphasis, i.e. to allocate the transmitted power non-uniformly among subcarriers in order to suppress the FWM impairment. The proposed technique was numerically investigated for both single channel 15.6 Gbs CO-OFDM transmissions and 7-channel WDM transmissions, showing that up to 1 dB improvement in the system’s Q-factor can be achieved without considering sophisticated power loading algorithms developed for wireless communications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Leke and J. M. Cioffi, “A maximum rate loading algorithm for discrete multitone modulation systems,” in Global Telecommunications Conference,GLOBECOM '97., IEEE (1997), pp. 1514–1518 vol.3.
    [CrossRef]
  2. R. S. Prabhu and B. Daneshrad, “An Energy-Efficient Water-Filling Algorithm for OFDM Systems,” in Communications (ICC),IEEE International Conference on (2010), pp. 1–5.
    [CrossRef]
  3. R. F. H. Fischer and J. B. Huber, “A new loading algorithm for discrete multitone transmission,” in Global Telecommunications Conference,GLOBECOM '96. 'Communications: The Key to Global Prosperity (1996), pp. 724–728 vol.1.
    [CrossRef]
  4. A. Lozano, A. M. Tulino, S. Verdu, “Optimum power allocation for parallel Gaussian channels with arbitrary input distributions,” IEEE Trans. Inf. Theory 52(7), 3033–3051 (2006).
    [CrossRef]
  5. G. Miao, N. Himayat, G. Li, “Energy-efficient link adaptation in frequency-selective channels,” IEEE Trans. Commun. 58(2), 545–554 (2010).
    [CrossRef]
  6. S. Cui, A. J. Goldsmith, A. Bahai, “Energy-constrained modulation optimization,” Wireless IEEE Trans. Commun. 4(5), 2349–2360 (2005).
    [CrossRef]
  7. F. Meshkati, H. V. Poor, S. C. Schwartz, N. B. Mandayam, “An energy-efficient approach to power control and receiver design in wireless data networks,” IEEE Trans. Commun. 53(11), 1885–1894 (2005).
    [CrossRef]
  8. M. Guowang, N. Himayat, L. Ye, and D. Bormann, “Energy efficient design in wireless OFDMA,” in Communications,ICC '08. IEEE International Conference on (2008), pp. 3307–3312.
  9. A. R. Chraplyvy, J. A. Nagel, R. W. Tkach, “Equalization in amplified WDM lightwave transmission systems,” Photonics Technol. Lett. 4(8), 920–922 (1992).
    [CrossRef]
  10. A. R. Chraplyvy, R. W. Tkach, K. C. Reichmann, P. D. Magill, J. A. Nagel, “End-to-end equalization experiments in amplified WDM lightwave systems,” Photonics Technol. Lett. 5(4), 428–429 (1993).
    [CrossRef]
  11. P. Yan and L. Pavel, “OSNR optimization in optical networks: extension for capacity constraints,” in American Control Conference, Proceedings of the (2005), pp. 2379–2384 vol. 4.
    [CrossRef]
  12. O. K. Tonguz, F. A. Flood, “EDFA-based DWDM lightwave transmission systems with end-to-end power and SNR equalization,” IEEE Trans. Commun. 50(8), 1282–1292 (2002).
    [CrossRef]
  13. O. K. Tonguz, F. A. Flood, “Gain equalization of EDFA cascades,” J. Lightwave Technol. 15(10), 1832–1841 (1997).
    [CrossRef]
  14. A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, T. Li, “High-capacity optical transmission systems,” J. Lightwave Technol. 26(9), 1032–1045 (2008).
    [CrossRef]
  15. E. Ciaramella, L. Giorgi, A. D’Errico, F. Cavaliere, G. Gaimari, G. Prati, “A highly effective technique for setting the power preemphasis in WDM optical systems,” J. Lightwave Technol. 24(1), 342–356 (2006).
    [CrossRef]
  16. W. Shieh, C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
    [CrossRef]
  17. A. J. Lowery, D. Liang, J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC 2006 (2006), pp. 1–3.
    [CrossRef]
  18. W. Shieh, H. Bao, Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [CrossRef] [PubMed]
  19. K. Inoue, “Phase-mismatching characteristic of four-wave mixing in fiber lines with multistage optical amplifiers,” Opt. Lett. 17(11), 801–803 (1992).
    [CrossRef] [PubMed]
  20. B. Goebel, B. Fesl, L. D. Coelho, and N. Hanik, “On the Effect of FWM in Coherent Optical OFDM Systems,” in Optical Fiber Communication/National Fiber Optic Engineers Conference, OFC/NFOEC 2008. Conference on (2008), pp. 1–3.
    [CrossRef]
  21. A. J. Lowery, S. Wang, M. Premaratne, “Calculation of power limit due to fiber nonlinearity in optical OFDM systems,” Opt. Express 15(20), 13282–13287 (2007).
    [CrossRef] [PubMed]
  22. V. Pechenkin, I. J. Fair, “On four-wave mixing suppression in dispersion-managed fiber-optic OFDM systems with an optical phase conjugation module,” J. Lightwave Technol. 29(11), 1678–1691 (2011).
    [CrossRef]
  23. F. Wäckerle, S. Stern, and R. Fischer, “Iterative bit and power loading for coherent optical OFDM to account for fiber nonlinearities,” in Optical Communication (ECOC 2013), 39th European Conference and Exhibition on (2013), pp. 1–3.
    [CrossRef]
  24. S. T. Le, K. J. Blow, V. K. Menzentsev, and S. K. Turitsyn, “Comparison of numerical bit error rate estimation methods in 112Gbs QPSK CO-OFDM transmission,” in Optical Communication (ECOC 2013), 39th European Conference and Exhibition on (2013), pp. 1–3.
    [CrossRef]
  25. A. Shafarenko, K. S. Turitsyn, S. K. Turitsyn, “Information-theory analysis of skewed coding for suppression of pattern-dependent errors in digital communications,” IEEE Trans. Commun. 55(2), 237–241 (2007).
    [CrossRef]
  26. A. Shafarenko, A. Skidin, S. K. Turitsyn, “Weakly-constrained codes for suppression of patterning effects in digital communications,” IEEE Trans. Commun. 58(10), 2845–2854 (2010).
    [CrossRef]

2011 (1)

V. Pechenkin, I. J. Fair, “On four-wave mixing suppression in dispersion-managed fiber-optic OFDM systems with an optical phase conjugation module,” J. Lightwave Technol. 29(11), 1678–1691 (2011).
[CrossRef]

2010 (2)

A. Shafarenko, A. Skidin, S. K. Turitsyn, “Weakly-constrained codes for suppression of patterning effects in digital communications,” IEEE Trans. Commun. 58(10), 2845–2854 (2010).
[CrossRef]

G. Miao, N. Himayat, G. Li, “Energy-efficient link adaptation in frequency-selective channels,” IEEE Trans. Commun. 58(2), 545–554 (2010).
[CrossRef]

2008 (2)

2007 (2)

A. J. Lowery, S. Wang, M. Premaratne, “Calculation of power limit due to fiber nonlinearity in optical OFDM systems,” Opt. Express 15(20), 13282–13287 (2007).
[CrossRef] [PubMed]

A. Shafarenko, K. S. Turitsyn, S. K. Turitsyn, “Information-theory analysis of skewed coding for suppression of pattern-dependent errors in digital communications,” IEEE Trans. Commun. 55(2), 237–241 (2007).
[CrossRef]

2006 (3)

E. Ciaramella, L. Giorgi, A. D’Errico, F. Cavaliere, G. Gaimari, G. Prati, “A highly effective technique for setting the power preemphasis in WDM optical systems,” J. Lightwave Technol. 24(1), 342–356 (2006).
[CrossRef]

W. Shieh, C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

A. Lozano, A. M. Tulino, S. Verdu, “Optimum power allocation for parallel Gaussian channels with arbitrary input distributions,” IEEE Trans. Inf. Theory 52(7), 3033–3051 (2006).
[CrossRef]

2005 (2)

S. Cui, A. J. Goldsmith, A. Bahai, “Energy-constrained modulation optimization,” Wireless IEEE Trans. Commun. 4(5), 2349–2360 (2005).
[CrossRef]

F. Meshkati, H. V. Poor, S. C. Schwartz, N. B. Mandayam, “An energy-efficient approach to power control and receiver design in wireless data networks,” IEEE Trans. Commun. 53(11), 1885–1894 (2005).
[CrossRef]

2002 (1)

O. K. Tonguz, F. A. Flood, “EDFA-based DWDM lightwave transmission systems with end-to-end power and SNR equalization,” IEEE Trans. Commun. 50(8), 1282–1292 (2002).
[CrossRef]

1997 (1)

O. K. Tonguz, F. A. Flood, “Gain equalization of EDFA cascades,” J. Lightwave Technol. 15(10), 1832–1841 (1997).
[CrossRef]

1993 (1)

A. R. Chraplyvy, R. W. Tkach, K. C. Reichmann, P. D. Magill, J. A. Nagel, “End-to-end equalization experiments in amplified WDM lightwave systems,” Photonics Technol. Lett. 5(4), 428–429 (1993).
[CrossRef]

1992 (2)

A. R. Chraplyvy, J. A. Nagel, R. W. Tkach, “Equalization in amplified WDM lightwave transmission systems,” Photonics Technol. Lett. 4(8), 920–922 (1992).
[CrossRef]

K. Inoue, “Phase-mismatching characteristic of four-wave mixing in fiber lines with multistage optical amplifiers,” Opt. Lett. 17(11), 801–803 (1992).
[CrossRef] [PubMed]

Armstrong, J.

A. J. Lowery, D. Liang, J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC 2006 (2006), pp. 1–3.
[CrossRef]

Athaudage, C.

W. Shieh, C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

Bahai, A.

S. Cui, A. J. Goldsmith, A. Bahai, “Energy-constrained modulation optimization,” Wireless IEEE Trans. Commun. 4(5), 2349–2360 (2005).
[CrossRef]

Bao, H.

Cavaliere, F.

Chraplyvy, A. R.

A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, T. Li, “High-capacity optical transmission systems,” J. Lightwave Technol. 26(9), 1032–1045 (2008).
[CrossRef]

A. R. Chraplyvy, R. W. Tkach, K. C. Reichmann, P. D. Magill, J. A. Nagel, “End-to-end equalization experiments in amplified WDM lightwave systems,” Photonics Technol. Lett. 5(4), 428–429 (1993).
[CrossRef]

A. R. Chraplyvy, J. A. Nagel, R. W. Tkach, “Equalization in amplified WDM lightwave transmission systems,” Photonics Technol. Lett. 4(8), 920–922 (1992).
[CrossRef]

Ciaramella, E.

Cui, S.

S. Cui, A. J. Goldsmith, A. Bahai, “Energy-constrained modulation optimization,” Wireless IEEE Trans. Commun. 4(5), 2349–2360 (2005).
[CrossRef]

D’Errico, A.

Fair, I. J.

V. Pechenkin, I. J. Fair, “On four-wave mixing suppression in dispersion-managed fiber-optic OFDM systems with an optical phase conjugation module,” J. Lightwave Technol. 29(11), 1678–1691 (2011).
[CrossRef]

Flood, F. A.

O. K. Tonguz, F. A. Flood, “EDFA-based DWDM lightwave transmission systems with end-to-end power and SNR equalization,” IEEE Trans. Commun. 50(8), 1282–1292 (2002).
[CrossRef]

O. K. Tonguz, F. A. Flood, “Gain equalization of EDFA cascades,” J. Lightwave Technol. 15(10), 1832–1841 (1997).
[CrossRef]

Gaimari, G.

Giorgi, L.

Gnauck, A. H.

Goldsmith, A. J.

S. Cui, A. J. Goldsmith, A. Bahai, “Energy-constrained modulation optimization,” Wireless IEEE Trans. Commun. 4(5), 2349–2360 (2005).
[CrossRef]

Himayat, N.

G. Miao, N. Himayat, G. Li, “Energy-efficient link adaptation in frequency-selective channels,” IEEE Trans. Commun. 58(2), 545–554 (2010).
[CrossRef]

Inoue, K.

Li, G.

G. Miao, N. Himayat, G. Li, “Energy-efficient link adaptation in frequency-selective channels,” IEEE Trans. Commun. 58(2), 545–554 (2010).
[CrossRef]

Li, T.

Liang, D.

A. J. Lowery, D. Liang, J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC 2006 (2006), pp. 1–3.
[CrossRef]

Lowery, A. J.

A. J. Lowery, S. Wang, M. Premaratne, “Calculation of power limit due to fiber nonlinearity in optical OFDM systems,” Opt. Express 15(20), 13282–13287 (2007).
[CrossRef] [PubMed]

A. J. Lowery, D. Liang, J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC 2006 (2006), pp. 1–3.
[CrossRef]

Lozano, A.

A. Lozano, A. M. Tulino, S. Verdu, “Optimum power allocation for parallel Gaussian channels with arbitrary input distributions,” IEEE Trans. Inf. Theory 52(7), 3033–3051 (2006).
[CrossRef]

Magill, P. D.

A. R. Chraplyvy, R. W. Tkach, K. C. Reichmann, P. D. Magill, J. A. Nagel, “End-to-end equalization experiments in amplified WDM lightwave systems,” Photonics Technol. Lett. 5(4), 428–429 (1993).
[CrossRef]

Mandayam, N. B.

F. Meshkati, H. V. Poor, S. C. Schwartz, N. B. Mandayam, “An energy-efficient approach to power control and receiver design in wireless data networks,” IEEE Trans. Commun. 53(11), 1885–1894 (2005).
[CrossRef]

Meshkati, F.

F. Meshkati, H. V. Poor, S. C. Schwartz, N. B. Mandayam, “An energy-efficient approach to power control and receiver design in wireless data networks,” IEEE Trans. Commun. 53(11), 1885–1894 (2005).
[CrossRef]

Miao, G.

G. Miao, N. Himayat, G. Li, “Energy-efficient link adaptation in frequency-selective channels,” IEEE Trans. Commun. 58(2), 545–554 (2010).
[CrossRef]

Nagel, J. A.

A. R. Chraplyvy, R. W. Tkach, K. C. Reichmann, P. D. Magill, J. A. Nagel, “End-to-end equalization experiments in amplified WDM lightwave systems,” Photonics Technol. Lett. 5(4), 428–429 (1993).
[CrossRef]

A. R. Chraplyvy, J. A. Nagel, R. W. Tkach, “Equalization in amplified WDM lightwave transmission systems,” Photonics Technol. Lett. 4(8), 920–922 (1992).
[CrossRef]

Pechenkin, V.

V. Pechenkin, I. J. Fair, “On four-wave mixing suppression in dispersion-managed fiber-optic OFDM systems with an optical phase conjugation module,” J. Lightwave Technol. 29(11), 1678–1691 (2011).
[CrossRef]

Poor, H. V.

F. Meshkati, H. V. Poor, S. C. Schwartz, N. B. Mandayam, “An energy-efficient approach to power control and receiver design in wireless data networks,” IEEE Trans. Commun. 53(11), 1885–1894 (2005).
[CrossRef]

Prati, G.

Premaratne, M.

Reichmann, K. C.

A. R. Chraplyvy, R. W. Tkach, K. C. Reichmann, P. D. Magill, J. A. Nagel, “End-to-end equalization experiments in amplified WDM lightwave systems,” Photonics Technol. Lett. 5(4), 428–429 (1993).
[CrossRef]

Schwartz, S. C.

F. Meshkati, H. V. Poor, S. C. Schwartz, N. B. Mandayam, “An energy-efficient approach to power control and receiver design in wireless data networks,” IEEE Trans. Commun. 53(11), 1885–1894 (2005).
[CrossRef]

Shafarenko, A.

A. Shafarenko, A. Skidin, S. K. Turitsyn, “Weakly-constrained codes for suppression of patterning effects in digital communications,” IEEE Trans. Commun. 58(10), 2845–2854 (2010).
[CrossRef]

A. Shafarenko, K. S. Turitsyn, S. K. Turitsyn, “Information-theory analysis of skewed coding for suppression of pattern-dependent errors in digital communications,” IEEE Trans. Commun. 55(2), 237–241 (2007).
[CrossRef]

Shieh, W.

W. Shieh, H. Bao, Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
[CrossRef] [PubMed]

W. Shieh, C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

Skidin, A.

A. Shafarenko, A. Skidin, S. K. Turitsyn, “Weakly-constrained codes for suppression of patterning effects in digital communications,” IEEE Trans. Commun. 58(10), 2845–2854 (2010).
[CrossRef]

Tang, Y.

Tkach, R. W.

A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, T. Li, “High-capacity optical transmission systems,” J. Lightwave Technol. 26(9), 1032–1045 (2008).
[CrossRef]

A. R. Chraplyvy, R. W. Tkach, K. C. Reichmann, P. D. Magill, J. A. Nagel, “End-to-end equalization experiments in amplified WDM lightwave systems,” Photonics Technol. Lett. 5(4), 428–429 (1993).
[CrossRef]

A. R. Chraplyvy, J. A. Nagel, R. W. Tkach, “Equalization in amplified WDM lightwave transmission systems,” Photonics Technol. Lett. 4(8), 920–922 (1992).
[CrossRef]

Tonguz, O. K.

O. K. Tonguz, F. A. Flood, “EDFA-based DWDM lightwave transmission systems with end-to-end power and SNR equalization,” IEEE Trans. Commun. 50(8), 1282–1292 (2002).
[CrossRef]

O. K. Tonguz, F. A. Flood, “Gain equalization of EDFA cascades,” J. Lightwave Technol. 15(10), 1832–1841 (1997).
[CrossRef]

Tulino, A. M.

A. Lozano, A. M. Tulino, S. Verdu, “Optimum power allocation for parallel Gaussian channels with arbitrary input distributions,” IEEE Trans. Inf. Theory 52(7), 3033–3051 (2006).
[CrossRef]

Turitsyn, K. S.

A. Shafarenko, K. S. Turitsyn, S. K. Turitsyn, “Information-theory analysis of skewed coding for suppression of pattern-dependent errors in digital communications,” IEEE Trans. Commun. 55(2), 237–241 (2007).
[CrossRef]

Turitsyn, S. K.

A. Shafarenko, A. Skidin, S. K. Turitsyn, “Weakly-constrained codes for suppression of patterning effects in digital communications,” IEEE Trans. Commun. 58(10), 2845–2854 (2010).
[CrossRef]

A. Shafarenko, K. S. Turitsyn, S. K. Turitsyn, “Information-theory analysis of skewed coding for suppression of pattern-dependent errors in digital communications,” IEEE Trans. Commun. 55(2), 237–241 (2007).
[CrossRef]

Verdu, S.

A. Lozano, A. M. Tulino, S. Verdu, “Optimum power allocation for parallel Gaussian channels with arbitrary input distributions,” IEEE Trans. Inf. Theory 52(7), 3033–3051 (2006).
[CrossRef]

Wang, S.

Electron. Lett. (1)

W. Shieh, C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

IEEE Trans. Commun. (5)

O. K. Tonguz, F. A. Flood, “EDFA-based DWDM lightwave transmission systems with end-to-end power and SNR equalization,” IEEE Trans. Commun. 50(8), 1282–1292 (2002).
[CrossRef]

G. Miao, N. Himayat, G. Li, “Energy-efficient link adaptation in frequency-selective channels,” IEEE Trans. Commun. 58(2), 545–554 (2010).
[CrossRef]

F. Meshkati, H. V. Poor, S. C. Schwartz, N. B. Mandayam, “An energy-efficient approach to power control and receiver design in wireless data networks,” IEEE Trans. Commun. 53(11), 1885–1894 (2005).
[CrossRef]

A. Shafarenko, K. S. Turitsyn, S. K. Turitsyn, “Information-theory analysis of skewed coding for suppression of pattern-dependent errors in digital communications,” IEEE Trans. Commun. 55(2), 237–241 (2007).
[CrossRef]

A. Shafarenko, A. Skidin, S. K. Turitsyn, “Weakly-constrained codes for suppression of patterning effects in digital communications,” IEEE Trans. Commun. 58(10), 2845–2854 (2010).
[CrossRef]

IEEE Trans. Inf. Theory (1)

A. Lozano, A. M. Tulino, S. Verdu, “Optimum power allocation for parallel Gaussian channels with arbitrary input distributions,” IEEE Trans. Inf. Theory 52(7), 3033–3051 (2006).
[CrossRef]

J. Lightwave Technol. (4)

V. Pechenkin, I. J. Fair, “On four-wave mixing suppression in dispersion-managed fiber-optic OFDM systems with an optical phase conjugation module,” J. Lightwave Technol. 29(11), 1678–1691 (2011).
[CrossRef]

O. K. Tonguz, F. A. Flood, “Gain equalization of EDFA cascades,” J. Lightwave Technol. 15(10), 1832–1841 (1997).
[CrossRef]

A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, T. Li, “High-capacity optical transmission systems,” J. Lightwave Technol. 26(9), 1032–1045 (2008).
[CrossRef]

E. Ciaramella, L. Giorgi, A. D’Errico, F. Cavaliere, G. Gaimari, G. Prati, “A highly effective technique for setting the power preemphasis in WDM optical systems,” J. Lightwave Technol. 24(1), 342–356 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Photonics Technol. Lett. (2)

A. R. Chraplyvy, J. A. Nagel, R. W. Tkach, “Equalization in amplified WDM lightwave transmission systems,” Photonics Technol. Lett. 4(8), 920–922 (1992).
[CrossRef]

A. R. Chraplyvy, R. W. Tkach, K. C. Reichmann, P. D. Magill, J. A. Nagel, “End-to-end equalization experiments in amplified WDM lightwave systems,” Photonics Technol. Lett. 5(4), 428–429 (1993).
[CrossRef]

Wireless IEEE Trans. Commun. (1)

S. Cui, A. J. Goldsmith, A. Bahai, “Energy-constrained modulation optimization,” Wireless IEEE Trans. Commun. 4(5), 2349–2360 (2005).
[CrossRef]

Other (9)

A. Leke and J. M. Cioffi, “A maximum rate loading algorithm for discrete multitone modulation systems,” in Global Telecommunications Conference,GLOBECOM '97., IEEE (1997), pp. 1514–1518 vol.3.
[CrossRef]

R. S. Prabhu and B. Daneshrad, “An Energy-Efficient Water-Filling Algorithm for OFDM Systems,” in Communications (ICC),IEEE International Conference on (2010), pp. 1–5.
[CrossRef]

R. F. H. Fischer and J. B. Huber, “A new loading algorithm for discrete multitone transmission,” in Global Telecommunications Conference,GLOBECOM '96. 'Communications: The Key to Global Prosperity (1996), pp. 724–728 vol.1.
[CrossRef]

P. Yan and L. Pavel, “OSNR optimization in optical networks: extension for capacity constraints,” in American Control Conference, Proceedings of the (2005), pp. 2379–2384 vol. 4.
[CrossRef]

M. Guowang, N. Himayat, L. Ye, and D. Bormann, “Energy efficient design in wireless OFDMA,” in Communications,ICC '08. IEEE International Conference on (2008), pp. 3307–3312.

B. Goebel, B. Fesl, L. D. Coelho, and N. Hanik, “On the Effect of FWM in Coherent Optical OFDM Systems,” in Optical Fiber Communication/National Fiber Optic Engineers Conference, OFC/NFOEC 2008. Conference on (2008), pp. 1–3.
[CrossRef]

A. J. Lowery, D. Liang, J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC 2006 (2006), pp. 1–3.
[CrossRef]

F. Wäckerle, S. Stern, and R. Fischer, “Iterative bit and power loading for coherent optical OFDM to account for fiber nonlinearities,” in Optical Communication (ECOC 2013), 39th European Conference and Exhibition on (2013), pp. 1–3.
[CrossRef]

S. T. Le, K. J. Blow, V. K. Menzentsev, and S. K. Turitsyn, “Comparison of numerical bit error rate estimation methods in 112Gbs QPSK CO-OFDM transmission,” in Optical Communication (ECOC 2013), 39th European Conference and Exhibition on (2013), pp. 1–3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Dependence of S(g, 128) on the subcarrier indicies, (b) The total FWM power for each subcarrier for a single span (stardard single mode fiber, 80km) in a CO-OFDM system with 100 MHz frequency spacing and 128 subcarriers

Fig. 2
Fig. 2

Various power allocation methods for CO-OFDM with 100 subcarriers using distribution of Eq. (4), (a) (a = 0) or (b = 0), (b) (a = 0.15, b = 0.01, x = 2), (c) (a = 0.15, b = 0.001, x = 4), (d) (a = 0.15, b = 0.002, x = 2)

Fig. 3
Fig. 3

Block diagrama of 15.6Gbs CO-OFDM transmissions.S/P: serial/parallel conversion, P/S: parallel/serial conversion, SM: symbol mappings, TS: training symbol, DAC: digital-to-analog converter, I/Q: I/Q modulator, OLO: optical local oscilator

Fig. 4
Fig. 4

Performances of 15.6Gbs CO-OFDM system with different power distribution methods among subcarriers after 2800km of transmission distance

Fig. 5
Fig. 5

Statistical distribution of Q-factor improvement in dB when the power distribution is adjusted. (a) (a = 0.15, b = 0.01, x = 2, P = −4 dBm), (b) (a = 0.15, b = 0.01, x = 4, P = −4 dBm), (c) (a = 0.15, b = 0.002, x = 2, P = −7 dBm), (d) (a = 0.15, b = 0.002, x = 2, P = −4 dBm)

Fig. 6
Fig. 6

Dependence of Q-factor on (a, b), P = –9dBm, after 2800km of transmission distance

Fig. 7
Fig. 7

Dependence of Q-factor on (a, b), P = –7dBm, after 2800km of transmission distance

Fig. 8
Fig. 8

Dependence of Q-factor on (a, b), P = –4dBm, after 2800km of transmission distance

Fig. 9
Fig. 9

Spectrum of 7-channel WDM CO-OFDM transmissions, system, the central carrier is at 1550 nm.

Fig. 10
Fig. 10

Performance comparison of uniform and optimum non-uniform power allocation methods among subcarriers for the center channel (4th) in WDM transmissions, after 2800km of transmission distance

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P ijk = ( D deg 3 γ L eff ) 2 P i P j P k η,
M(i,N)= 1 2 ( N 2 /22N+Ni i 2 +i),
S(g,N)=3M(g,N)= 3 2 ( N 2 2 2N+Ng g 2 +g).
A(k)=1aexp(b (kN/2) x ),
Q BER =20log[ 2 erf c 1 (2BER)].

Metrics