Abstract

We demonstrate stabilization of an ultraviolet diode laser via Doppler-free spectroscopy of Ytterbium ions in a discharge. Our technique employs polarization spectroscopy, which produces a natural dispersive lineshape whose zero-crossing is largely immune to environmental drifts, making this signal an ideal absolute frequency reference for Yb+ ion trapping experiments. We stabilize an external-cavity diode laser near 369 nm for cooling Yb+ ions, using amplitude modulated polarization spectroscopy and a commercial PID feedback system. We achieve stable, low-drift locking with a standard deviation of measured laser frequency ∼ 400 kHz over 10 minutes, limited by the instantaneous linewidth of the diode laser. These results and the simplicity of our optical setup makes our approach attractive for stabilization of laser sources in atomic physics applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Metcalf, P. Van der Straten, Laser Cooling and Trapping (Springer, 1999).
    [CrossRef]
  2. A. Arie, S. Schiller, E. K. Gustafson, R. L. Byer, “Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine,” Opt. Lett. 17, 1204–1206 (1992).
    [CrossRef] [PubMed]
  3. A. J. Wallard, “Frequency stabilization of Helium-Neon laser by saturated absorption in iodine vapour,” J. Phys. E: Scient. Instr. 5, 926–930 (1972).
    [CrossRef]
  4. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998).
    [CrossRef]
  5. A. Ratnapala, C. J. Vale, A. G. White, M. D. Harvey, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Laser frequency locking by direct measurement of detuning,” Opt. Lett. 29(23), 2704–2706 (2004).
    [CrossRef] [PubMed]
  6. T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441444 (1980).
    [CrossRef]
  7. R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [CrossRef]
  8. D. Kielpinski, M. Cetina, J. A. Cox, F. X. Kärtner, “Laser cooling of trapped ytterbium ions with an ultraviolet diode laser,” Opt. Lett. 31, 757–759 (2006).
    [CrossRef] [PubMed]
  9. A. -T. Nguyen, L. -B. Wang, M. M. Schauer, J. R. Torgerson, “Extended Temperature Tuning of An Ultraviolet Diode Laser for Trapping And Cooling Single Yb+ ions,” Rev. Sci. Instrum., 813, 053110 (2010).
    [CrossRef]
  10. C. Wunderlich, C. Balzer, “Quantum measurements and new concepts for experiments with trapped ions,” Adv. At. Mol. Opt. Phys. 49, 293–376 (2003).
    [CrossRef]
  11. P. Gill, H. A. Klein, A. P. Levick, M. Roberts, W. R. C. Rowley, P. Taylor, “Measurement of the 2S1/2− 2D5/2411-nm interval in laser-cooled trapped 172Yb+ ions,” Phys. Rev. A 52, R909–R912 (1995).
    [CrossRef]
  12. K. Sugiyama, J. Yoda, “Laser cooling of a natural isotope mixture of Yb+ stored in an RF trap,” IEEE Trans. Instrum. Meas. 44, 140–143 (1995).
    [CrossRef]
  13. A. Arie, M. L. Bortz, M. M. Fejer, R. L. Byer, “Iodine spectroscopy and absolute frequency stabilization with the second harmonic of the 1319-nm Nd:YAG laser,” Opt. Lett. 18, 1757–1759, (1993).
    [CrossRef] [PubMed]
  14. S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the B− X system,” Journal de Physique 46, 867–881 (1985).
    [CrossRef]
  15. W. Demtröder, Laser Spectroscopy: Vol. 2: Experimental Techniques(Springer, 2008).
  16. C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
    [CrossRef]
  17. E. W. Streed, T. J. Weinhold, D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
    [CrossRef]
  18. M. J. Petrasiunas, E. W. Streed, T. J. Weinhold, B. G. Norton, D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107, 1053–1059 (2012).
    [CrossRef]
  19. W. Wang, J. Ye, M. Zhou, X. Xu, “Frequency stabilization of a 399nm laser by modulation transfer spectroscopy in an ytterbium hollow cathode lamp,” in Conference on Lasers and Electro-Optics/Pacific Rim 2009, (Optical Society of America, 2009), paper TuB1. and Chin. Phys. B 20, 013201 (2011).
  20. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
    [CrossRef]
  21. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
    [CrossRef]
  22. P. R. Sasi Kumar, V. P. N. Nampoori, C. P. G. Vallabhan, “Photoemission optogalvanic effect near the instability region of a hollow cathode discharge,” Opt. Commun. 118, 525–528 (1995).
    [CrossRef]
  23. D. Zhechev, N. Bundaleska, J. T. Costello., “Instrumental contributions to the time-resolved optogalvanic signal in a hollow cathode discharge,” J. Phys. D: Appl. Phys. 38, 2237–2243 (2005).
    [CrossRef]
  24. B. E. King, “Quantum state engineering and information processing with trapped ions” Ph. D. thesis, Department of Physics, University of Colorado, Boulder, (1999).
  25. S. Olmschenk, “Quantum Teleportation Between Distant Matter Qubits,” Ph. D. thesis, University of Michigan, (2009).

2012

M. J. Petrasiunas, E. W. Streed, T. J. Weinhold, B. G. Norton, D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107, 1053–1059 (2012).
[CrossRef]

2010

A. -T. Nguyen, L. -B. Wang, M. M. Schauer, J. R. Torgerson, “Extended Temperature Tuning of An Ultraviolet Diode Laser for Trapping And Cooling Single Yb+ ions,” Rev. Sci. Instrum., 813, 053110 (2010).
[CrossRef]

2008

E. W. Streed, T. J. Weinhold, D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
[CrossRef]

2006

2005

D. Zhechev, N. Bundaleska, J. T. Costello., “Instrumental contributions to the time-resolved optogalvanic signal in a hollow cathode discharge,” J. Phys. D: Appl. Phys. 38, 2237–2243 (2005).
[CrossRef]

2004

2003

C. Wunderlich, C. Balzer, “Quantum measurements and new concepts for experiments with trapped ions,” Adv. At. Mol. Opt. Phys. 49, 293–376 (2003).
[CrossRef]

2002

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

1998

1995

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

P. R. Sasi Kumar, V. P. N. Nampoori, C. P. G. Vallabhan, “Photoemission optogalvanic effect near the instability region of a hollow cathode discharge,” Opt. Commun. 118, 525–528 (1995).
[CrossRef]

P. Gill, H. A. Klein, A. P. Levick, M. Roberts, W. R. C. Rowley, P. Taylor, “Measurement of the 2S1/2− 2D5/2411-nm interval in laser-cooled trapped 172Yb+ ions,” Phys. Rev. A 52, R909–R912 (1995).
[CrossRef]

K. Sugiyama, J. Yoda, “Laser cooling of a natural isotope mixture of Yb+ stored in an RF trap,” IEEE Trans. Instrum. Meas. 44, 140–143 (1995).
[CrossRef]

1993

1992

1985

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the B− X system,” Journal de Physique 46, 867–881 (1985).
[CrossRef]

1983

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

1980

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441444 (1980).
[CrossRef]

1976

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

1972

A. J. Wallard, “Frequency stabilization of Helium-Neon laser by saturated absorption in iodine vapour,” J. Phys. E: Scient. Instr. 5, 926–930 (1972).
[CrossRef]

Adams, C. S.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

Arie, A.

Balzer, C.

C. Wunderlich, C. Balzer, “Quantum measurements and new concepts for experiments with trapped ions,” Adv. At. Mol. Opt. Phys. 49, 293–376 (2003).
[CrossRef]

Bortz, M. L.

Bundaleska, N.

D. Zhechev, N. Bundaleska, J. T. Costello., “Instrumental contributions to the time-resolved optogalvanic signal in a hollow cathode discharge,” J. Phys. D: Appl. Phys. 38, 2237–2243 (2005).
[CrossRef]

Byer, R. L.

Cetina, M.

Corwin, K. L.

Costello., J. T.

D. Zhechev, N. Bundaleska, J. T. Costello., “Instrumental contributions to the time-resolved optogalvanic signal in a hollow cathode discharge,” J. Phys. D: Appl. Phys. 38, 2237–2243 (2005).
[CrossRef]

Couillaud, B.

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441444 (1980).
[CrossRef]

Cox, J. A.

Cox, S. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

Demtröder, W.

W. Demtröder, Laser Spectroscopy: Vol. 2: Experimental Techniques(Springer, 2008).

Drever, R. W.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Epstein, R. J.

Esslinger, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Fejer, M. M.

Ford, G. M.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the B− X system,” Journal de Physique 46, 867–881 (1985).
[CrossRef]

Gill, P.

P. Gill, H. A. Klein, A. P. Levick, M. Roberts, W. R. C. Rowley, P. Taylor, “Measurement of the 2S1/2− 2D5/2411-nm interval in laser-cooled trapped 172Yb+ ions,” Phys. Rev. A 52, R909–R912 (1995).
[CrossRef]

Griffin, P. F.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

Gustafson, E. K.

Hall, J. L.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Hand, C. F.

Hänsch, T. W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441444 (1980).
[CrossRef]

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

Harvey, M. D.

Heckenberg, N. R.

Hemmerich, A.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Hough, J.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Hughes, I. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

Kärtner, F. X.

Kielpinski, D.

M. J. Petrasiunas, E. W. Streed, T. J. Weinhold, B. G. Norton, D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107, 1053–1059 (2012).
[CrossRef]

E. W. Streed, T. J. Weinhold, D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
[CrossRef]

D. Kielpinski, M. Cetina, J. A. Cox, F. X. Kärtner, “Laser cooling of trapped ytterbium ions with an ultraviolet diode laser,” Opt. Lett. 31, 757–759 (2006).
[CrossRef] [PubMed]

King, B. E.

B. E. King, “Quantum state engineering and information processing with trapped ions” Ph. D. thesis, Department of Physics, University of Colorado, Boulder, (1999).

Klein, H. A.

P. Gill, H. A. Klein, A. P. Levick, M. Roberts, W. R. C. Rowley, P. Taylor, “Measurement of the 2S1/2− 2D5/2411-nm interval in laser-cooled trapped 172Yb+ ions,” Phys. Rev. A 52, R909–R912 (1995).
[CrossRef]

König, W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Kowalski, F. V.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Levick, A. P.

P. Gill, H. A. Klein, A. P. Levick, M. Roberts, W. R. C. Rowley, P. Taylor, “Measurement of the 2S1/2− 2D5/2411-nm interval in laser-cooled trapped 172Yb+ ions,” Phys. Rev. A 52, R909–R912 (1995).
[CrossRef]

Lu, Z. T.

Luc, P.

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the B− X system,” Journal de Physique 46, 867–881 (1985).
[CrossRef]

Metcalf, H. J.

H. J. Metcalf, P. Van der Straten, Laser Cooling and Trapping (Springer, 1999).
[CrossRef]

Munley, A. J.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Nampoori, V. P. N.

P. R. Sasi Kumar, V. P. N. Nampoori, C. P. G. Vallabhan, “Photoemission optogalvanic effect near the instability region of a hollow cathode discharge,” Opt. Commun. 118, 525–528 (1995).
[CrossRef]

Nguyen, A. -T.

A. -T. Nguyen, L. -B. Wang, M. M. Schauer, J. R. Torgerson, “Extended Temperature Tuning of An Ultraviolet Diode Laser for Trapping And Cooling Single Yb+ ions,” Rev. Sci. Instrum., 813, 053110 (2010).
[CrossRef]

Norton, B. G.

M. J. Petrasiunas, E. W. Streed, T. J. Weinhold, B. G. Norton, D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107, 1053–1059 (2012).
[CrossRef]

Olmschenk, S.

S. Olmschenk, “Quantum Teleportation Between Distant Matter Qubits,” Ph. D. thesis, University of Michigan, (2009).

Pearman, C. P.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

Petrasiunas, M. J.

M. J. Petrasiunas, E. W. Streed, T. J. Weinhold, B. G. Norton, D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107, 1053–1059 (2012).
[CrossRef]

Ratnapala, A.

Ricci, L.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Roberts, M.

P. Gill, H. A. Klein, A. P. Levick, M. Roberts, W. R. C. Rowley, P. Taylor, “Measurement of the 2S1/2− 2D5/2411-nm interval in laser-cooled trapped 172Yb+ ions,” Phys. Rev. A 52, R909–R912 (1995).
[CrossRef]

Rowley, W. R. C.

P. Gill, H. A. Klein, A. P. Levick, M. Roberts, W. R. C. Rowley, P. Taylor, “Measurement of the 2S1/2− 2D5/2411-nm interval in laser-cooled trapped 172Yb+ ions,” Phys. Rev. A 52, R909–R912 (1995).
[CrossRef]

Rubinsztein-Dunlop, H.

Sasi Kumar, P. R.

P. R. Sasi Kumar, V. P. N. Nampoori, C. P. G. Vallabhan, “Photoemission optogalvanic effect near the instability region of a hollow cathode discharge,” Opt. Commun. 118, 525–528 (1995).
[CrossRef]

Schauer, M. M.

A. -T. Nguyen, L. -B. Wang, M. M. Schauer, J. R. Torgerson, “Extended Temperature Tuning of An Ultraviolet Diode Laser for Trapping And Cooling Single Yb+ ions,” Rev. Sci. Instrum., 813, 053110 (2010).
[CrossRef]

Schiller, S.

Smith, D. A.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

Streed, E. W.

M. J. Petrasiunas, E. W. Streed, T. J. Weinhold, B. G. Norton, D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107, 1053–1059 (2012).
[CrossRef]

E. W. Streed, T. J. Weinhold, D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
[CrossRef]

Sugiyama, K.

K. Sugiyama, J. Yoda, “Laser cooling of a natural isotope mixture of Yb+ stored in an RF trap,” IEEE Trans. Instrum. Meas. 44, 140–143 (1995).
[CrossRef]

Taylor, P.

P. Gill, H. A. Klein, A. P. Levick, M. Roberts, W. R. C. Rowley, P. Taylor, “Measurement of the 2S1/2− 2D5/2411-nm interval in laser-cooled trapped 172Yb+ ions,” Phys. Rev. A 52, R909–R912 (1995).
[CrossRef]

Torgerson, J. R.

A. -T. Nguyen, L. -B. Wang, M. M. Schauer, J. R. Torgerson, “Extended Temperature Tuning of An Ultraviolet Diode Laser for Trapping And Cooling Single Yb+ ions,” Rev. Sci. Instrum., 813, 053110 (2010).
[CrossRef]

Vale, C. J.

Vallabhan, C. P. G.

P. R. Sasi Kumar, V. P. N. Nampoori, C. P. G. Vallabhan, “Photoemission optogalvanic effect near the instability region of a hollow cathode discharge,” Opt. Commun. 118, 525–528 (1995).
[CrossRef]

Van der Straten, P.

H. J. Metcalf, P. Van der Straten, Laser Cooling and Trapping (Springer, 1999).
[CrossRef]

Vuletic, V.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Wallard, A. J.

A. J. Wallard, “Frequency stabilization of Helium-Neon laser by saturated absorption in iodine vapour,” J. Phys. E: Scient. Instr. 5, 926–930 (1972).
[CrossRef]

Wang, L. -B.

A. -T. Nguyen, L. -B. Wang, M. M. Schauer, J. R. Torgerson, “Extended Temperature Tuning of An Ultraviolet Diode Laser for Trapping And Cooling Single Yb+ ions,” Rev. Sci. Instrum., 813, 053110 (2010).
[CrossRef]

Wang, W.

W. Wang, J. Ye, M. Zhou, X. Xu, “Frequency stabilization of a 399nm laser by modulation transfer spectroscopy in an ytterbium hollow cathode lamp,” in Conference on Lasers and Electro-Optics/Pacific Rim 2009, (Optical Society of America, 2009), paper TuB1. and Chin. Phys. B 20, 013201 (2011).

Ward, H.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Weidemüller, M.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Weinhold, T. J.

M. J. Petrasiunas, E. W. Streed, T. J. Weinhold, B. G. Norton, D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107, 1053–1059 (2012).
[CrossRef]

E. W. Streed, T. J. Weinhold, D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
[CrossRef]

White, A. G.

Wieman, C.

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

Wieman, C. E.

Wunderlich, C.

C. Wunderlich, C. Balzer, “Quantum measurements and new concepts for experiments with trapped ions,” Adv. At. Mol. Opt. Phys. 49, 293–376 (2003).
[CrossRef]

Xu, X.

W. Wang, J. Ye, M. Zhou, X. Xu, “Frequency stabilization of a 399nm laser by modulation transfer spectroscopy in an ytterbium hollow cathode lamp,” in Conference on Lasers and Electro-Optics/Pacific Rim 2009, (Optical Society of America, 2009), paper TuB1. and Chin. Phys. B 20, 013201 (2011).

Ye, J.

W. Wang, J. Ye, M. Zhou, X. Xu, “Frequency stabilization of a 399nm laser by modulation transfer spectroscopy in an ytterbium hollow cathode lamp,” in Conference on Lasers and Electro-Optics/Pacific Rim 2009, (Optical Society of America, 2009), paper TuB1. and Chin. Phys. B 20, 013201 (2011).

Yoda, J.

K. Sugiyama, J. Yoda, “Laser cooling of a natural isotope mixture of Yb+ stored in an RF trap,” IEEE Trans. Instrum. Meas. 44, 140–143 (1995).
[CrossRef]

Zhechev, D.

D. Zhechev, N. Bundaleska, J. T. Costello., “Instrumental contributions to the time-resolved optogalvanic signal in a hollow cathode discharge,” J. Phys. D: Appl. Phys. 38, 2237–2243 (2005).
[CrossRef]

Zhou, M.

W. Wang, J. Ye, M. Zhou, X. Xu, “Frequency stabilization of a 399nm laser by modulation transfer spectroscopy in an ytterbium hollow cathode lamp,” in Conference on Lasers and Electro-Optics/Pacific Rim 2009, (Optical Society of America, 2009), paper TuB1. and Chin. Phys. B 20, 013201 (2011).

Zimmermann, C.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Adv. At. Mol. Opt. Phys.

C. Wunderlich, C. Balzer, “Quantum measurements and new concepts for experiments with trapped ions,” Adv. At. Mol. Opt. Phys. 49, 293–376 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. B

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

M. J. Petrasiunas, E. W. Streed, T. J. Weinhold, B. G. Norton, D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107, 1053–1059 (2012).
[CrossRef]

Appl. Phys. Lett.

E. W. Streed, T. J. Weinhold, D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
[CrossRef]

IEEE Trans. Instrum. Meas.

K. Sugiyama, J. Yoda, “Laser cooling of a natural isotope mixture of Yb+ stored in an RF trap,” IEEE Trans. Instrum. Meas. 44, 140–143 (1995).
[CrossRef]

J. Phys. B

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

J. Phys. D: Appl. Phys.

D. Zhechev, N. Bundaleska, J. T. Costello., “Instrumental contributions to the time-resolved optogalvanic signal in a hollow cathode discharge,” J. Phys. D: Appl. Phys. 38, 2237–2243 (2005).
[CrossRef]

J. Phys. E: Scient. Instr.

A. J. Wallard, “Frequency stabilization of Helium-Neon laser by saturated absorption in iodine vapour,” J. Phys. E: Scient. Instr. 5, 926–930 (1972).
[CrossRef]

Journal de Physique

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the B− X system,” Journal de Physique 46, 867–881 (1985).
[CrossRef]

Opt. Commun.

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441444 (1980).
[CrossRef]

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

P. R. Sasi Kumar, V. P. N. Nampoori, C. P. G. Vallabhan, “Photoemission optogalvanic effect near the instability region of a hollow cathode discharge,” Opt. Commun. 118, 525–528 (1995).
[CrossRef]

Opt. Lett.

Phys. Rev. A

P. Gill, H. A. Klein, A. P. Levick, M. Roberts, W. R. C. Rowley, P. Taylor, “Measurement of the 2S1/2− 2D5/2411-nm interval in laser-cooled trapped 172Yb+ ions,” Phys. Rev. A 52, R909–R912 (1995).
[CrossRef]

Phys. Rev. Lett.

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

Rev. Sci. Instrum.,

A. -T. Nguyen, L. -B. Wang, M. M. Schauer, J. R. Torgerson, “Extended Temperature Tuning of An Ultraviolet Diode Laser for Trapping And Cooling Single Yb+ ions,” Rev. Sci. Instrum., 813, 053110 (2010).
[CrossRef]

Other

H. J. Metcalf, P. Van der Straten, Laser Cooling and Trapping (Springer, 1999).
[CrossRef]

W. Demtröder, Laser Spectroscopy: Vol. 2: Experimental Techniques(Springer, 2008).

W. Wang, J. Ye, M. Zhou, X. Xu, “Frequency stabilization of a 399nm laser by modulation transfer spectroscopy in an ytterbium hollow cathode lamp,” in Conference on Lasers and Electro-Optics/Pacific Rim 2009, (Optical Society of America, 2009), paper TuB1. and Chin. Phys. B 20, 013201 (2011).

B. E. King, “Quantum state engineering and information processing with trapped ions” Ph. D. thesis, Department of Physics, University of Colorado, Boulder, (1999).

S. Olmschenk, “Quantum Teleportation Between Distant Matter Qubits,” Ph. D. thesis, University of Michigan, (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The structure of the 2S1/22P1/2 transition for (a): the 171Yb+ ion, showing the hyperfine structure and the optical pumping scheme for the F = 1 → F′ = 0 transition with σ+ light on resonance. With pure σ+ light the only allowed transition is the F = 1, mF = −1 → F′ = 0, mF = 0 transition, while decay from the upper level can be into any of the three lower sublevels. This results in depletion of the population in the F = 1, mF = −1, saturating the absorption for just the σ+ light and giving rise to the circular dichroism required for polarization spectroscopy. (b): The even atomic number isotopes do not have hyperfine structure, instead the circular dichroism results from optical pumping of the Zeeman states (labeled by −1/2 and 1/2) of the upper and lower levels. In a similar way this results in saturation of the absorption only for σ+ light.

Fig. 2
Fig. 2

A schematic of the setup used for the polarization spectroscopy measurements and laser locking. Light from the ECDL is split into a main beam for use in the ion trap and a beam for the laser locking system (∼ 1–2 mW). The laser locking beam is then split into pump and probe beams, each initially with vertically oriented linear polarization. The pump beam is passed through an AOM, which is used to apply a square wave amplitude modulation for the purpose of lock-in detection, then the first order diffracted beam is passed through a λ/4 waveplate to change the polarization from linear to circular before being directed through the Yb+ discharge in the HCL. The probe beam is directed through the HCL at a small angle to the pump beam to allow the beams to be separated, the beams are aligned so that they overlap in the Yb+ and lenses are used to focus both beams in the center of the HCL and increase the interaction. After passing through the HCL the probe beam is passed through a λ/2 waveplate to rotate the vertical linear polarization to 45°, a polarization beamsplitter (Wollaston prism) then separates the horizontal and vertical components and these components are then incident on a balanced pair photodetector. The difference signal from the balanced pair photodetector contains the polarization spectroscopy signal, however lock-in detection is used to improve the signal to noise ratio. This signal can be used as the error signal for frequency locking the ECDL using the internal servo in the MOGLabs DLC001 diode laser controller.

Fig. 3
Fig. 3

The error signal generated by polarization spectroscopy (top) compared with the saturated absorption spectroscopy signal (bottom). Pump power is ∼ 1 mW, and probe power ∼ 1.5 mW - far above typical working conditions to provide a high signal-to-noise ratio without additional data averaging. Beams were focused to a waist of ∼ 200 μm at the cathode location. Transition assignments made from [9, 25]. Isotopes with even atomic number each have a single feature while the 171 isotope shows features for both the F = 1 → F′ = 0 and F = 1 → F′ = 1 transitions. Transitions for the 173 isotope and the 171 F = 0 → F′ = 1 transition lie outside the wavelength window of this measurement. Saturated absorption measurements conducted in single-probe configuration using similar pump and probe beam powers. A systematic offset of approximately 50 MHz between the centers of the saturated absorption peaks and the zero-crossings of the polarization spectroscopy measurements are due to small wavemeter drifts between the measurements and the use of a double-pass AOM configuration in the saturated absorption spectroscopy, removing the 35 MHz frequency offset.

Fig. 4
Fig. 4

Plot of wavelength stability measurements with varying power in the pump beam. The best frequency stability achieved was with 54 μW of pump power, where the standard deviation of the frequency was ∼ 400 kHz. Higher pump powers gave slightly worse stabiliy results, which could be due to photoemission from the pump beam impinging on the cathode material increasing with higher power and causing instability in the discharge, or from imperfect adjustment of the feedback servo with larger signals (the feedback gain was adjusted for best stability at each power level, however individual control of the PID parameters was not available). At the lowest pump power level of 7.8 μW the signal to noise ratio is too small and the ECDL drops from the lock during the test run. The frequency measuremetns were made with a HighFinesse WSU-10 wavelength meter set to the minimum 1ms integration time. Information similar to that demonstrated through these time-domain data sets may be obtained by calculating the Allan variance, as is typical in precision oscillator characterization. Nonetheless we are unable to determine any new quantitative insights that differentiate between the quality of our optical approach as opposed to the locking electronics.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n + n = Δ n = c ω 0 Δ α 0 x 1 + x 2
E + = E 0 + e i ( ω t k + z ) , E 0 + = 1 2 E 0 e i ϕ ( x ^ + i y ^ )
E = E 0 e i ( ω t k z ) , E 0 = 1 2 E 0 e + i ϕ ( x ^ i y ^ )
Δ ϕ = ( k + + k ) L = ω L Δ n c
Δ E = E 0 2 [ e ( α + / 2 ) L e ( α / 2 ) L ]
E + = E 0 + e i [ ω t k + L + i ( α + / 2 ) L ]
E = E 0 e i [ ω t k L + i ( α / 2 ) L ]
E = E 0 2 e i ω t e i [ ω L n c i α L 2 ] [ e i ϕ e i Ω ( x ^ + i y ^ ) + e + i ϕ e + i Ω ( x ^ i y ^ ) ] z
Ω = ω L Δ n 2 c i L Δ α 4
I = I V I H = I 0 e α L cos ( 2 ϕ + ω L Δ n c )
I = I 0 e α L Δ α 0 L x 1 + x 2

Metrics