Abstract

This paper details the effect of Thulium and Bismuth concentration ratio on gain-shift at 1800 nm and 1400 nm band in a Thulium-Bismuth Doped Fiber Amplifier (TBDFA). The effect of Thulium and Bismuth’s concentration ratio on gain shifting is experimentally established and subsequently numerically modeled. The analysis is carried out via the cross relaxation and energy transfer processes between the two dopants. The energy transfer in this process was studied through experimental and numerical analysis of three samples with different Tm/Bi concentration ratio of 2, 0.5 and 0.2, respectively. The optimized length for the three samples (TBDFA-1, TBDFA-2 and TBDFA-3) was determined and set at 6.5, 4 and 5.5 m, respectively. In addition, the experimental result of Thulium Doped Fiber Amplifier (TDFA) was compared with the earlier TBDFA samples. The gain for TBDFA-1, with the highest Tm/Bi ratio, showed no shift at the 1800 nm region, while TBDFA-2 and TBDFA-3, possessing a lower Tm/Bi concentration ratio, shifted to the region of 1950 and 1960 nm, respectively. The gain shifting from 1460 nm to 1490 nm is also observed. The numerical model demonstrates that the common 3F4 layer for 1460 nm emission (3H43F4), and 1800 nm emission (3F43H6) inversely affects the 1460 nm and 1800 nm gain shifting.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Peterka, I. Kasik, A. Dhar, B. Dussardier, W. Blanc, “Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime,” Opt. Express 19(3), 2773–2781 (2011).
    [CrossRef] [PubMed]
  2. T. Komukai, T. Yamamoto, T. Sugawa, Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 mu m,” IEEE J. Quantum Electron. 31, 1880–1889 (1995).
    [CrossRef]
  3. C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, A. Jha, “Theoretical modeling of a ~2 μm Tm3+-doped tellurite fiber laser: the influence of cross relaxation,” J. Lightwave Technol. 27(18), 4026–4032 (2009).
    [CrossRef]
  4. S. D. Emami, Thulium Doped Fiber Amplifier, Numerical and Experimental Approach (Nova Science, 2011).
  5. P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
    [CrossRef]
  6. A. Pal, A. Dhar, S. Das, S. Y. Chen, T. Sun, R. Sen, K. T. Grattan, “Ytterbium-sensitized Thulium-doped fiber laser in the near-IR with 980 nm pumping,” Opt. Express 18(5), 5068–5074 (2010).
    [CrossRef] [PubMed]
  7. S. D. Emami, H. A. A. Rashid, S. Z. M. Yasin, K. A. M. Shariff, M. I. Zulkifli, Z. Yusoff, H. Ahmad, S. W. Harun, “New design of a thulium, aluminum-doped fiber amplifier based on macro-bending approach,” J. Lightwave Technol. 30(20), 3263–3272 (2012).
    [CrossRef]
  8. R. R. T. Xu, M. Wang, Y. L. L. Hu, J. J. Zhang, “Spectroscopic properties of 1.8 μm emission of thulium ions in germanate glass,” Appl. Phys., A Mater. Sci. Process. 102, 109–116 (2011).
  9. S. D. Jackson, T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
    [CrossRef]
  10. H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, S. W. Harun, “Analytical model for broadband thulium-bismuth-doped fiber amplifier,” IEEE J. Quantum Electron 48(8), 1052–1058 (2012).
    [CrossRef]
  11. B. Zhou, H. Lin, B. Chen, E. Y. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express 19(7), 6514–6523 (2011).
    [CrossRef] [PubMed]
  12. G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
    [CrossRef]
  13. N. Zhang, J. R. Qiu, G. P. Dong, Z. M. Yang, Q. Y. Zhang, M. Y. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
    [CrossRef]
  14. S. Zhou, H. Dong, H. Zeng, J. Hao, J. Chen, J. Qiu, “Infrared luminescence and amplification properties of Bi-doped GeO(2)-Ga(2)O(3)-Al(2)O(3) glasses,” J. Appl. Phys. 103(10), 103532 (2008).
    [CrossRef]
  15. J. Ren, G. Dong, S. Xu, R. Bao, J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
    [CrossRef] [PubMed]
  16. S. Aozasa, H. Masuda, M. Shimizu, “S-band thulium-doped fiber amplifier employing high thulium concentration doping technique,” J. Lightwave Technol. 24(10), 3842–3848 (2006).
    [CrossRef]
  17. T. Kasamatsu, Y. Yano, T. Ono, “1.49-μm-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems,” J. Lightwave Technol. 20(10), 1826–1838 (2002).
    [CrossRef]
  18. T. Kasamatsu, Y. Yano, H. Sekita, “1.50-mum-band gain-shifted thulium-doped fiber amplifier with 1.05- and 1.56-mum dual-wavelength pumping,” Opt. Lett. 24(23), 1684–1686 (1999).
    [CrossRef] [PubMed]
  19. B. Zhou, H. Lin, B. Chen, E. Y. B. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express 19(7), 6514–6523 (2011).
    [CrossRef] [PubMed]
  20. M. Weber, T. Varitimos, B. Matsinger, “Optical intensities of rare-earth ions in yttrium orthoaluminate,” Phys. Rev. B 8(1), 47–53 (1973).
    [CrossRef]
  21. J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” Appl. Phys. B 93(2), 977–983 (2003).
    [CrossRef]
  22. R. Balda, L. M. Lacha, J. Fernández, M. A. Arriandiaga, J. M. Fernández-Navarro, D. Muñoz-Martin, “Spectroscopic properties of the 1.4 μm emission of Tm3+ ions in TeO2-WO3-PbO glasses,” Opt. Express 16(16), 11836–11846 (2008).
    [CrossRef] [PubMed]
  23. T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
    [CrossRef]
  24. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley-Interscience, 1995).
  25. E. Yahel, A. A. Hardy, “Modeling and optimization of short Er3+-Yb3+ codoped fiber lasers,” IEEE J. Quantum Electron. 39(11), 1444–1451 (2003).
    [CrossRef]
  26. F. Di Pasquale, M. Federighi, “Modelling of uniform and pair-induced upconversion mechanisms in high-concentration erbium-doped silica waveguides,” J. Lightwave Technol. 13(9), 1858–1864 (1995).
    [CrossRef]
  27. A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, S. W. Harun, “Quantitative analysis of energy transfer processes in Thulium–Bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
    [CrossRef]
  28. A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61(8), 5280–5292 (2000).
    [CrossRef]
  29. J. Ruan, G. Dong, X. Liu, Q. Zhang, D. Chen, J. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009).
    [CrossRef] [PubMed]
  30. H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14, 125402 (2012).
  31. J. Ganem, J. Crawford, P. Schmidt, N. Jenkins, S. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
    [CrossRef]
  32. A. S. Simpson, “Spectroscopy of thulium doped silica glass,” Victoria University (2010).

2012 (6)

S. D. Emami, H. A. A. Rashid, S. Z. M. Yasin, K. A. M. Shariff, M. I. Zulkifli, Z. Yusoff, H. Ahmad, S. W. Harun, “New design of a thulium, aluminum-doped fiber amplifier based on macro-bending approach,” J. Lightwave Technol. 30(20), 3263–3272 (2012).
[CrossRef]

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, S. W. Harun, “Analytical model for broadband thulium-bismuth-doped fiber amplifier,” IEEE J. Quantum Electron 48(8), 1052–1058 (2012).
[CrossRef]

N. Zhang, J. R. Qiu, G. P. Dong, Z. M. Yang, Q. Y. Zhang, M. Y. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[CrossRef]

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[CrossRef]

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, S. W. Harun, “Quantitative analysis of energy transfer processes in Thulium–Bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[CrossRef]

H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14, 125402 (2012).

2011 (4)

2010 (1)

2009 (2)

2008 (4)

R. Balda, L. M. Lacha, J. Fernández, M. A. Arriandiaga, J. M. Fernández-Navarro, D. Muñoz-Martin, “Spectroscopic properties of the 1.4 μm emission of Tm3+ ions in TeO2-WO3-PbO glasses,” Opt. Express 16(16), 11836–11846 (2008).
[CrossRef] [PubMed]

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

S. Zhou, H. Dong, H. Zeng, J. Hao, J. Chen, J. Qiu, “Infrared luminescence and amplification properties of Bi-doped GeO(2)-Ga(2)O(3)-Al(2)O(3) glasses,” J. Appl. Phys. 103(10), 103532 (2008).
[CrossRef]

J. Ren, G. Dong, S. Xu, R. Bao, J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[CrossRef] [PubMed]

2006 (1)

2004 (1)

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
[CrossRef]

2003 (2)

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” Appl. Phys. B 93(2), 977–983 (2003).
[CrossRef]

E. Yahel, A. A. Hardy, “Modeling and optimization of short Er3+-Yb3+ codoped fiber lasers,” IEEE J. Quantum Electron. 39(11), 1444–1451 (2003).
[CrossRef]

2002 (2)

J. Ganem, J. Crawford, P. Schmidt, N. Jenkins, S. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

T. Kasamatsu, Y. Yano, T. Ono, “1.49-μm-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems,” J. Lightwave Technol. 20(10), 1826–1838 (2002).
[CrossRef]

2000 (1)

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61(8), 5280–5292 (2000).
[CrossRef]

1999 (2)

1995 (2)

T. Komukai, T. Yamamoto, T. Sugawa, Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 mu m,” IEEE J. Quantum Electron. 31, 1880–1889 (1995).
[CrossRef]

F. Di Pasquale, M. Federighi, “Modelling of uniform and pair-induced upconversion mechanisms in high-concentration erbium-doped silica waveguides,” J. Lightwave Technol. 13(9), 1858–1864 (1995).
[CrossRef]

1973 (1)

M. Weber, T. Varitimos, B. Matsinger, “Optical intensities of rare-earth ions in yttrium orthoaluminate,” Phys. Rev. B 8(1), 47–53 (1973).
[CrossRef]

Ahmad, H.

S. D. Emami, H. A. A. Rashid, S. Z. M. Yasin, K. A. M. Shariff, M. I. Zulkifli, Z. Yusoff, H. Ahmad, S. W. Harun, “New design of a thulium, aluminum-doped fiber amplifier based on macro-bending approach,” J. Lightwave Technol. 30(20), 3263–3272 (2012).
[CrossRef]

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, S. W. Harun, “Analytical model for broadband thulium-bismuth-doped fiber amplifier,” IEEE J. Quantum Electron 48(8), 1052–1058 (2012).
[CrossRef]

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, S. W. Harun, “Quantitative analysis of energy transfer processes in Thulium–Bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[CrossRef]

Aozasa, S.

Arriandiaga, M. A.

Balda, R.

Bao, R.

J. Ren, G. Dong, S. Xu, R. Bao, J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[CrossRef] [PubMed]

Blanc, W.

P. Peterka, I. Kasik, A. Dhar, B. Dussardier, W. Blanc, “Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime,” Opt. Express 19(3), 2773–2781 (2011).
[CrossRef] [PubMed]

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
[CrossRef]

Bowman, S.

J. Ganem, J. Crawford, P. Schmidt, N. Jenkins, S. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Braud, A.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61(8), 5280–5292 (2000).
[CrossRef]

Chen, B.

Chen, D.

Chen, J.

S. Zhou, H. Dong, H. Zeng, J. Hao, J. Chen, J. Qiu, “Infrared luminescence and amplification properties of Bi-doped GeO(2)-Ga(2)O(3)-Al(2)O(3) glasses,” J. Appl. Phys. 103(10), 103532 (2008).
[CrossRef]

Chen, S. Y.

Crawford, J.

J. Ganem, J. Crawford, P. Schmidt, N. Jenkins, S. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Dai, S.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” Appl. Phys. B 93(2), 977–983 (2003).
[CrossRef]

Das, S.

Dhar, A.

Di Pasquale, F.

F. Di Pasquale, M. Federighi, “Modelling of uniform and pair-induced upconversion mechanisms in high-concentration erbium-doped silica waveguides,” J. Lightwave Technol. 13(9), 1858–1864 (1995).
[CrossRef]

Dong, G.

J. Ruan, G. Dong, X. Liu, Q. Zhang, D. Chen, J. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009).
[CrossRef] [PubMed]

J. Ren, G. Dong, S. Xu, R. Bao, J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[CrossRef] [PubMed]

Dong, G. P.

N. Zhang, J. R. Qiu, G. P. Dong, Z. M. Yang, Q. Y. Zhang, M. Y. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[CrossRef]

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Dong, H.

S. Zhou, H. Dong, H. Zeng, J. Hao, J. Chen, J. Qiu, “Infrared luminescence and amplification properties of Bi-doped GeO(2)-Ga(2)O(3)-Al(2)O(3) glasses,” J. Appl. Phys. 103(10), 103532 (2008).
[CrossRef]

Doualan, J. L.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61(8), 5280–5292 (2000).
[CrossRef]

Dussardier, B.

P. Peterka, I. Kasik, A. Dhar, B. Dussardier, W. Blanc, “Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime,” Opt. Express 19(3), 2773–2781 (2011).
[CrossRef] [PubMed]

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
[CrossRef]

Emami, S. D.

S. D. Emami, H. A. A. Rashid, S. Z. M. Yasin, K. A. M. Shariff, M. I. Zulkifli, Z. Yusoff, H. Ahmad, S. W. Harun, “New design of a thulium, aluminum-doped fiber amplifier based on macro-bending approach,” J. Lightwave Technol. 30(20), 3263–3272 (2012).
[CrossRef]

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, S. W. Harun, “Analytical model for broadband thulium-bismuth-doped fiber amplifier,” IEEE J. Quantum Electron 48(8), 1052–1058 (2012).
[CrossRef]

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, S. W. Harun, “Quantitative analysis of energy transfer processes in Thulium–Bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[CrossRef]

Evans, C. A.

Fatehi, H.

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, S. W. Harun, “Analytical model for broadband thulium-bismuth-doped fiber amplifier,” IEEE J. Quantum Electron 48(8), 1052–1058 (2012).
[CrossRef]

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, S. W. Harun, “Quantitative analysis of energy transfer processes in Thulium–Bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[CrossRef]

Faure, B.

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
[CrossRef]

Federighi, M.

F. Di Pasquale, M. Federighi, “Modelling of uniform and pair-induced upconversion mechanisms in high-concentration erbium-doped silica waveguides,” J. Lightwave Technol. 13(9), 1858–1864 (1995).
[CrossRef]

Fernández, J.

Fernández-Navarro, J. M.

Ganem, J.

J. Ganem, J. Crawford, P. Schmidt, N. Jenkins, S. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Girard, S.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61(8), 5280–5292 (2000).
[CrossRef]

Grattan, K. T.

Hao, J.

S. Zhou, H. Dong, H. Zeng, J. Hao, J. Chen, J. Qiu, “Infrared luminescence and amplification properties of Bi-doped GeO(2)-Ga(2)O(3)-Al(2)O(3) glasses,” J. Appl. Phys. 103(10), 103532 (2008).
[CrossRef]

Hardy, A. A.

E. Yahel, A. A. Hardy, “Modeling and optimization of short Er3+-Yb3+ codoped fiber lasers,” IEEE J. Quantum Electron. 39(11), 1444–1451 (2003).
[CrossRef]

Harrison, P.

Harun, S. W.

S. D. Emami, H. A. A. Rashid, S. Z. M. Yasin, K. A. M. Shariff, M. I. Zulkifli, Z. Yusoff, H. Ahmad, S. W. Harun, “New design of a thulium, aluminum-doped fiber amplifier based on macro-bending approach,” J. Lightwave Technol. 30(20), 3263–3272 (2012).
[CrossRef]

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, S. W. Harun, “Analytical model for broadband thulium-bismuth-doped fiber amplifier,” IEEE J. Quantum Electron 48(8), 1052–1058 (2012).
[CrossRef]

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, S. W. Harun, “Quantitative analysis of energy transfer processes in Thulium–Bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[CrossRef]

Hau, T. M.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[CrossRef]

He, X. J.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[CrossRef]

Hu, H. Y.

H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14, 125402 (2012).

Hu, L.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” Appl. Phys. B 93(2), 977–983 (2003).
[CrossRef]

Hu, Y. L. L.

R. R. T. Xu, M. Wang, Y. L. L. Hu, J. J. Zhang, “Spectroscopic properties of 1.8 μm emission of thulium ions in germanate glass,” Appl. Phys., A Mater. Sci. Process. 102, 109–116 (2011).

Ikonic, Z.

Jackson, S. D.

Jenkins, N.

J. Ganem, J. Crawford, P. Schmidt, N. Jenkins, S. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Jha, A.

Jiang, H. C.

H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14, 125402 (2012).

Jiang, Z.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” Appl. Phys. B 93(2), 977–983 (2003).
[CrossRef]

Karasek, M.

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
[CrossRef]

Kasamatsu, T.

Kasik, I.

King, T. A.

Komukai, T.

T. Komukai, T. Yamamoto, T. Sugawa, Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 mu m,” IEEE J. Quantum Electron. 31, 1880–1889 (1995).
[CrossRef]

Lacha, L. M.

Lin, C. G.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Lin, H.

Liu, X.

Liu, X. F.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Masuda, H.

Matsinger, B.

M. Weber, T. Varitimos, B. Matsinger, “Optical intensities of rare-earth ions in yttrium orthoaluminate,” Phys. Rev. B 8(1), 47–53 (1973).
[CrossRef]

Mirnia, S. E.

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, S. W. Harun, “Quantitative analysis of energy transfer processes in Thulium–Bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[CrossRef]

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, S. W. Harun, “Analytical model for broadband thulium-bismuth-doped fiber amplifier,” IEEE J. Quantum Electron 48(8), 1052–1058 (2012).
[CrossRef]

Miyajima, Y.

T. Komukai, T. Yamamoto, T. Sugawa, Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 mu m,” IEEE J. Quantum Electron. 31, 1880–1889 (1995).
[CrossRef]

Moncorgé, R.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61(8), 5280–5292 (2000).
[CrossRef]

Muñoz-Martin, D.

Ono, T.

Pal, A.

Peng, M. Y.

N. Zhang, J. R. Qiu, G. P. Dong, Z. M. Yang, Q. Y. Zhang, M. Y. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[CrossRef]

Peterka, P.

P. Peterka, I. Kasik, A. Dhar, B. Dussardier, W. Blanc, “Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime,” Opt. Express 19(3), 2773–2781 (2011).
[CrossRef] [PubMed]

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
[CrossRef]

Pun, E. Y.

Pun, E. Y. B.

Qiu, J.

J. Ruan, G. Dong, X. Liu, Q. Zhang, D. Chen, J. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009).
[CrossRef] [PubMed]

J. Ren, G. Dong, S. Xu, R. Bao, J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[CrossRef] [PubMed]

S. Zhou, H. Dong, H. Zeng, J. Hao, J. Chen, J. Qiu, “Infrared luminescence and amplification properties of Bi-doped GeO(2)-Ga(2)O(3)-Al(2)O(3) glasses,” J. Appl. Phys. 103(10), 103532 (2008).
[CrossRef]

Qiu, J. B.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[CrossRef]

Qiu, J. R.

N. Zhang, J. R. Qiu, G. P. Dong, Z. M. Yang, Q. Y. Zhang, M. Y. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[CrossRef]

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Rashid, H. A. A.

Ren, J.

J. Ren, G. Dong, S. Xu, R. Bao, J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[CrossRef] [PubMed]

Ren, J. J.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Richards, B.

Ruan, J.

J. Ruan, G. Dong, X. Liu, Q. Zhang, D. Chen, J. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009).
[CrossRef] [PubMed]

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Schmidt, P.

J. Ganem, J. Crawford, P. Schmidt, N. Jenkins, S. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Sekita, H.

Sen, R.

Shariff, K. A. M.

Shimizu, M.

Song, Z. G.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[CrossRef]

Sugawa, T.

T. Komukai, T. Yamamoto, T. Sugawa, Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 mu m,” IEEE J. Quantum Electron. 31, 1880–1889 (1995).
[CrossRef]

Sun, T.

Tang, H.

H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14, 125402 (2012).

Tao, H. Z.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Thuau, M.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61(8), 5280–5292 (2000).
[CrossRef]

Tkachuk, A. M.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61(8), 5280–5292 (2000).
[CrossRef]

Varitimos, T.

M. Weber, T. Varitimos, B. Matsinger, “Optical intensities of rare-earth ions in yttrium orthoaluminate,” Phys. Rev. B 8(1), 47–53 (1973).
[CrossRef]

Wang, M.

R. R. T. Xu, M. Wang, Y. L. L. Hu, J. J. Zhang, “Spectroscopic properties of 1.8 μm emission of thulium ions in germanate glass,” Appl. Phys., A Mater. Sci. Process. 102, 109–116 (2011).

Wang, R. F.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[CrossRef]

Weber, M.

M. Weber, T. Varitimos, B. Matsinger, “Optical intensities of rare-earth ions in yttrium orthoaluminate,” Phys. Rev. B 8(1), 47–53 (1973).
[CrossRef]

Wen, L.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” Appl. Phys. B 93(2), 977–983 (2003).
[CrossRef]

Xia, H. P.

H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14, 125402 (2012).

Xiao, X. D.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Xu, R. R. T.

R. R. T. Xu, M. Wang, Y. L. L. Hu, J. J. Zhang, “Spectroscopic properties of 1.8 μm emission of thulium ions in germanate glass,” Appl. Phys., A Mater. Sci. Process. 102, 109–116 (2011).

Xu, S.

J. Ren, G. Dong, S. Xu, R. Bao, J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[CrossRef] [PubMed]

Yahel, E.

E. Yahel, A. A. Hardy, “Modeling and optimization of short Er3+-Yb3+ codoped fiber lasers,” IEEE J. Quantum Electron. 39(11), 1444–1451 (2003).
[CrossRef]

Yamamoto, T.

T. Komukai, T. Yamamoto, T. Sugawa, Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 mu m,” IEEE J. Quantum Electron. 31, 1880–1889 (1995).
[CrossRef]

Yang, J.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” Appl. Phys. B 93(2), 977–983 (2003).
[CrossRef]

Yang, Y.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[CrossRef]

Yang, Z. M.

N. Zhang, J. R. Qiu, G. P. Dong, Z. M. Yang, Q. Y. Zhang, M. Y. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[CrossRef]

Yang, Z. W.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[CrossRef]

Yano, Y.

Yasin, S. Z. M.

Yu, X.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[CrossRef]

Yusoff, Z.

Zahedi, F. Z.

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, S. W. Harun, “Analytical model for broadband thulium-bismuth-doped fiber amplifier,” IEEE J. Quantum Electron 48(8), 1052–1058 (2012).
[CrossRef]

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, S. W. Harun, “Quantitative analysis of energy transfer processes in Thulium–Bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[CrossRef]

Zarei, A.

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, S. W. Harun, “Analytical model for broadband thulium-bismuth-doped fiber amplifier,” IEEE J. Quantum Electron 48(8), 1052–1058 (2012).
[CrossRef]

Zarifi, A.

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, S. W. Harun, “Analytical model for broadband thulium-bismuth-doped fiber amplifier,” IEEE J. Quantum Electron 48(8), 1052–1058 (2012).
[CrossRef]

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, S. W. Harun, “Quantitative analysis of energy transfer processes in Thulium–Bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[CrossRef]

Zeng, H.

S. Zhou, H. Dong, H. Zeng, J. Hao, J. Chen, J. Qiu, “Infrared luminescence and amplification properties of Bi-doped GeO(2)-Ga(2)O(3)-Al(2)O(3) glasses,” J. Appl. Phys. 103(10), 103532 (2008).
[CrossRef]

Zhang, J. J.

R. R. T. Xu, M. Wang, Y. L. L. Hu, J. J. Zhang, “Spectroscopic properties of 1.8 μm emission of thulium ions in germanate glass,” Appl. Phys., A Mater. Sci. Process. 102, 109–116 (2011).

Zhang, N.

N. Zhang, J. R. Qiu, G. P. Dong, Z. M. Yang, Q. Y. Zhang, M. Y. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[CrossRef]

Zhang, Q.

Zhang, Q. Y.

N. Zhang, J. R. Qiu, G. P. Dong, Z. M. Yang, Q. Y. Zhang, M. Y. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[CrossRef]

Zhang, Y. P.

H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14, 125402 (2012).

Zhao, X. J.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Zhou, B.

Zhou, D. C.

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[CrossRef]

Zhou, S.

S. Zhou, H. Dong, H. Zeng, J. Hao, J. Chen, J. Qiu, “Infrared luminescence and amplification properties of Bi-doped GeO(2)-Ga(2)O(3)-Al(2)O(3) glasses,” J. Appl. Phys. 103(10), 103532 (2008).
[CrossRef]

Zhou, Y.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” Appl. Phys. B 93(2), 977–983 (2003).
[CrossRef]

Zulkifli, M. I.

Appl. Phys. B (1)

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” Appl. Phys. B 93(2), 977–983 (2003).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

R. R. T. Xu, M. Wang, Y. L. L. Hu, J. J. Zhang, “Spectroscopic properties of 1.8 μm emission of thulium ions in germanate glass,” Appl. Phys., A Mater. Sci. Process. 102, 109–116 (2011).

Chin. Phys. Lett. (1)

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

IEEE J. Quantum Electron (1)

H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, S. W. Harun, “Analytical model for broadband thulium-bismuth-doped fiber amplifier,” IEEE J. Quantum Electron 48(8), 1052–1058 (2012).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Komukai, T. Yamamoto, T. Sugawa, Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 mu m,” IEEE J. Quantum Electron. 31, 1880–1889 (1995).
[CrossRef]

E. Yahel, A. A. Hardy, “Modeling and optimization of short Er3+-Yb3+ codoped fiber lasers,” IEEE J. Quantum Electron. 39(11), 1444–1451 (2003).
[CrossRef]

J. Appl. Phys. (1)

S. Zhou, H. Dong, H. Zeng, J. Hao, J. Chen, J. Qiu, “Infrared luminescence and amplification properties of Bi-doped GeO(2)-Ga(2)O(3)-Al(2)O(3) glasses,” J. Appl. Phys. 103(10), 103532 (2008).
[CrossRef]

J. Lightwave Technol. (6)

J. Lumin. (1)

T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012).
[CrossRef]

J. Mater. Chem. (1)

N. Zhang, J. R. Qiu, G. P. Dong, Z. M. Yang, Q. Y. Zhang, M. Y. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[CrossRef]

J. Opt. (1)

H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14, 125402 (2012).

J. Phys. Chem. A (1)

J. Ren, G. Dong, S. Xu, R. Bao, J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. (1)

A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, S. W. Harun, “Quantitative analysis of energy transfer processes in Thulium–Bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012).
[CrossRef]

Opt. Quantum Electron. (1)

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004).
[CrossRef]

Phys. Rev. B (3)

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61(8), 5280–5292 (2000).
[CrossRef]

M. Weber, T. Varitimos, B. Matsinger, “Optical intensities of rare-earth ions in yttrium orthoaluminate,” Phys. Rev. B 8(1), 47–53 (1973).
[CrossRef]

J. Ganem, J. Crawford, P. Schmidt, N. Jenkins, S. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Other (3)

A. S. Simpson, “Spectroscopy of thulium doped silica glass,” Victoria University (2010).

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley-Interscience, 1995).

S. D. Emami, Thulium Doped Fiber Amplifier, Numerical and Experimental Approach (Nova Science, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The General Configuration of TBDFA.

Fig. 2
Fig. 2

Absorption coefficient versus wavelength.

Fig. 3
Fig. 3

(a) Energy transfer processes between Thulium and Bismuth, (b) Absorption and emission cross section of TBDFA.

Fig. 4
Fig. 4

(a). K1 energy transfer probability versus Thulium*Bismuth concentration, (b) K2 and K3 energy transfer probabilities at different Thulium*Bismuth concentration.

Fig. 5
Fig. 5

Cross relaxation rate at different Thulium concentrations.

Fig. 6
Fig. 6

Fractional Inversion in (a) 1460 nm band (b) 1800 nm band.

Fig. 7
Fig. 7

ASE diagram of Thulium-Bismuth co-doped and Thulium singly doped samples at 1400 and 2000 nm.

Fig. 8
Fig. 8

The results for N1, N2, N4 and fractional inversion for three Thulium Bismuth samples. The input 800 nm pump power was fixed at 200 mw and two signal powers of 1460 nm and 1850 nm with −35 dBm power was set in the numerical model. The N1, N2 and N4 value increases with the Thulium concentration.

Fig. 9
Fig. 9

Numerical and experimental gain and noise figure at (a) 1400 nm band (b) 2000 nm band.

Tables (2)

Tables Icon

Table 1 Spectroscopic Parameters of Tm3+-Bi+ Sample

Tables Icon

Table 2 Modeling Parameters

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

σ a ( ν ) = σ e ( ν ) η p e a k exp { h ( ν ν p e a k ) k B T } , η p e a k = σ e p e a k σ a p e a k
n 3 t = A 32 n r n 3 + k 2 n 1 n 6
n 2 t = W s a n 1 ( W s e + A 21 r + W 24 ) n 2 + A 32 n r n 3 + 2 C m n 1 n 4 + k 1 n 1 n 6
n 4 t = ( W 8 a + W p 14 ) n 1 + W 24 n 2 ( W 8 e + A 41 r + W 42 + W 41 ) n 4 C m n 1 n 4 + k 3 n 2 n 6
n 8 t = W p 58 n 5 A 87 n r n 8
n 6 t = A 76 n r n 7 ( k 1 + k 2 ) n 1 n 6 k 3 n 2 n 6
n 7 t = A 76 n r n 7 + A 87 n r n 8
n 1 + n 2 + n 3 + n 4 = N T m
n 5 + n 6 + n 7 + n 8 = N B i
W ij (z)= 0 λΓ(λ) σ ij (( P λ + (z,λ)+ P λ (z,λ)) hcπ b 2 dλ
d P ( λ ) d z = Γ ( λ ) P ± ( λ ) i j ( ( N i σ i j ( λ ) N j σ j i ( λ ) ) ± Γ ( λ ) i j 2 h ν i j Δ ν N i i σ i j ( λ ) ± α P ± ( λ )
Γ ( λ ) = 2 π 0 | E ( r , φ , λ ) | 2 × n T ( r ) × r × d r N T 0 | E ( r , φ , λ ) | 2 × r × d r
Ki= N Tm × N Bi ×δ
K 1 =1/ τ 6BiTm 1/ τ 6Bi
K H =[π (2π/3) 5/2 C BiTm 1/2 C BiBi 1/2 ] N Tm N Bi
C BiBi = 3c 8 π 4 n 2 σ se Bi (λ)× σ sa Bi (λ) dλ
C BiTm = 3c 8 π 4 n 2 σ se Bi (λ)× σ sa Tm (λ) dλ
C i N = c m / R 6
N F = 1 G + P A S E G h v Δ V

Metrics