Abstract

A compact mid-infrared channel waveguide laser is demonstrated in Cr:ZnS with a view to power scaling chromium laser technology utilizing the thermo-mechanical advantages of Cr:ZnS over alternative transition metal doped II-VI semiconductor laser materials. The laser provided a maximum power of 101 mW of CW output at 2333 nm limited only by the available pump power. A maximum slope efficiency of 20% was demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
    [CrossRef]
  2. J. McKay, K. L. Schepler, G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Opt. Lett. 24(22), 1575–1577 (1999).
    [CrossRef] [PubMed]
  3. M. Mond, D. Albrecht, E. Heumann, G. Huber, S. Kück, V. I. Levchenko, V. N. Yakimovich, V. G. Shcherbitsky, V. E. Kisel, N. V. Kuleshov, M. Rattunde, J. Schmitz, R. Kiefer, J. Wagner, “1.9- m and 2.0- m laser diode pumping of Cr2+ :ZnSe and Cr2+ :CdMnTe,” Opt. Lett. 27(12), 1034–1036 (2002).
    [CrossRef] [PubMed]
  4. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
    [CrossRef]
  5. U. Hömmerich, X. Wu, V. R. Davis, S. B. Trivedi, K. Grasza, R. J. Chen, S. Kutcher, “Demonstration of room-temperature laser action at 2.5 mum from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett. 22(15), 1180–1182 (1997).
    [CrossRef] [PubMed]
  6. P. A. Berry, K. L. Schepler, “High-power, widely-tunable Cr2+:ZnSe master oscillator power amplifier systems,” Opt. Express 18(14), 15062–15072 (2010).
    [CrossRef] [PubMed]
  7. T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenide lasers,” Lasers and Electro-Optics Society, 2005. LEOS 2005. The 18th Annual Meeting of the IEEE, Oct. 2005, 5460 (2004).
  8. E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Advanced Solid-State Photonics, (Optical Society of America, 2010), AMC2.
  9. I. S. Moskalev, V. V. Fedorov, S. B. Mirov, “Tunable, single-frequency, and multi-watt continuous-wave Cr2+:ZnSe lasers,” Opt. Express 16(6), 4145–4153 (2008).
    [CrossRef] [PubMed]
  10. K. L. Schepler, R. D. Peterson, P. A. Berry, J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
    [CrossRef]
  11. I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004).
    [CrossRef]
  12. H. Baker, J. Lee, D. Hall, “Self-imaging and high-beam-quality operation in multi-mode planar waveguide optical amplifiers,” Opt. Express 10(6), 297–302 (2002).
    [CrossRef] [PubMed]
  13. J. Nilsson, D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
    [CrossRef] [PubMed]
  14. P. A. Berry, J. R. Macdonald, S. J. Beecher, S. A. McDaniel, K. L. Schepler, A. K. Kar, “Fabrication and power scaling of a 1.7 W Cr:ZnSe waveguide laser,” Opt. Mater. Express 3(9), 1250–1258 (2013).
    [CrossRef]
  15. S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. V. Martyshkin, “Recent progress in transition-metal-doped II-VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007).
    [CrossRef]
  16. I. T. Sorokina and K. L. Vodopyanov, Solid-State Mid-Infrared Laser Sources (Springer, 2003).
  17. S. B. Mirov, V. V. Fedorov, I. Moskalev, S. Vasyliev, D. Martyshkin, M. Mirov, and V. P. Gapontsev, “Recent Advances in High Power, High Energy Tunable Cr:ZnS/Se Lasers,” in CLEO:2013, (Optical Society of America, 2013), CTu3D.1.
  18. R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  19. Y. Nasu, M. Kohtoku, Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30(7), 723–725 (2005).
    [CrossRef] [PubMed]
  20. J. O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1-2), 176–184 (2002).
    [CrossRef]
  21. U. Demirbas, A. Sennaroglu, M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+,” ZnSe 28, 231–240 (2006).
  22. S. B. Mirov and V. V. Federov, “Mid-IR microchip laser: ZnS:Cr2+ laser with saturable absorber material,” (US Patent No 6,960,486., 2009).
  23. A. Okhrimchuk, V. Mezentsev, A. Shestakov, I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012).
    [CrossRef] [PubMed]
  24. J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett. 38(13), 2194–2196 (2013).
    [CrossRef] [PubMed]

2013 (2)

2012 (1)

2011 (1)

J. Nilsson, D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[CrossRef] [PubMed]

2010 (1)

2008 (2)

I. S. Moskalev, V. V. Fedorov, S. B. Mirov, “Tunable, single-frequency, and multi-watt continuous-wave Cr2+:ZnSe lasers,” Opt. Express 16(6), 4145–4153 (2008).
[CrossRef] [PubMed]

R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

2007 (1)

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. V. Martyshkin, “Recent progress in transition-metal-doped II-VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007).
[CrossRef]

2006 (1)

U. Demirbas, A. Sennaroglu, M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+,” ZnSe 28, 231–240 (2006).

2005 (2)

K. L. Schepler, R. D. Peterson, P. A. Berry, J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[CrossRef]

Y. Nasu, M. Kohtoku, Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30(7), 723–725 (2005).
[CrossRef] [PubMed]

2004 (1)

I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004).
[CrossRef]

2002 (3)

1999 (1)

1997 (2)

U. Hömmerich, X. Wu, V. R. Davis, S. B. Trivedi, K. Grasza, R. J. Chen, S. Kutcher, “Demonstration of room-temperature laser action at 2.5 mum from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett. 22(15), 1180–1182 (1997).
[CrossRef] [PubMed]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[CrossRef]

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[CrossRef]

Adetunji, O. O.

J. O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1-2), 176–184 (2002).
[CrossRef]

Albrecht, D.

Baker, H.

Beecher, S. J.

Bennion, I.

Berry, P. A.

Brown, G.

Burger, A.

J. O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1-2), 176–184 (2002).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[CrossRef]

Catella, G. C.

Chattopadhyay, K.

J. O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1-2), 176–184 (2002).
[CrossRef]

Chen, K. T.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[CrossRef]

Chen, R. J.

Davis, V. R.

DeLoach, L. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[CrossRef]

Demirbas, U.

U. Demirbas, A. Sennaroglu, M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+,” ZnSe 28, 231–240 (2006).

Fedorov, V. V.

I. S. Moskalev, V. V. Fedorov, S. B. Mirov, “Tunable, single-frequency, and multi-watt continuous-wave Cr2+:ZnSe lasers,” Opt. Express 16(6), 4145–4153 (2008).
[CrossRef] [PubMed]

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. V. Martyshkin, “Recent progress in transition-metal-doped II-VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007).
[CrossRef]

Gattass, R. R.

R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Grasza, K.

Hall, D.

Heumann, E.

Hibino, Y.

Hömmerich, U.

Huber, G.

Kar, A. K.

Kiefer, R.

Kisel, V. E.

Kohtoku, M.

Krupke, W. F.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[CrossRef]

Kück, S.

Kuleshov, N. V.

Kutcher, S.

Lee, J.

Levchenko, V. I.

Macdonald, J. R.

Martyshkin, D. V.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. V. Martyshkin, “Recent progress in transition-metal-doped II-VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007).
[CrossRef]

Mazur, E.

R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

McDaniel, S. A.

McKay, J.

McKay, J. B.

K. L. Schepler, R. D. Peterson, P. A. Berry, J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[CrossRef]

Mezentsev, V.

Mirov, S. B.

I. S. Moskalev, V. V. Fedorov, S. B. Mirov, “Tunable, single-frequency, and multi-watt continuous-wave Cr2+:ZnSe lasers,” Opt. Express 16(6), 4145–4153 (2008).
[CrossRef] [PubMed]

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. V. Martyshkin, “Recent progress in transition-metal-doped II-VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007).
[CrossRef]

Mond, M.

Moskalev, I. S.

I. S. Moskalev, V. V. Fedorov, S. B. Mirov, “Tunable, single-frequency, and multi-watt continuous-wave Cr2+:ZnSe lasers,” Opt. Express 16(6), 4145–4153 (2008).
[CrossRef] [PubMed]

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. V. Martyshkin, “Recent progress in transition-metal-doped II-VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007).
[CrossRef]

Nasu, Y.

Ndap, J. O.

J. O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1-2), 176–184 (2002).
[CrossRef]

Nilsson, J.

J. Nilsson, D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[CrossRef] [PubMed]

Okhrimchuk, A.

Page, R. H.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[CrossRef]

Patel, F. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[CrossRef]

Payne, D. N.

J. Nilsson, D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[CrossRef] [PubMed]

Payne, S. A.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[CrossRef]

Peterson, R. D.

K. L. Schepler, R. D. Peterson, P. A. Berry, J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[CrossRef]

Rattunde, M.

Schaffers, K. I.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[CrossRef]

Schepler, K. L.

Schmitz, J.

Sennaroglu, A.

U. Demirbas, A. Sennaroglu, M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+,” ZnSe 28, 231–240 (2006).

Shcherbitsky, V. G.

Shestakov, A.

Somer, M.

U. Demirbas, A. Sennaroglu, M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+,” ZnSe 28, 231–240 (2006).

Sorokina, I. T.

I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004).
[CrossRef]

Tassano, J. B.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[CrossRef]

Trivedi, S. B.

Wagner, J.

Wilke, G. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[CrossRef]

Wu, X.

Yakimovich, V. N.

Zelmon, D. E.

J. O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1-2), 176–184 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

K. L. Schepler, R. D. Peterson, P. A. Berry, J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[CrossRef]

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. V. Martyshkin, “Recent progress in transition-metal-doped II-VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007).
[CrossRef]

J. Cryst. Growth (1)

J. O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1-2), 176–184 (2002).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Opt. Mater. (1)

I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004).
[CrossRef]

Opt. Mater. Express (1)

Science (1)

J. Nilsson, D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[CrossRef] [PubMed]

ZnSe (1)

U. Demirbas, A. Sennaroglu, M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+,” ZnSe 28, 231–240 (2006).

Other (5)

S. B. Mirov and V. V. Federov, “Mid-IR microchip laser: ZnS:Cr2+ laser with saturable absorber material,” (US Patent No 6,960,486., 2009).

I. T. Sorokina and K. L. Vodopyanov, Solid-State Mid-Infrared Laser Sources (Springer, 2003).

S. B. Mirov, V. V. Fedorov, I. Moskalev, S. Vasyliev, D. Martyshkin, M. Mirov, and V. P. Gapontsev, “Recent Advances in High Power, High Energy Tunable Cr:ZnS/Se Lasers,” in CLEO:2013, (Optical Society of America, 2013), CTu3D.1.

T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenide lasers,” Lasers and Electro-Optics Society, 2005. LEOS 2005. The 18th Annual Meeting of the IEEE, Oct. 2005, 5460 (2004).

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Advanced Solid-State Photonics, (Optical Society of America, 2010), AMC2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of annular depressed cladding waveguide structure in Cr:ZnS. (b) optical micrograph of 60 µm diameter waveguide end facet composed of 40 modification elements. (c) associated laser output mode at 2.33 µm imaged at waveguide end facet. Image taken using the 60%R output coupler cavity.

Fig. 2
Fig. 2

Normalized spectrum of Cr:ZnS waveguide laser measured using a 300 mm monochromator. The laser emission peak was observed at 2332.6 nm and a FWHM of 2.2 nm was measured for the output using a 60% reflective output coupler.

Fig. 3
Fig. 3

Laser performance of the Cr:ZnS waveguide laser at 2332.6 nm. A maximum output power of 101 mW with a slope efficiency of 20% is demonstrated using a 60%R output coupler.

Metrics