Abstract

Fiber Bragg Gratings (FBGs) can be used as sensors for strain, temperature and pressure measurements. For this purpose, the ability to determine the Bragg peak wavelength with adequate wavelength resolution and accuracy is essential. However, conventional peak detection techniques, such as the maximum detection algorithm, can yield inaccurate and imprecise results, especially when the Signal to Noise Ratio (SNR) and the wavelength resolution are poor. Other techniques, such as the cross-correlation demodulation algorithm are more precise and accurate but require a considerable higher computational effort. To overcome these problems, we developed a novel fast phase correlation (FPC) peak detection algorithm, which computes the wavelength shift in the reflected spectrum of a FBG sensor. This paper analyzes the performance of the FPC algorithm for different values of the SNR and wavelength resolution. Using simulations and experiments, we compared the FPC with the maximum detection and cross-correlation algorithms. The FPC method demonstrated a detection precision and accuracy comparable with those of cross-correlation demodulation and considerably higher than those obtained with the maximum detection technique. Additionally, FPC showed to be about 50 times faster than the cross-correlation. It is therefore a promising tool for future implementation in real-time systems or in embedded hardware intended for FBG sensor interrogation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.O. Hill, Y. Fujii, D. C. Johnsen, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  2. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse folographic method,” Opt. Lett. 14, 823–825 (1989).
    [CrossRef] [PubMed]
  3. K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [CrossRef]
  4. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  5. Y. Yu, H. Tam, W. Chung, M. S. Demokan, “Fiber Bragg grating sensor for simultaneous measurements of displacement and temperature,” Opt. Lett. 25(16), 1141–1143 (2000).
    [CrossRef]
  6. X. Shu, Y. Liu, D. Zhao, B. Gwandu, F. Floreani, L. Zhang, I. Bennion, “Dependence of temperature and strain coefficients on fiber grating type and its application to simultaneous temperature and strain measurement,” Opt. Lett. 27(9), 701–703 (2002).
    [CrossRef]
  7. S. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photonics Technol. Lett. 4(5), 516–518 (1992).
    [CrossRef]
  8. G. A. Ball, W. W. Morey, R. K. Cheo, “Fiber laser source/analyzer for Bragg grating sensor array interrogation,” J. Lightwave Technol. 12(4), 700–703 (1994).
    [CrossRef]
  9. R. Huber, D. C. Adler, J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
    [CrossRef] [PubMed]
  10. C. G. Atkins, M. A. Putnam, E. J. Friebele, “Instrumentation for interrogating many-element fiber Bragg grating arrays,” Proc. SPIE 2444, 257–267 (1995).
    [CrossRef]
  11. A. Ezbiri, S. E. Kanellopoulos, V. A. Handerek, “High resolution instrumentation system for fiber-Bragg grating aerospace sensors,” Opt. Commun. 150, 43–48 (1998).
    [CrossRef]
  12. J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 14(5), 678–680 (2002).
    [CrossRef]
  13. C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
    [CrossRef]
  14. C. Huang, W. Jing, K. Liu, Y. Zhang, G. D. Peng, “Demodulation of fiber Bragg grating sensor using cross-correlation algorithm,” IEEE Photonics Technol. Lett. 19(9), 707–709 (2007).
    [CrossRef]
  15. L. Negri, A. Nied, H. Kalinowsky, A. Paterno, “Benchmark of peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement,” Sensors 11, 3466–3482 (2011).
    [CrossRef]
  16. L. Gui, S. T. Wereley, “A correlation-based continuous window-shift technique to reduce the peak-locking in digital PIV evaluation,” Experiments Fluids 32, 506–517 (2002).
    [CrossRef]
  17. A. C. Eckstein, J. Charonko, “Phase correlation processing for DPIV measurements,” Experiments Fluids 45, 485–500 (2008).
    [CrossRef]
  18. M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry—A Practical Guide (Springer, 1998).
    [CrossRef]
  19. K. T. Christensen, “On the influence of peak-locking errors on turbulance statistics compared from piv ensembles,” Experiments Fluids 36(3), 484–497 (2004).
    [CrossRef]
  20. J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8(12), 1379–1392 (1997).
    [CrossRef]
  21. R. Kashyap, Fiber Bragg Gratings (Academic, 1999), Vol. IV.
  22. H. Y. Ling, K. T. Lau, W. Jin, K. C. Chan, “Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating,” Opt. Commun. 270, 25–30 (2007).
    [CrossRef]
  23. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–377 (1997).
    [CrossRef]
  24. Optical Sensing Interrogator sm125, http://micronoptics.com/uploads/library/documents/datasheets/instruments .

2011 (1)

L. Negri, A. Nied, H. Kalinowsky, A. Paterno, “Benchmark of peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement,” Sensors 11, 3466–3482 (2011).
[CrossRef]

2008 (1)

A. C. Eckstein, J. Charonko, “Phase correlation processing for DPIV measurements,” Experiments Fluids 45, 485–500 (2008).
[CrossRef]

2007 (2)

H. Y. Ling, K. T. Lau, W. Jin, K. C. Chan, “Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating,” Opt. Commun. 270, 25–30 (2007).
[CrossRef]

C. Huang, W. Jing, K. Liu, Y. Zhang, G. D. Peng, “Demodulation of fiber Bragg grating sensor using cross-correlation algorithm,” IEEE Photonics Technol. Lett. 19(9), 707–709 (2007).
[CrossRef]

2006 (1)

2004 (2)

K. T. Christensen, “On the influence of peak-locking errors on turbulance statistics compared from piv ensembles,” Experiments Fluids 36(3), 484–497 (2004).
[CrossRef]

C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[CrossRef]

2002 (3)

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 14(5), 678–680 (2002).
[CrossRef]

L. Gui, S. T. Wereley, “A correlation-based continuous window-shift technique to reduce the peak-locking in digital PIV evaluation,” Experiments Fluids 32, 506–517 (2002).
[CrossRef]

X. Shu, Y. Liu, D. Zhao, B. Gwandu, F. Floreani, L. Zhang, I. Bennion, “Dependence of temperature and strain coefficients on fiber grating type and its application to simultaneous temperature and strain measurement,” Opt. Lett. 27(9), 701–703 (2002).
[CrossRef]

2000 (1)

1998 (1)

A. Ezbiri, S. E. Kanellopoulos, V. A. Handerek, “High resolution instrumentation system for fiber-Bragg grating aerospace sensors,” Opt. Commun. 150, 43–48 (1998).
[CrossRef]

1997 (4)

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–377 (1997).
[CrossRef]

J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8(12), 1379–1392 (1997).
[CrossRef]

1995 (1)

C. G. Atkins, M. A. Putnam, E. J. Friebele, “Instrumentation for interrogating many-element fiber Bragg grating arrays,” Proc. SPIE 2444, 257–267 (1995).
[CrossRef]

1994 (1)

G. A. Ball, W. W. Morey, R. K. Cheo, “Fiber laser source/analyzer for Bragg grating sensor array interrogation,” J. Lightwave Technol. 12(4), 700–703 (1994).
[CrossRef]

1992 (1)

S. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photonics Technol. Lett. 4(5), 516–518 (1992).
[CrossRef]

1989 (1)

1978 (1)

K.O. Hill, Y. Fujii, D. C. Johnsen, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Adler, D. C.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Atkins, C. G.

C. G. Atkins, M. A. Putnam, E. J. Friebele, “Instrumentation for interrogating many-element fiber Bragg grating arrays,” Proc. SPIE 2444, 257–267 (1995).
[CrossRef]

Ball, G. A.

G. A. Ball, W. W. Morey, R. K. Cheo, “Fiber laser source/analyzer for Bragg grating sensor array interrogation,” J. Lightwave Technol. 12(4), 700–703 (1994).
[CrossRef]

Bennion, I.

Blondel, M.

C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[CrossRef]

Caucheteur, C.

C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[CrossRef]

Chah, K.

C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[CrossRef]

Chan, C. C.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 14(5), 678–680 (2002).
[CrossRef]

Chan, K. C.

H. Y. Ling, K. T. Lau, W. Jin, K. C. Chan, “Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating,” Opt. Commun. 270, 25–30 (2007).
[CrossRef]

Charonko, J.

A. C. Eckstein, J. Charonko, “Phase correlation processing for DPIV measurements,” Experiments Fluids 45, 485–500 (2008).
[CrossRef]

Cheo, R. K.

G. A. Ball, W. W. Morey, R. K. Cheo, “Fiber laser source/analyzer for Bragg grating sensor array interrogation,” J. Lightwave Technol. 12(4), 700–703 (1994).
[CrossRef]

Christensen, K. T.

K. T. Christensen, “On the influence of peak-locking errors on turbulance statistics compared from piv ensembles,” Experiments Fluids 36(3), 484–497 (2004).
[CrossRef]

Chung, W.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Demokan, M. S.

Eckstein, A. C.

A. C. Eckstein, J. Charonko, “Phase correlation processing for DPIV measurements,” Experiments Fluids 45, 485–500 (2008).
[CrossRef]

Ezbiri, A.

A. Ezbiri, S. E. Kanellopoulos, V. A. Handerek, “High resolution instrumentation system for fiber-Bragg grating aerospace sensors,” Opt. Commun. 150, 43–48 (1998).
[CrossRef]

Floreani, F.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

C. G. Atkins, M. A. Putnam, E. J. Friebele, “Instrumentation for interrogating many-element fiber Bragg grating arrays,” Proc. SPIE 2444, 257–267 (1995).
[CrossRef]

Fujii, Y.

K.O. Hill, Y. Fujii, D. C. Johnsen, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Fujimoto, J. G.

Glenn, W. H.

Gong, J. M.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 14(5), 678–680 (2002).
[CrossRef]

Gui, L.

L. Gui, S. T. Wereley, “A correlation-based continuous window-shift technique to reduce the peak-locking in digital PIV evaluation,” Experiments Fluids 32, 506–517 (2002).
[CrossRef]

Gwandu, B.

Handerek, V. A.

A. Ezbiri, S. E. Kanellopoulos, V. A. Handerek, “High resolution instrumentation system for fiber-Bragg grating aerospace sensors,” Opt. Commun. 150, 43–48 (1998).
[CrossRef]

Hill, K. O.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

Hill, K.O.

K.O. Hill, Y. Fujii, D. C. Johnsen, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Huang, C.

C. Huang, W. Jing, K. Liu, Y. Zhang, G. D. Peng, “Demodulation of fiber Bragg grating sensor using cross-correlation algorithm,” IEEE Photonics Technol. Lett. 19(9), 707–709 (2007).
[CrossRef]

Huber, R.

Jin, W.

H. Y. Ling, K. T. Lau, W. Jin, K. C. Chan, “Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating,” Opt. Commun. 270, 25–30 (2007).
[CrossRef]

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 14(5), 678–680 (2002).
[CrossRef]

Jing, W.

C. Huang, W. Jing, K. Liu, Y. Zhang, G. D. Peng, “Demodulation of fiber Bragg grating sensor using cross-correlation algorithm,” IEEE Photonics Technol. Lett. 19(9), 707–709 (2007).
[CrossRef]

Johnsen, D. C.

K.O. Hill, Y. Fujii, D. C. Johnsen, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kalinowsky, H.

L. Negri, A. Nied, H. Kalinowsky, A. Paterno, “Benchmark of peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement,” Sensors 11, 3466–3482 (2011).
[CrossRef]

Kanellopoulos, S. E.

A. Ezbiri, S. E. Kanellopoulos, V. A. Handerek, “High resolution instrumentation system for fiber-Bragg grating aerospace sensors,” Opt. Commun. 150, 43–48 (1998).
[CrossRef]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999), Vol. IV.

Kawasaki, B. S.

K.O. Hill, Y. Fujii, D. C. Johnsen, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kompenhans, J.

M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry—A Practical Guide (Springer, 1998).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Lau, K. T.

H. Y. Ling, K. T. Lau, W. Jin, K. C. Chan, “Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating,” Opt. Commun. 270, 25–30 (2007).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Lhommé, F.

C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[CrossRef]

Liao, Y. B.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 14(5), 678–680 (2002).
[CrossRef]

Ling, H. Y.

H. Y. Ling, K. T. Lau, W. Jin, K. C. Chan, “Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating,” Opt. Commun. 270, 25–30 (2007).
[CrossRef]

Liu, K.

C. Huang, W. Jing, K. Liu, Y. Zhang, G. D. Peng, “Demodulation of fiber Bragg grating sensor using cross-correlation algorithm,” IEEE Photonics Technol. Lett. 19(9), 707–709 (2007).
[CrossRef]

S. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photonics Technol. Lett. 4(5), 516–518 (1992).
[CrossRef]

Liu, Y.

MacAlpine, J. M. K.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 14(5), 678–680 (2002).
[CrossRef]

Measures, R. M.

S. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photonics Technol. Lett. 4(5), 516–518 (1992).
[CrossRef]

Mégret, P.

C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[CrossRef]

Melle, S.

S. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photonics Technol. Lett. 4(5), 516–518 (1992).
[CrossRef]

Meltz, G.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse folographic method,” Opt. Lett. 14, 823–825 (1989).
[CrossRef] [PubMed]

Morey, W. W.

G. A. Ball, W. W. Morey, R. K. Cheo, “Fiber laser source/analyzer for Bragg grating sensor array interrogation,” J. Lightwave Technol. 12(4), 700–703 (1994).
[CrossRef]

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse folographic method,” Opt. Lett. 14, 823–825 (1989).
[CrossRef] [PubMed]

Negri, L.

L. Negri, A. Nied, H. Kalinowsky, A. Paterno, “Benchmark of peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement,” Sensors 11, 3466–3482 (2011).
[CrossRef]

Nied, A.

L. Negri, A. Nied, H. Kalinowsky, A. Paterno, “Benchmark of peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement,” Sensors 11, 3466–3482 (2011).
[CrossRef]

Paterno, A.

L. Negri, A. Nied, H. Kalinowsky, A. Paterno, “Benchmark of peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement,” Sensors 11, 3466–3482 (2011).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Peng, G. D.

C. Huang, W. Jing, K. Liu, Y. Zhang, G. D. Peng, “Demodulation of fiber Bragg grating sensor using cross-correlation algorithm,” IEEE Photonics Technol. Lett. 19(9), 707–709 (2007).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

C. G. Atkins, M. A. Putnam, E. J. Friebele, “Instrumentation for interrogating many-element fiber Bragg grating arrays,” Proc. SPIE 2444, 257–267 (1995).
[CrossRef]

Raffel, M.

M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry—A Practical Guide (Springer, 1998).
[CrossRef]

Rao, Y. J.

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–377 (1997).
[CrossRef]

Shu, X.

Tam, H.

Wereley, S. T.

L. Gui, S. T. Wereley, “A correlation-based continuous window-shift technique to reduce the peak-locking in digital PIV evaluation,” Experiments Fluids 32, 506–517 (2002).
[CrossRef]

Westerweel, J.

J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8(12), 1379–1392 (1997).
[CrossRef]

Willert, C.

M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry—A Practical Guide (Springer, 1998).
[CrossRef]

Yu, Y.

Zhang, L.

Zhang, M.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 14(5), 678–680 (2002).
[CrossRef]

Zhang, Y.

C. Huang, W. Jing, K. Liu, Y. Zhang, G. D. Peng, “Demodulation of fiber Bragg grating sensor using cross-correlation algorithm,” IEEE Photonics Technol. Lett. 19(9), 707–709 (2007).
[CrossRef]

Zhao, D.

Appl. Phys. Lett. (1)

K.O. Hill, Y. Fujii, D. C. Johnsen, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Experiments Fluids (3)

L. Gui, S. T. Wereley, “A correlation-based continuous window-shift technique to reduce the peak-locking in digital PIV evaluation,” Experiments Fluids 32, 506–517 (2002).
[CrossRef]

A. C. Eckstein, J. Charonko, “Phase correlation processing for DPIV measurements,” Experiments Fluids 45, 485–500 (2008).
[CrossRef]

K. T. Christensen, “On the influence of peak-locking errors on turbulance statistics compared from piv ensembles,” Experiments Fluids 36(3), 484–497 (2004).
[CrossRef]

IEEE Photonics Technol. Lett. (4)

S. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photonics Technol. Lett. 4(5), 516–518 (1992).
[CrossRef]

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 14(5), 678–680 (2002).
[CrossRef]

C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[CrossRef]

C. Huang, W. Jing, K. Liu, Y. Zhang, G. D. Peng, “Demodulation of fiber Bragg grating sensor using cross-correlation algorithm,” IEEE Photonics Technol. Lett. 19(9), 707–709 (2007).
[CrossRef]

J. Lightwave Technol. (3)

G. A. Ball, W. W. Morey, R. K. Cheo, “Fiber laser source/analyzer for Bragg grating sensor array interrogation,” J. Lightwave Technol. 12(4), 700–703 (1994).
[CrossRef]

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Meas. Sci. Technol. (2)

J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8(12), 1379–1392 (1997).
[CrossRef]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–377 (1997).
[CrossRef]

Opt. Commun. (2)

A. Ezbiri, S. E. Kanellopoulos, V. A. Handerek, “High resolution instrumentation system for fiber-Bragg grating aerospace sensors,” Opt. Commun. 150, 43–48 (1998).
[CrossRef]

H. Y. Ling, K. T. Lau, W. Jin, K. C. Chan, “Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating,” Opt. Commun. 270, 25–30 (2007).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (1)

C. G. Atkins, M. A. Putnam, E. J. Friebele, “Instrumentation for interrogating many-element fiber Bragg grating arrays,” Proc. SPIE 2444, 257–267 (1995).
[CrossRef]

Sensors (1)

L. Negri, A. Nied, H. Kalinowsky, A. Paterno, “Benchmark of peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement,” Sensors 11, 3466–3482 (2011).
[CrossRef]

Other (3)

R. Kashyap, Fiber Bragg Gratings (Academic, 1999), Vol. IV.

M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry—A Practical Guide (Springer, 1998).
[CrossRef]

Optical Sensing Interrogator sm125, http://micronoptics.com/uploads/library/documents/datasheets/instruments .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Normalized reflectivity against wavelength and time under a uniform constant strain C0 = 10−4 με. The black line with markers indicates the strain-free spectrum. (b) Theoretical shift of the design wavelength.

Fig. 2
Fig. 2

Processing of the simulated spectra. The R(k) and R′(k) vectors are the input for the FPC algorithm which computes the wavelength shift 500 times for each SNR level.

Fig. 3
Fig. 3

Precision of MDA, CCA and FPC algorithms for different wavelength resolutions. The MDA is used in conjunction with a 10 points quadratic interpolation around the maximum. The FPC is as precise as the CCA and considerably more precise than MDA. The peak locking effect is less evident for the FPC than for MDA and CCA.

Fig. 4
Fig. 4

Accuracy of MDA, CCA and FPC algorithms for different wavelength resolutions. The FPC is generally more accurate than CCA and MDA and shows a less evident peak locking effect.

Fig. 5
Fig. 5

Experimental setup: (a) steel test bar mounted on the stress testing machine; (b) zoom of the three FBG sensors glued on the steel bar; (c) interrogator.

Fig. 6
Fig. 6

FBGs reflectivities when no strain is applied. FBG1 and FBG2 are type I gratings while FBG3 is a type II grating. The peak region of FBG3 shows a plateau of about 0.8 nm, increasing the peak detection uncertainty.

Fig. 7
Fig. 7

Wavelength shift of FBG1 sensor computed with MDA, CCA and FPC. The precision σ of each algorithm is 1.882 pm (MDA), 0.597 pm (CCA) and 0.548 pm (FPC).

Fig. 8
Fig. 8

Wavelength shift of FBG2 sensor computed with MDA, CCA and FPC. The precision σ of each algorithm is 1.865 pm (MDA), 0.599 pm (CCA) and 0.587 pm (FPC).

Fig. 9
Fig. 9

Wavelength shift of FBG3 sensor computed with MDA, CCA and FPC. The precision σ of each algorithm is 451.25 pm (MDA), 2.23 pm (CCA) and 1.05 pm (FPC).

Fig. 10
Fig. 10

Wavelength shift of FBG3 sensor computed with MDA, CCA and FPC using a wavelength bandwidth of 8 nm (N=1600). The precision σ of each algorithm is 455.45 pm (MDA), 1.51 pm (CCA) and 1.58 pm (FPC).

Fig. 11
Fig. 11

Standard deviation σ of the calculated peak wavelength versus sample spectral resolution.

Tables (3)

Tables Icon

Table 1 Normalized Time With Respect to MDA

Tables Icon

Table 2 Precision of the peak detection algorithm at Δλ =0 pm and SNR=55 dB

Tables Icon

Table 3 Accuracy of the peak detection algorithm at Δλ =0 pm and SNR=55 dB

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

N = λ max λ min δ λ
R ( λ j ) = R ( λ j Δ λ )
( k ) = j = 1 N 1 R ( λ j ) e 2 π i N ( j 1 ) ( k 1 ) , k = 1 , 2 , , M < < N
( k ) = j = 1 N 1 R ( λ j ) e 2 π i N ( j 1 ) ( k 1 ) , k = 1 , 2 , , M < < N
Δ λ ^ ( k 1 ) = ( ( k ) ( k ) ) N k δ λ 2 π , k = 2 , , M < < N
Δ λ = median 2 k M ( Δ λ ^ ( k 1 ) )
d R ( z ) d z = i ( k d c R ( z ) + k a c S ( z ) )
d S ( z ) d z = i ( k d c S ( z ) + k a c R ( z ) )
k d c = 2 π n eff ( 1 λ 1 λ D ) + 2 π λ δ n eff ¯
k a c = π λ ν δ n eff ¯
R ( λ ) = | S ( L / 2 ) R ( L / 2 ) | 2 .
[ R ( L / 2 ) S ( L / 2 ) ] = r = 1 m T r × [ R ( L / 2 ) S ( L / 2 ) ]
T r = [ cosh ( α Δ z ) i k d c α sinh ( α Δ z ) i k a c α sinh ( α Δ z ) i k a c α sinh ( α Δ z ) cosh ( α Δ z ) i k d c α sinh ( α Δ z ) ]
α = k a c 2 k d c 2
ε z z ( z , t ) = C 0 t
λ D ( z , t ) = 2 n eff Λ 0 ( 1 + a ε ( z , t ) )
σ SNR = 1 500 n = 1 500 [ ( Δ λ SNR , n Δ λ D ) 1 500 n = 1 500 ( Δ λ SNR , n Δ λ D ) ] 2
δ SNR = 1 500 n = 1 500 | Δ λ SNR , n Δ λ D |

Metrics