Abstract

We demonstrate a self-referenced fiber frequency comb that can operate outside the well-controlled optical laboratory. The frequency comb has residual optical linewidths of < 1 Hz, sub-radian residual optical phase noise, and residual pulse-to-pulse timing jitter of 2.4 - 5 fs, when locked to an optical reference. This fully phase-locked frequency comb has been successfully operated in a moving vehicle with 0.5 g peak accelerations and on a shaker table with a sustained 0.5 g rms integrated acceleration, while retaining its optical coherence and 5-fs-level timing jitter. This frequency comb should enable metrological measurements outside the laboratory with the precision and accuracy that are the hallmarks of comb-based systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
    [CrossRef]
  2. J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
    [CrossRef] [PubMed]
  3. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [CrossRef]
  4. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [CrossRef]
  5. A. Schliesser, M. Brehm, F. Keilmann, D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
    [CrossRef] [PubMed]
  6. I. Coddington, W. C. Swann, N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [CrossRef] [PubMed]
  7. M. Godbout, J.-D. Deschênes, J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18(15), 15981–15989 (2010).
    [CrossRef] [PubMed]
  8. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [CrossRef]
  9. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
    [CrossRef]
  10. A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37(4), 638–640 (2012).
    [CrossRef] [PubMed]
  11. J. Roy, J.-D. Deschênes, S. Potvin, J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20(20), 21932–21939 (2012).
    [CrossRef] [PubMed]
  12. A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
    [CrossRef]
  13. S. Boudreau, S. Levasseur, C. Perilla, S. Roy, J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
    [CrossRef] [PubMed]
  14. G. Rieker, F. R. Giorgetta, W. C. Swann, I. Coddington, L. C. Sinclair, C. L. Cromer, E. Baumann, A. Zolot, and N. R. Newbury, “Open-path dual-comb spectroscopy of greenhouse gases,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5C.9.
  15. Z. Zhang, T. Gardiner, D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38(16), 3148–3150 (2013).
    [CrossRef] [PubMed]
  16. D. R. Leibrandt, M. J. Thorpe, J. C. Bergquist, T. Rosenband, “Field-test of a robust, portable, frequency-stable laser,” Opt. Express 19(11), 10278–10286 (2011).
    [CrossRef] [PubMed]
  17. D. R. Leibrandt, J. C. Bergquist, T. Rosenband, “Cavity-stabilized laser with acceleration sensitivity below 10−12 g−1,” Phys. Rev. A 87, 023829 (2013).
    [CrossRef]
  18. F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
    [CrossRef]
  19. C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010).
    [CrossRef] [PubMed]
  20. D. Kleppner, “Time too good to be true,” Phys. Today 59(3), 10–11 (2006).
    [CrossRef]
  21. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006).
    [CrossRef] [PubMed]
  22. I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [CrossRef]
  23. J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [CrossRef]
  24. M. U. Piracha, D. Nguyen, I. Ozdur, P. J. Delfyett, “Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser,” Opt. Express 19(12), 11213–11219 (2011).
    [CrossRef] [PubMed]
  25. X. Wu, H. Wei, H. Zhang, L. Ren, Y. Li, J. Zhang, “Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb,” Appl. Opt. 52(10), 2042–2048 (2013).
    [CrossRef] [PubMed]
  26. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009).
    [CrossRef] [PubMed]
  27. T.-A. Liu, N. R. Newbury, I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
    [CrossRef] [PubMed]
  28. P. Balling, P. Kren, P. Masika, S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
    [CrossRef] [PubMed]
  29. E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
    [CrossRef] [PubMed]
  30. K. Minoshima, H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [CrossRef] [PubMed]
  31. F. Tauser, A. Leitenstorfer, W. Zinth, “Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and selfreferencing detection of the carrier-envelope phase evolution,” Opt. Express 11(6), 594–600 (2003).
    [CrossRef] [PubMed]
  32. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
    [CrossRef] [PubMed]
  33. T. R. Schibli, K. Minoshima, F. L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29(21), 2467–2469 (2004).
    [CrossRef] [PubMed]
  34. P. Kubina, P. Adel, F. Adler, G. Grosche, T. Hänsch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, H. Schnatz, “Long term comparison of two fiber based frequency comb systems,” Opt. Express 13(3), 904–909 (2005).
    [CrossRef] [PubMed]
  35. N. R. Newbury, W. C. Swann, “Low-noise fiber-laser frequency combs (Invited),” J. Opt. Soc. Am. B 24(8), 1756–1770 (2007).
    [CrossRef]
  36. H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
    [CrossRef] [PubMed]
  37. Y.-J. Kim, K. Lee, S. Han, Y.-S. Jang, H. Jang, and S.-W. Kim, “Development of Fiber Femtosecond Lasers for Advanced Metrological Space Missions,” in The 10th Conference on Lasers and Electro-Optics Pacific Rim (Optical Society of America, 2013).
    [CrossRef]
  38. T. Wilken, M. Lezius, T. W. Hansch, A. Kohfeldt, A. Wicht, V. Schkolnik, M. Krutzik, H. Duncker, O. Hellmig, P. Windpassinger, K. Sengstock, A. Peters, and R. Holzwarth, “A frequency comb and precision spectroscopy experiment in space,” in CLEO:2013 (Optical Society of America, 2013), paper AF2H.5.
  39. E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
    [CrossRef] [PubMed]
  40. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
    [CrossRef] [PubMed]
  41. I. Hartl, G. Imeshev, M. E. Fermann, C. Langrock, M. M. Fejer, “Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology,” Opt. Express 13(17), 6490–6496 (2005).
    [CrossRef] [PubMed]
  42. M. E. Fermann, I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
    [CrossRef]
  43. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt. 49(29), 5577–5582 (2010).
    [CrossRef] [PubMed]
  44. M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, J. M. Dudley, U. Keller, “Self-referencible frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010).
    [CrossRef]
  45. C. Kim, K. Jung, K. Kieu, J. Kim, “Low timing jitter and intensity noise from a soliton Er-fiber laser mode-locked by a fiber taper carbon nanotube saturable absorber,” Opt. Express 20(28), 29524–29530 (2012).
    [CrossRef] [PubMed]
  46. M. Hirano, T. Nakanishi, T. Okuno, M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
    [CrossRef]
  47. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
    [CrossRef]
  48. R. Paschotta, “Timing jitter and phase noise of mode-locked fiber lasers,” Opt. Express 18(5), 5041–5054 (2010).
    [CrossRef] [PubMed]
  49. J. J. McFerran, W. C. Swann, B. R. Washburn, N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
    [CrossRef] [PubMed]
  50. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
    [CrossRef] [PubMed]
  51. F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
    [CrossRef] [PubMed]
  52. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
    [CrossRef]
  53. E. E. Ungar, “Use of Vibration Isolation,” in Handbook of Noise and Vibration Control, M. J. Crocker, ed. (John Wiley and Sons, 2007), pp. 725 – 733.
  54. United States Department of Defense, MIL-STD-810G: Environmental Engineering Considerations and Laboratory Tests (2008).
  55. J. J. McFerran, W. C. Swann, B. R. Washburn, N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
    [CrossRef]

2013

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[CrossRef]

D. R. Leibrandt, J. C. Bergquist, T. Rosenband, “Cavity-stabilized laser with acceleration sensitivity below 10−12 g−1,” Phys. Rev. A 87, 023829 (2013).
[CrossRef]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[CrossRef]

S. Boudreau, S. Levasseur, C. Perilla, S. Roy, J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
[CrossRef] [PubMed]

X. Wu, H. Wei, H. Zhang, L. Ren, Y. Li, J. Zhang, “Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb,” Appl. Opt. 52(10), 2042–2048 (2013).
[CrossRef] [PubMed]

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[CrossRef] [PubMed]

Z. Zhang, T. Gardiner, D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38(16), 3148–3150 (2013).
[CrossRef] [PubMed]

2012

2011

D. R. Leibrandt, M. J. Thorpe, J. C. Bergquist, T. Rosenband, “Field-test of a robust, portable, frequency-stable laser,” Opt. Express 19(11), 10278–10286 (2011).
[CrossRef] [PubMed]

M. U. Piracha, D. Nguyen, I. Ozdur, P. J. Delfyett, “Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser,” Opt. Express 19(12), 11213–11219 (2011).
[CrossRef] [PubMed]

T.-A. Liu, N. R. Newbury, I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[CrossRef] [PubMed]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[CrossRef]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[CrossRef]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[CrossRef]

2010

F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

R. Paschotta, “Timing jitter and phase noise of mode-locked fiber lasers,” Opt. Express 18(5), 5041–5054 (2010).
[CrossRef] [PubMed]

M. Godbout, J.-D. Deschênes, J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18(15), 15981–15989 (2010).
[CrossRef] [PubMed]

H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt. 49(29), 5577–5582 (2010).
[CrossRef] [PubMed]

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[CrossRef]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, J. M. Dudley, U. Keller, “Self-referencible frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010).
[CrossRef]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010).
[CrossRef] [PubMed]

2009

M. Hirano, T. Nakanishi, T. Okuno, M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

M. E. Fermann, I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[CrossRef]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
[CrossRef] [PubMed]

P. Balling, P. Kren, P. Masika, S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
[CrossRef] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009).
[CrossRef] [PubMed]

2008

I. Coddington, W. C. Swann, N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

2007

J. J. McFerran, W. C. Swann, B. R. Washburn, N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

N. R. Newbury, W. C. Swann, “Low-noise fiber-laser frequency combs (Invited),” J. Opt. Soc. Am. B 24(8), 1756–1770 (2007).
[CrossRef]

2006

J. J. McFerran, W. C. Swann, B. R. Washburn, N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
[CrossRef] [PubMed]

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[CrossRef] [PubMed]

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
[CrossRef] [PubMed]

N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006).
[CrossRef] [PubMed]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

D. Kleppner, “Time too good to be true,” Phys. Today 59(3), 10–11 (2006).
[CrossRef]

T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
[CrossRef]

J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
[CrossRef] [PubMed]

2005

2004

2003

2000

Adel, P.

Adler, F.

F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

P. Kubina, P. Adel, F. Adler, G. Grosche, T. Hänsch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, H. Schnatz, “Long term comparison of two fiber based frequency comb systems,” Opt. Express 13(3), 904–909 (2005).
[CrossRef] [PubMed]

Balling, P.

Baumann, E.

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[CrossRef] [PubMed]

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[CrossRef]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[CrossRef]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37(4), 638–640 (2012).
[CrossRef] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[CrossRef]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
[CrossRef] [PubMed]

Bergquist, J. C.

D. R. Leibrandt, J. C. Bergquist, T. Rosenband, “Cavity-stabilized laser with acceleration sensitivity below 10−12 g−1,” Phys. Rev. A 87, 023829 (2013).
[CrossRef]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[CrossRef]

D. R. Leibrandt, M. J. Thorpe, J. C. Bergquist, T. Rosenband, “Field-test of a robust, portable, frequency-stable laser,” Opt. Express 19(11), 10278–10286 (2011).
[CrossRef] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Bhattacharya, N.

Boudreau, S.

Braat, J. J. M.

Brehm, M.

Brusch, A.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Byun, H.

Chou, C. W.

C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010).
[CrossRef] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Coddington, I.

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[CrossRef]

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[CrossRef]

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[CrossRef] [PubMed]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37(4), 638–640 (2012).
[CrossRef] [PubMed]

T.-A. Liu, N. R. Newbury, I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[CrossRef] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
[CrossRef] [PubMed]

Cossel, K. C.

F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

Cui, M.

Daimon, Y.

Dändliker, R.

Delfyett, P. J.

Deschênes, J.-D.

Diddams, S. A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[CrossRef]

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[CrossRef]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
[CrossRef] [PubMed]

Drullinger, R. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Dudley, J. M.

M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, J. M. Dudley, U. Keller, “Self-referencible frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010).
[CrossRef]

Feder, K. S.

Fejer, M. M.

Fermann, M. E.

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[CrossRef]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Gardiner, T.

Genest, J.

Giorgetta, F. R.

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[CrossRef] [PubMed]

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[CrossRef]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[CrossRef]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37(4), 638–640 (2012).
[CrossRef] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[CrossRef]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
[CrossRef] [PubMed]

Godbout, M.

Grosche, G.

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Hall, J. L.

J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
[CrossRef] [PubMed]

Hänsch, T.

Hänsch, T. W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
[CrossRef]

Hartl, I.

Hirano, M.

Holzwarth, R.

Hong, F. L.

Hong, F.-L.

Hume, D. B.

C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010).
[CrossRef] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Imeshev, G.

Inaba, H.

Ippen, E. P.

Itano, W. M.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[CrossRef]

Jørgensen, C. G.

Jung, K.

Kärtner, F. X.

Kato, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

Keilmann, F.

Keller, U.

M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, J. M. Dudley, U. Keller, “Self-referencible frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010).
[CrossRef]

Kieu, K.

Kim, C.

Kim, J.

Kim, S.-W.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Kim, Y.-J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[CrossRef]

Kleppner, D.

D. Kleppner, “Time too good to be true,” Phys. Today 59(3), 10–11 (2006).
[CrossRef]

Knabe, K.

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Kolodziejski, L. A.

Kren, P.

Kubina, P.

Kurimura, S.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

Langrock, C.

Lee, J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lee, K.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lee, S.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Leibrandt, D. R.

D. R. Leibrandt, J. C. Bergquist, T. Rosenband, “Cavity-stabilized laser with acceleration sensitivity below 10−12 g−1,” Phys. Rev. A 87, 023829 (2013).
[CrossRef]

D. R. Leibrandt, M. J. Thorpe, J. C. Bergquist, T. Rosenband, “Field-test of a robust, portable, frequency-stable laser,” Opt. Express 19(11), 10278–10286 (2011).
[CrossRef] [PubMed]

Leitenstorfer, A.

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[CrossRef]

Levasseur, S.

Lévêque, S.

Li, Y.

Lipphardt, B.

Liu, T.-A.

Lorini, L.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[CrossRef]

Maruyama, M.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

Masika, P.

Matsumoto, H.

McFerran, J. J.

Minoshima, K.

Motamedi, A.

Nakajima, H.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

Nakanishi, T.

M. Hirano, T. Nakanishi, T. Okuno, M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[CrossRef]

Nakazawa, M.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Newbury, N. R.

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[CrossRef]

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[CrossRef]

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[CrossRef] [PubMed]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37(4), 638–640 (2012).
[CrossRef] [PubMed]

T.-A. Liu, N. R. Newbury, I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[CrossRef] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[CrossRef]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
[CrossRef] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

J. J. McFerran, W. C. Swann, B. R. Washburn, N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

N. R. Newbury, W. C. Swann, “Low-noise fiber-laser frequency combs (Invited),” J. Opt. Soc. Am. B 24(8), 1756–1770 (2007).
[CrossRef]

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
[CrossRef] [PubMed]

J. J. McFerran, W. C. Swann, B. R. Washburn, N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
[CrossRef] [PubMed]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
[CrossRef] [PubMed]

Nguyen, D.

Nicholson, J. W.

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[CrossRef]

Oehler, A. E. H.

M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, J. M. Dudley, U. Keller, “Self-referencible frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010).
[CrossRef]

Okuno, T.

Onae, A.

Onishi, M.

Oskay, W. H.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Ozdur, I.

Paschotta, R.

Pekarek, S.

M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, J. M. Dudley, U. Keller, “Self-referencible frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010).
[CrossRef]

Perilla, C.

Petrich, G. S.

Picqué, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Piracha, M. U.

Potvin, S.

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[CrossRef]

Reid, D. T.

Ren, L.

Rosenband, T.

D. R. Leibrandt, J. C. Bergquist, T. Rosenband, “Cavity-stabilized laser with acceleration sensitivity below 10−12 g−1,” Phys. Rev. A 87, 023829 (2013).
[CrossRef]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[CrossRef]

D. R. Leibrandt, M. J. Thorpe, J. C. Bergquist, T. Rosenband, “Field-test of a robust, portable, frequency-stable laser,” Opt. Express 19(11), 10278–10286 (2011).
[CrossRef] [PubMed]

C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010).
[CrossRef] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Roy, J.

Roy, S.

Salvadé, Y.

Sander, M. Y.

Schibli, T. R.

Schliesser, A.

Schmidt, P. O.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Schnatz, H.

Schuhler, N.

Shen, H.

Sinclair, L. C.

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[CrossRef] [PubMed]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[CrossRef]

Stalnaker, J. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Stumpf, M. C.

M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, J. M. Dudley, U. Keller, “Self-referencible frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010).
[CrossRef]

Sudmeyer, T.

M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, J. M. Dudley, U. Keller, “Self-referencible frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010).
[CrossRef]

Swann, W. C.

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[CrossRef]

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[CrossRef]

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[CrossRef] [PubMed]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37(4), 638–640 (2012).
[CrossRef] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
[CrossRef] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

J. J. McFerran, W. C. Swann, B. R. Washburn, N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

N. R. Newbury, W. C. Swann, “Low-noise fiber-laser frequency combs (Invited),” J. Opt. Soc. Am. B 24(8), 1756–1770 (2007).
[CrossRef]

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
[CrossRef] [PubMed]

J. J. McFerran, W. C. Swann, B. R. Washburn, N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
[CrossRef] [PubMed]

Tauser, F.

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[CrossRef]

Thorpe, M. J.

D. R. Leibrandt, M. J. Thorpe, J. C. Bergquist, T. Rosenband, “Field-test of a robust, portable, frequency-stable laser,” Opt. Express 19(11), 10278–10286 (2011).
[CrossRef] [PubMed]

F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Urbach, H. P.

Usui, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

van den Berg, S. A.

van der Weide, D.

Washburn, B. R.

Wei, H.

Westbrook, P. S.

Wineland, D. J.

C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010).
[CrossRef] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Wu, X.

Yan, M. F.

Ye, J.

F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

Zeitouny, M. G.

Zhang, H.

Zhang, J.

Zhang, Z.

Zinth, W.

Zolot, A. M.

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[CrossRef]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37(4), 638–640 (2012).
[CrossRef] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[CrossRef]

Annu Rev Anal Chem (Palo Alto Calif)

F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, J. M. Dudley, U. Keller, “Self-referencible frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010).
[CrossRef]

J. J. McFerran, W. C. Swann, B. R. Washburn, N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

Appl. Phys. Lett.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Hirano, T. Nakanishi, T. Okuno, M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[CrossRef]

M. E. Fermann, I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[CrossRef]

J. Opt. Soc. Am. B

J. Quant. Spectrosc. Radiat. Transf.

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[CrossRef]

Nat. Photonics

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[CrossRef]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[CrossRef]

Opt. Express

F. Tauser, A. Leitenstorfer, W. Zinth, “Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and selfreferencing detection of the carrier-envelope phase evolution,” Opt. Express 11(6), 594–600 (2003).
[CrossRef] [PubMed]

P. Kubina, P. Adel, F. Adler, G. Grosche, T. Hänsch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, H. Schnatz, “Long term comparison of two fiber based frequency comb systems,” Opt. Express 13(3), 904–909 (2005).
[CrossRef] [PubMed]

I. Hartl, G. Imeshev, M. E. Fermann, C. Langrock, M. M. Fejer, “Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology,” Opt. Express 13(17), 6490–6496 (2005).
[CrossRef] [PubMed]

A. Schliesser, M. Brehm, F. Keilmann, D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
[CrossRef] [PubMed]

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[CrossRef] [PubMed]

P. Balling, P. Kren, P. Masika, S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
[CrossRef] [PubMed]

R. Paschotta, “Timing jitter and phase noise of mode-locked fiber lasers,” Opt. Express 18(5), 5041–5054 (2010).
[CrossRef] [PubMed]

M. Godbout, J.-D. Deschênes, J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18(15), 15981–15989 (2010).
[CrossRef] [PubMed]

D. R. Leibrandt, M. J. Thorpe, J. C. Bergquist, T. Rosenband, “Field-test of a robust, portable, frequency-stable laser,” Opt. Express 19(11), 10278–10286 (2011).
[CrossRef] [PubMed]

M. U. Piracha, D. Nguyen, I. Ozdur, P. J. Delfyett, “Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser,” Opt. Express 19(12), 11213–11219 (2011).
[CrossRef] [PubMed]

T.-A. Liu, N. R. Newbury, I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[CrossRef] [PubMed]

J. Roy, J.-D. Deschênes, S. Potvin, J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20(20), 21932–21939 (2012).
[CrossRef] [PubMed]

C. Kim, K. Jung, K. Kieu, J. Kim, “Low timing jitter and intensity noise from a soliton Er-fiber laser mode-locked by a fiber taper carbon nanotube saturable absorber,” Opt. Express 20(28), 29524–29530 (2012).
[CrossRef] [PubMed]

S. Boudreau, S. Levasseur, C. Perilla, S. Roy, J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
[CrossRef] [PubMed]

Opt. Lett.

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[CrossRef] [PubMed]

Z. Zhang, T. Gardiner, D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38(16), 3148–3150 (2013).
[CrossRef] [PubMed]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37(4), 638–640 (2012).
[CrossRef] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009).
[CrossRef] [PubMed]

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
[CrossRef] [PubMed]

N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006).
[CrossRef] [PubMed]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
[CrossRef] [PubMed]

J. J. McFerran, W. C. Swann, B. R. Washburn, N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
[CrossRef] [PubMed]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
[CrossRef] [PubMed]

T. R. Schibli, K. Minoshima, F. L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29(21), 2467–2469 (2004).
[CrossRef] [PubMed]

Phys. Rev. A

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[CrossRef]

D. R. Leibrandt, J. C. Bergquist, T. Rosenband, “Cavity-stabilized laser with acceleration sensitivity below 10−12 g−1,” Phys. Rev. A 87, 023829 (2013).
[CrossRef]

Phys. Rev. Lett.

I. Coddington, W. C. Swann, N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

Phys. Today

D. Kleppner, “Time too good to be true,” Phys. Today 59(3), 10–11 (2006).
[CrossRef]

Rev. Mod. Phys.

T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
[CrossRef]

J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
[CrossRef] [PubMed]

Science

C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010).
[CrossRef] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[CrossRef] [PubMed]

Other

E. E. Ungar, “Use of Vibration Isolation,” in Handbook of Noise and Vibration Control, M. J. Crocker, ed. (John Wiley and Sons, 2007), pp. 725 – 733.

United States Department of Defense, MIL-STD-810G: Environmental Engineering Considerations and Laboratory Tests (2008).

G. Rieker, F. R. Giorgetta, W. C. Swann, I. Coddington, L. C. Sinclair, C. L. Cromer, E. Baumann, A. Zolot, and N. R. Newbury, “Open-path dual-comb spectroscopy of greenhouse gases,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5C.9.

Y.-J. Kim, K. Lee, S. Han, Y.-S. Jang, H. Jang, and S.-W. Kim, “Development of Fiber Femtosecond Lasers for Advanced Metrological Space Missions,” in The 10th Conference on Lasers and Electro-Optics Pacific Rim (Optical Society of America, 2013).
[CrossRef]

T. Wilken, M. Lezius, T. W. Hansch, A. Kohfeldt, A. Wicht, V. Schkolnik, M. Krutzik, H. Duncker, O. Hellmig, P. Windpassinger, K. Sengstock, A. Peters, and R. Holzwarth, “A frequency comb and precision spectroscopy experiment in space,” in CLEO:2013 (Optical Society of America, 2013), paper AF2H.5.

Supplementary Material (1)

» Media 1: MOV (3870 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fiber Frequency Comb Design and Performance. (a) The fieldable coherent frequency comb is based completely on polarization maintaining (PM) fiber and telecom-grade fiber-optic components. The femtosecond laser is followed by an Er-fiber amplifier and then by a PM highly nonlinear fiber (HNLF) for spectral broadening. The carrier-envelope-offset frequency, fceo, is detected via the f-to-2f approach [1,2] utilizing a waveguide periodically poled lithium niobate (PPLN) and PM “in-line” interferometer. The “optics package” that was shaken sits on the black background. WDM: Wavelength-Division Multiplexer, ISO: dual-stage isolator, BPF: band-pass filter, PBS: polarizing beam splitter. (b) Schematic of phase-locking scheme. fceo is phase-locked by feedback to the pump power. Optical coherence is established by phase-locking the optical heterodyne signal, fopt, between a comb tooth and the optical reference laser through feedback to the cavity length. In the laboratory, the reference laser was a cavity-stabilized 1565 nm cw fiber laser, but for the tests in the vehicle and on the shaker table, the reference laser was a free-running 1535 nm cw fiber laser. (c) The octave-spanning spectrum output of the PM HNLF. (d) Counted fceo (blue, standard deviation = 0.62 mHz) and fopt (red, standard deviation = 0.97 mHz) at 1 second gate time for over 35 hours without a phase slip.

Fig. 2
Fig. 2

Laboratory Performance (a) “In-loop” rf power spectrum of the comb tooth against the cw cavity-stabilized 1565 nm reference laser and (b) “out-of-loop” rf power spectrum against a second cavity-stabilized laser at 1535 nm, establishing the optical coherence of the comb. For the latter, the linewidth is instrument-limited at 1 Hz and the integrated phase noise is 0.7 rad from 5 MHz to 1 Hz. (The relative drift between the 1565 nm reference laser and this second cavity-stabilized laser limited the measurement to ~1 sec). RBW: resolution bandwidth. (c) “In-loop” phase noise power spectra and integrated phase noise for fceo (blue and cyan) and fopt (red and orange). (The apparent phase noise increase below 100 Hz on both traces is due to the phase-noise analyzer, where the difference is due to the frequency division as described in the Appendix.)

Fig. 3
Fig. 3

Coherent Comb Operation in Moving Vehicle. (a) Photograph of the comb inside of the vehicle. The Al box in the center contains the “optics package” (shaded black region in Fig. 1(a)). (b) Photograph of vehicle during comb operation. Inset: rf power spectrum of fopt while the vehicle travels over a speed bump. (RBW = 1.8 Hz, span = 200 Hz) (Media 1). (c) Phase-noise power spectral density and integrated phase-noise for fceo (blue and cyan) and fopt (red and orange) with the vehicle and generator operating. (d) Deviation of the counted fceo (blue, standard deviation = 1.3 mHz) and fopt (red, standard deviation = 0.96 mHz) at 1 second gate time along with the vertical acceleration (grey) measured on the optics package while vehicle was in motion.

Fig. 4
Fig. 4

Coherent Operation Under Vibration (a) Optics package (Al box) mounted on the blue shaker table. (b) Applied 1/f vibration spectrum at the center of the Al box (blue line) and above the femtosecond laser location (green line) at an integrated value of 0.5g rms. In addition, the expected range of vibrations from several different mobile platforms is shown assuming a typical air-mount under the optics package [53,54]. (c) Deviation of counted fceo (blue, standard deviation = 0.84 mHz) and fopt (red, standard deviation = 0.90 mHz) frequencies at 1 second gate time during vibration with the 0.50-g integrated profile. (d) Phase noise power spectral density for fceo at 0-g rms (light blue) and 1.5-g rms (dark blue), and for fopt at 0-g rms (dark red) and 0.5-g rms (bright red). (e) Integrated phase noise (left axis) and contribution to pulse-to-pulse timing jitter (right axis) for fceo (blue) and fopt (red) versus integrated rms acceleration.

Fig. 5
Fig. 5

(a) Fieldable coherent frequency comb design. A detailed discussion is provided in the text. The “optics package” that was shaken is shaded in light grey. PM fiber: solid blue lines, PM Er-doped fiber: solid green lines, WDM: Wavelength-Division Multiplexer, BPF: band-pass filter, PLL: phase-locked loop, PBS: polarizing beam splitter. (b) The table inset lists specific non-standard components used in the design.

Fig. 6
Fig. 6

Polarization-maintaining, in-line, fiber interferometer.

Metrics