Abstract

We present a novel method for dispersion compensation based on vestigial-sideband transmission of an orthogonal frequency division multiplexed signal through standard signal-mode fiber with a direct-detection receiver. This technique requires simpler optical components and can withstand greater link attenuation and splitting ratios than similar methods previously studied, making the method ideal for optically unamplified receivers, such as those in passive optical networks. We present simulations as well as experimental measurements to demonstrate its practicality.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” “OFC/NFOEC 2013” (Anaheim, USA, 2013), p. OM3H.1.
  2. I. Dedic, “56Gs/s ADC: Enabling 100GbE,” “OFC/NFOEC 2010,” (San Diego, USA, 2010), p. OThT6.
  3. X. Chen, A. Li, D. Che, Q. Hu, Y. Wang, J. He, W. Shieh, “High-speed fading-free direct detection for double-sideband OFDM signal via block-wise phase switching,” “OFC/NFOEC,” (2013), p. PDP5B.7.
  4. X. Chen, A. Li, Q. Hu, J. He, Y. W. D. Che, W. Shieh, “Demonstration of direct detected optical OFDM signals via block-wise phase switching,” J. Lightw. Technol. 32, 722–728 (2014).
    [CrossRef]
  5. D. F. Hewitt, “Orthogonal frequency division multiplexing using baseband optical single sideband for simpler adaptive dispersion compensation,” in “Proc. Eur. Conf. Opt. Commun.”, (2007), p. OME7.
  6. M. Schuster, B. Spinnler, C. A. Bunge, K. Petermann, “Spectrally efficient OFDM-transmission with compatible single-sideband modulation for direct detection,” in “Proc. Eur. Conf. Opt. Commun.”, (Berlin, Germany, 2007), pp. 1–2.
  7. M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20, 670–672 (2008).
    [CrossRef]
  8. J. L. Wei, X. Q. Jin, J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier-suppressed single-sideband optical OFDM signals over IMDD SMF systems,” J. Lightw. Technol. 27, 2412–2419 (2009).
    [CrossRef]
  9. B. J. C. Schmidt, A. J. Lowery, J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightw. Technol. 27, 196–203 (2008).
    [CrossRef]
  10. W. R. Peng, X. X. Wu, V. R. Arbab, K. M. Feng, B. Shamee, L. C. Christen, J. Y. Yang, A. E. Willner, S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightw. Technol. 27, 1332–1339 (2009).
    [CrossRef]
  11. W. R. Peng, B. Zhang, K. M. Feng, X. X. Wu, A. E. Willner, S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightw. Technol. 27, 5723–5735 (2009).
    [CrossRef]
  12. W. R. Peng, I. Morita, H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in “Proc. Eur. Conf. Opt. Commun.”, (Torino, Italy, 2010), p. Tu.4.A.2.
  13. S. A. Nezamalhosseini, L. R. Chen, Q. B. Zhuge, M. Malekiha, F. Marvasti, D. V. Plant, “Theoretical and experimental investigation of direct detection optical OFDM transmission using beat interference cancellation receiver,” Opt. Express 21, 15237–15246 (2013).
    [CrossRef] [PubMed]
  14. B. J. C. Schmidt, Z. Zan, L. B. Du, A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightw. Technol. 28, 328–335 (2010).
    [CrossRef]
  15. D. Y. Qian, N. Cvijetic, J. Q. Hu, T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightw. Technol. 28, 484–493 (2010).
    [CrossRef]
  16. G. H. Smith, D. Novak, Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Techn. 45, 1410–1415 (1997).
    [CrossRef]
  17. M. Sieben, J. Conradi, D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightw. Technol. 17, 1742–1749 (1999).
    [CrossRef]
  18. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightw. Technol. 30, 384–398 (2012).
    [CrossRef]
  19. C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis (Wiley Interscience, 1999).
    [CrossRef]
  20. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley and Sons, 2002).
    [CrossRef]
  21. J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, G. D. Forney, “MMSE decision-feedback equalizers and coding-part II: Coding results,” IEEE Trans. Commun. 43, 2595–2604 (1995).
    [CrossRef]
  22. J. Campello, “Practical bit loading for DMT,” in “Proc. Global Telecommun. Conf. (GLOBECOM ’99),” (Vancouver, Canada, 1999), pp. 801–805.
  23. S. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. van den Boom, A. Koonen, N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” “OFC/NFOEC,” (2007), p. PDP6.
  24. D. J. F. Barros, J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in amplified direct-detection single-mode fiber systems,” J. Lightw. Technol. 28, 1811–1820 (2010).
    [CrossRef]
  25. J. G. Proakis, M. Salehi, Digital Communications (McGraw-Hill, 2008), 5th ed.
  26. E. Vanin, “Performance evaluation of intensity modulated optical OFDM system with digital baseband distortion,” Opt. Express 19, 4280–4293 (2011).
    [CrossRef] [PubMed]

2014 (1)

X. Chen, A. Li, Q. Hu, J. He, Y. W. D. Che, W. Shieh, “Demonstration of direct detected optical OFDM signals via block-wise phase switching,” J. Lightw. Technol. 32, 722–728 (2014).
[CrossRef]

2013 (1)

2012 (1)

N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightw. Technol. 30, 384–398 (2012).
[CrossRef]

2011 (1)

2010 (3)

D. J. F. Barros, J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in amplified direct-detection single-mode fiber systems,” J. Lightw. Technol. 28, 1811–1820 (2010).
[CrossRef]

B. J. C. Schmidt, Z. Zan, L. B. Du, A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightw. Technol. 28, 328–335 (2010).
[CrossRef]

D. Y. Qian, N. Cvijetic, J. Q. Hu, T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightw. Technol. 28, 484–493 (2010).
[CrossRef]

2009 (3)

J. L. Wei, X. Q. Jin, J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier-suppressed single-sideband optical OFDM signals over IMDD SMF systems,” J. Lightw. Technol. 27, 2412–2419 (2009).
[CrossRef]

W. R. Peng, X. X. Wu, V. R. Arbab, K. M. Feng, B. Shamee, L. C. Christen, J. Y. Yang, A. E. Willner, S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightw. Technol. 27, 1332–1339 (2009).
[CrossRef]

W. R. Peng, B. Zhang, K. M. Feng, X. X. Wu, A. E. Willner, S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightw. Technol. 27, 5723–5735 (2009).
[CrossRef]

2008 (2)

B. J. C. Schmidt, A. J. Lowery, J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightw. Technol. 27, 196–203 (2008).
[CrossRef]

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20, 670–672 (2008).
[CrossRef]

1999 (1)

M. Sieben, J. Conradi, D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightw. Technol. 17, 1742–1749 (1999).
[CrossRef]

1997 (1)

G. H. Smith, D. Novak, Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Techn. 45, 1410–1415 (1997).
[CrossRef]

1995 (1)

J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, G. D. Forney, “MMSE decision-feedback equalizers and coding-part II: Coding results,” IEEE Trans. Commun. 43, 2595–2604 (1995).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley and Sons, 2002).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Techn. 45, 1410–1415 (1997).
[CrossRef]

Arbab, V. R.

W. R. Peng, X. X. Wu, V. R. Arbab, K. M. Feng, B. Shamee, L. C. Christen, J. Y. Yang, A. E. Willner, S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightw. Technol. 27, 1332–1339 (2009).
[CrossRef]

Armstrong, J.

B. J. C. Schmidt, A. J. Lowery, J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightw. Technol. 27, 196–203 (2008).
[CrossRef]

Barros, D. J. F.

D. J. F. Barros, J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in amplified direct-detection single-mode fiber systems,” J. Lightw. Technol. 28, 1811–1820 (2010).
[CrossRef]

Breyer, F.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20, 670–672 (2008).
[CrossRef]

S. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. van den Boom, A. Koonen, N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” “OFC/NFOEC,” (2007), p. PDP6.

Bunge, C. A.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20, 670–672 (2008).
[CrossRef]

M. Schuster, B. Spinnler, C. A. Bunge, K. Petermann, “Spectrally efficient OFDM-transmission with compatible single-sideband modulation for direct detection,” in “Proc. Eur. Conf. Opt. Commun.”, (Berlin, Germany, 2007), pp. 1–2.

Campello, J.

J. Campello, “Practical bit loading for DMT,” in “Proc. Global Telecommun. Conf. (GLOBECOM ’99),” (Vancouver, Canada, 1999), pp. 801–805.

Che, D.

X. Chen, A. Li, D. Che, Q. Hu, Y. Wang, J. He, W. Shieh, “High-speed fading-free direct detection for double-sideband OFDM signal via block-wise phase switching,” “OFC/NFOEC,” (2013), p. PDP5B.7.

Che, Y. W. D.

X. Chen, A. Li, Q. Hu, J. He, Y. W. D. Che, W. Shieh, “Demonstration of direct detected optical OFDM signals via block-wise phase switching,” J. Lightw. Technol. 32, 722–728 (2014).
[CrossRef]

Chen, L. R.

Chen, X.

X. Chen, A. Li, Q. Hu, J. He, Y. W. D. Che, W. Shieh, “Demonstration of direct detected optical OFDM signals via block-wise phase switching,” J. Lightw. Technol. 32, 722–728 (2014).
[CrossRef]

X. Chen, A. Li, D. Che, Q. Hu, Y. Wang, J. He, W. Shieh, “High-speed fading-free direct detection for double-sideband OFDM signal via block-wise phase switching,” “OFC/NFOEC,” (2013), p. PDP5B.7.

Chi, S.

W. R. Peng, B. Zhang, K. M. Feng, X. X. Wu, A. E. Willner, S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightw. Technol. 27, 5723–5735 (2009).
[CrossRef]

W. R. Peng, X. X. Wu, V. R. Arbab, K. M. Feng, B. Shamee, L. C. Christen, J. Y. Yang, A. E. Willner, S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightw. Technol. 27, 1332–1339 (2009).
[CrossRef]

Christen, L. C.

W. R. Peng, X. X. Wu, V. R. Arbab, K. M. Feng, B. Shamee, L. C. Christen, J. Y. Yang, A. E. Willner, S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightw. Technol. 27, 1332–1339 (2009).
[CrossRef]

Cioffi, J. M.

J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, G. D. Forney, “MMSE decision-feedback equalizers and coding-part II: Coding results,” IEEE Trans. Commun. 43, 2595–2604 (1995).
[CrossRef]

Conradi, J.

M. Sieben, J. Conradi, D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightw. Technol. 17, 1742–1749 (1999).
[CrossRef]

Cvijetic, N.

N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightw. Technol. 30, 384–398 (2012).
[CrossRef]

D. Y. Qian, N. Cvijetic, J. Q. Hu, T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightw. Technol. 28, 484–493 (2010).
[CrossRef]

Dedic, I.

I. Dedic, “56Gs/s ADC: Enabling 100GbE,” “OFC/NFOEC 2010,” (San Diego, USA, 2010), p. OThT6.

Dodds, D. E.

M. Sieben, J. Conradi, D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightw. Technol. 17, 1742–1749 (1999).
[CrossRef]

Drenski, T.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” “OFC/NFOEC 2013” (Anaheim, USA, 2013), p. OM3H.1.

Du, L. B.

B. J. C. Schmidt, Z. Zan, L. B. Du, A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightw. Technol. 28, 328–335 (2010).
[CrossRef]

Dudevoir, G. P.

J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, G. D. Forney, “MMSE decision-feedback equalizers and coding-part II: Coding results,” IEEE Trans. Commun. 43, 2595–2604 (1995).
[CrossRef]

Eyuboglu, M. V.

J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, G. D. Forney, “MMSE decision-feedback equalizers and coding-part II: Coding results,” IEEE Trans. Commun. 43, 2595–2604 (1995).
[CrossRef]

Feng, K. M.

W. R. Peng, B. Zhang, K. M. Feng, X. X. Wu, A. E. Willner, S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightw. Technol. 27, 5723–5735 (2009).
[CrossRef]

W. R. Peng, X. X. Wu, V. R. Arbab, K. M. Feng, B. Shamee, L. C. Christen, J. Y. Yang, A. E. Willner, S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightw. Technol. 27, 1332–1339 (2009).
[CrossRef]

Forney, G. D.

J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, G. D. Forney, “MMSE decision-feedback equalizers and coding-part II: Coding results,” IEEE Trans. Commun. 43, 2595–2604 (1995).
[CrossRef]

Hanik, N.

S. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. van den Boom, A. Koonen, N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” “OFC/NFOEC,” (2007), p. PDP6.

He, J.

X. Chen, A. Li, Q. Hu, J. He, Y. W. D. Che, W. Shieh, “Demonstration of direct detected optical OFDM signals via block-wise phase switching,” J. Lightw. Technol. 32, 722–728 (2014).
[CrossRef]

X. Chen, A. Li, D. Che, Q. Hu, Y. Wang, J. He, W. Shieh, “High-speed fading-free direct detection for double-sideband OFDM signal via block-wise phase switching,” “OFC/NFOEC,” (2013), p. PDP5B.7.

Hewitt, D. F.

D. F. Hewitt, “Orthogonal frequency division multiplexing using baseband optical single sideband for simpler adaptive dispersion compensation,” in “Proc. Eur. Conf. Opt. Commun.”, (2007), p. OME7.

Hu, J. Q.

D. Y. Qian, N. Cvijetic, J. Q. Hu, T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightw. Technol. 28, 484–493 (2010).
[CrossRef]

Hu, Q.

X. Chen, A. Li, Q. Hu, J. He, Y. W. D. Che, W. Shieh, “Demonstration of direct detected optical OFDM signals via block-wise phase switching,” J. Lightw. Technol. 32, 722–728 (2014).
[CrossRef]

X. Chen, A. Li, D. Che, Q. Hu, Y. Wang, J. He, W. Shieh, “High-speed fading-free direct detection for double-sideband OFDM signal via block-wise phase switching,” “OFC/NFOEC,” (2013), p. PDP5B.7.

Huijskens, F.

S. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. van den Boom, A. Koonen, N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” “OFC/NFOEC,” (2007), p. PDP6.

Jin, X. Q.

J. L. Wei, X. Q. Jin, J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier-suppressed single-sideband optical OFDM signals over IMDD SMF systems,” J. Lightw. Technol. 27, 2412–2419 (2009).
[CrossRef]

Kahn, J. M.

D. J. F. Barros, J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in amplified direct-detection single-mode fiber systems,” J. Lightw. Technol. 28, 1811–1820 (2010).
[CrossRef]

Koonen, A.

S. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. van den Boom, A. Koonen, N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” “OFC/NFOEC,” (2007), p. PDP6.

Lee, S.

S. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. van den Boom, A. Koonen, N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” “OFC/NFOEC,” (2007), p. PDP6.

Lee, S. C. J.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20, 670–672 (2008).
[CrossRef]

Li, A.

X. Chen, A. Li, Q. Hu, J. He, Y. W. D. Che, W. Shieh, “Demonstration of direct detected optical OFDM signals via block-wise phase switching,” J. Lightw. Technol. 32, 722–728 (2014).
[CrossRef]

X. Chen, A. Li, D. Che, Q. Hu, Y. Wang, J. He, W. Shieh, “High-speed fading-free direct detection for double-sideband OFDM signal via block-wise phase switching,” “OFC/NFOEC,” (2013), p. PDP5B.7.

Li, L.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” “OFC/NFOEC 2013” (Anaheim, USA, 2013), p. OM3H.1.

Liu, B.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” “OFC/NFOEC 2013” (Anaheim, USA, 2013), p. OM3H.1.

Lowery, A. J.

B. J. C. Schmidt, Z. Zan, L. B. Du, A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightw. Technol. 28, 328–335 (2010).
[CrossRef]

B. J. C. Schmidt, A. J. Lowery, J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightw. Technol. 27, 196–203 (2008).
[CrossRef]

Madsen, C. K.

C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis (Wiley Interscience, 1999).
[CrossRef]

Malekiha, M.

Marvasti, F.

Morita, I.

W. R. Peng, I. Morita, H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in “Proc. Eur. Conf. Opt. Commun.”, (Torino, Italy, 2010), p. Tu.4.A.2.

Nezamalhosseini, S. A.

Nishihara, M.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” “OFC/NFOEC 2013” (Anaheim, USA, 2013), p. OM3H.1.

Novak, D.

G. H. Smith, D. Novak, Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Techn. 45, 1410–1415 (1997).
[CrossRef]

Peng, W. R.

W. R. Peng, X. X. Wu, V. R. Arbab, K. M. Feng, B. Shamee, L. C. Christen, J. Y. Yang, A. E. Willner, S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightw. Technol. 27, 1332–1339 (2009).
[CrossRef]

W. R. Peng, B. Zhang, K. M. Feng, X. X. Wu, A. E. Willner, S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightw. Technol. 27, 5723–5735 (2009).
[CrossRef]

W. R. Peng, I. Morita, H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in “Proc. Eur. Conf. Opt. Commun.”, (Torino, Italy, 2010), p. Tu.4.A.2.

Petermann, K.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20, 670–672 (2008).
[CrossRef]

M. Schuster, B. Spinnler, C. A. Bunge, K. Petermann, “Spectrally efficient OFDM-transmission with compatible single-sideband modulation for direct detection,” in “Proc. Eur. Conf. Opt. Commun.”, (Berlin, Germany, 2007), pp. 1–2.

Plant, D. V.

Proakis, J. G.

J. G. Proakis, M. Salehi, Digital Communications (McGraw-Hill, 2008), 5th ed.

Qian, D. Y.

D. Y. Qian, N. Cvijetic, J. Q. Hu, T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightw. Technol. 28, 484–493 (2010).
[CrossRef]

Randel, S.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20, 670–672 (2008).
[CrossRef]

S. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. van den Boom, A. Koonen, N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” “OFC/NFOEC,” (2007), p. PDP6.

Rasmussen, J. C.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” “OFC/NFOEC 2013” (Anaheim, USA, 2013), p. OM3H.1.

Salehi, M.

J. G. Proakis, M. Salehi, Digital Communications (McGraw-Hill, 2008), 5th ed.

Schmidt, B. J. C.

B. J. C. Schmidt, Z. Zan, L. B. Du, A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightw. Technol. 28, 328–335 (2010).
[CrossRef]

B. J. C. Schmidt, A. J. Lowery, J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightw. Technol. 27, 196–203 (2008).
[CrossRef]

Schuster, M.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20, 670–672 (2008).
[CrossRef]

M. Schuster, B. Spinnler, C. A. Bunge, K. Petermann, “Spectrally efficient OFDM-transmission with compatible single-sideband modulation for direct detection,” in “Proc. Eur. Conf. Opt. Commun.”, (Berlin, Germany, 2007), pp. 1–2.

S. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. van den Boom, A. Koonen, N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” “OFC/NFOEC,” (2007), p. PDP6.

Shamee, B.

W. R. Peng, X. X. Wu, V. R. Arbab, K. M. Feng, B. Shamee, L. C. Christen, J. Y. Yang, A. E. Willner, S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightw. Technol. 27, 1332–1339 (2009).
[CrossRef]

Shieh, W.

X. Chen, A. Li, Q. Hu, J. He, Y. W. D. Che, W. Shieh, “Demonstration of direct detected optical OFDM signals via block-wise phase switching,” J. Lightw. Technol. 32, 722–728 (2014).
[CrossRef]

X. Chen, A. Li, D. Che, Q. Hu, Y. Wang, J. He, W. Shieh, “High-speed fading-free direct detection for double-sideband OFDM signal via block-wise phase switching,” “OFC/NFOEC,” (2013), p. PDP5B.7.

Sieben, M.

M. Sieben, J. Conradi, D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightw. Technol. 17, 1742–1749 (1999).
[CrossRef]

Smith, G. H.

G. H. Smith, D. Novak, Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Techn. 45, 1410–1415 (1997).
[CrossRef]

Spinnler, B.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20, 670–672 (2008).
[CrossRef]

M. Schuster, B. Spinnler, C. A. Bunge, K. Petermann, “Spectrally efficient OFDM-transmission with compatible single-sideband modulation for direct detection,” in “Proc. Eur. Conf. Opt. Commun.”, (Berlin, Germany, 2007), pp. 1–2.

Takahara, T.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” “OFC/NFOEC 2013” (Anaheim, USA, 2013), p. OM3H.1.

Tanaka, H.

W. R. Peng, I. Morita, H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in “Proc. Eur. Conf. Opt. Commun.”, (Torino, Italy, 2010), p. Tu.4.A.2.

Tanaka, T.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” “OFC/NFOEC 2013” (Anaheim, USA, 2013), p. OM3H.1.

Tang, J. M.

J. L. Wei, X. Q. Jin, J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier-suppressed single-sideband optical OFDM signals over IMDD SMF systems,” J. Lightw. Technol. 27, 2412–2419 (2009).
[CrossRef]

Tao, Z.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” “OFC/NFOEC 2013” (Anaheim, USA, 2013), p. OM3H.1.

van den Boom, H.

S. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. van den Boom, A. Koonen, N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” “OFC/NFOEC,” (2007), p. PDP6.

Vanin, E.

Wang, T.

D. Y. Qian, N. Cvijetic, J. Q. Hu, T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightw. Technol. 28, 484–493 (2010).
[CrossRef]

Wang, Y.

X. Chen, A. Li, D. Che, Q. Hu, Y. Wang, J. He, W. Shieh, “High-speed fading-free direct detection for double-sideband OFDM signal via block-wise phase switching,” “OFC/NFOEC,” (2013), p. PDP5B.7.

Wei, J. L.

J. L. Wei, X. Q. Jin, J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier-suppressed single-sideband optical OFDM signals over IMDD SMF systems,” J. Lightw. Technol. 27, 2412–2419 (2009).
[CrossRef]

Willner, A. E.

W. R. Peng, X. X. Wu, V. R. Arbab, K. M. Feng, B. Shamee, L. C. Christen, J. Y. Yang, A. E. Willner, S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightw. Technol. 27, 1332–1339 (2009).
[CrossRef]

W. R. Peng, B. Zhang, K. M. Feng, X. X. Wu, A. E. Willner, S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightw. Technol. 27, 5723–5735 (2009).
[CrossRef]

Wu, X. X.

W. R. Peng, B. Zhang, K. M. Feng, X. X. Wu, A. E. Willner, S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightw. Technol. 27, 5723–5735 (2009).
[CrossRef]

W. R. Peng, X. X. Wu, V. R. Arbab, K. M. Feng, B. Shamee, L. C. Christen, J. Y. Yang, A. E. Willner, S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightw. Technol. 27, 1332–1339 (2009).
[CrossRef]

Yan, W. Z.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” “OFC/NFOEC 2013” (Anaheim, USA, 2013), p. OM3H.1.

Yang, J. Y.

W. R. Peng, X. X. Wu, V. R. Arbab, K. M. Feng, B. Shamee, L. C. Christen, J. Y. Yang, A. E. Willner, S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightw. Technol. 27, 1332–1339 (2009).
[CrossRef]

Zan, Z.

B. J. C. Schmidt, Z. Zan, L. B. Du, A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightw. Technol. 28, 328–335 (2010).
[CrossRef]

Zeng, J.

S. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. van den Boom, A. Koonen, N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” “OFC/NFOEC,” (2007), p. PDP6.

Zhang, B.

W. R. Peng, B. Zhang, K. M. Feng, X. X. Wu, A. E. Willner, S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightw. Technol. 27, 5723–5735 (2009).
[CrossRef]

Zhao, J. H.

C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis (Wiley Interscience, 1999).
[CrossRef]

Zhuge, Q. B.

IEEE Photon. Technol. Lett. (1)

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20, 670–672 (2008).
[CrossRef]

IEEE Trans. Commun. (1)

J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, G. D. Forney, “MMSE decision-feedback equalizers and coding-part II: Coding results,” IEEE Trans. Commun. 43, 2595–2604 (1995).
[CrossRef]

IEEE Trans. Microw. Theory Techn. (1)

G. H. Smith, D. Novak, Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Techn. 45, 1410–1415 (1997).
[CrossRef]

J. Lightw. Technol. (10)

M. Sieben, J. Conradi, D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightw. Technol. 17, 1742–1749 (1999).
[CrossRef]

N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightw. Technol. 30, 384–398 (2012).
[CrossRef]

B. J. C. Schmidt, Z. Zan, L. B. Du, A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightw. Technol. 28, 328–335 (2010).
[CrossRef]

D. Y. Qian, N. Cvijetic, J. Q. Hu, T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightw. Technol. 28, 484–493 (2010).
[CrossRef]

J. L. Wei, X. Q. Jin, J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier-suppressed single-sideband optical OFDM signals over IMDD SMF systems,” J. Lightw. Technol. 27, 2412–2419 (2009).
[CrossRef]

B. J. C. Schmidt, A. J. Lowery, J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightw. Technol. 27, 196–203 (2008).
[CrossRef]

W. R. Peng, X. X. Wu, V. R. Arbab, K. M. Feng, B. Shamee, L. C. Christen, J. Y. Yang, A. E. Willner, S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightw. Technol. 27, 1332–1339 (2009).
[CrossRef]

W. R. Peng, B. Zhang, K. M. Feng, X. X. Wu, A. E. Willner, S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightw. Technol. 27, 5723–5735 (2009).
[CrossRef]

X. Chen, A. Li, Q. Hu, J. He, Y. W. D. Che, W. Shieh, “Demonstration of direct detected optical OFDM signals via block-wise phase switching,” J. Lightw. Technol. 32, 722–728 (2014).
[CrossRef]

D. J. F. Barros, J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in amplified direct-detection single-mode fiber systems,” J. Lightw. Technol. 28, 1811–1820 (2010).
[CrossRef]

Opt. Express (2)

Other (11)

J. G. Proakis, M. Salehi, Digital Communications (McGraw-Hill, 2008), 5th ed.

D. F. Hewitt, “Orthogonal frequency division multiplexing using baseband optical single sideband for simpler adaptive dispersion compensation,” in “Proc. Eur. Conf. Opt. Commun.”, (2007), p. OME7.

M. Schuster, B. Spinnler, C. A. Bunge, K. Petermann, “Spectrally efficient OFDM-transmission with compatible single-sideband modulation for direct detection,” in “Proc. Eur. Conf. Opt. Commun.”, (Berlin, Germany, 2007), pp. 1–2.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” “OFC/NFOEC 2013” (Anaheim, USA, 2013), p. OM3H.1.

I. Dedic, “56Gs/s ADC: Enabling 100GbE,” “OFC/NFOEC 2010,” (San Diego, USA, 2010), p. OThT6.

X. Chen, A. Li, D. Che, Q. Hu, Y. Wang, J. He, W. Shieh, “High-speed fading-free direct detection for double-sideband OFDM signal via block-wise phase switching,” “OFC/NFOEC,” (2013), p. PDP5B.7.

W. R. Peng, I. Morita, H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in “Proc. Eur. Conf. Opt. Commun.”, (Torino, Italy, 2010), p. Tu.4.A.2.

J. Campello, “Practical bit loading for DMT,” in “Proc. Global Telecommun. Conf. (GLOBECOM ’99),” (Vancouver, Canada, 1999), pp. 801–805.

S. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. van den Boom, A. Koonen, N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” “OFC/NFOEC,” (2007), p. PDP6.

C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis (Wiley Interscience, 1999).
[CrossRef]

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley and Sons, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The carrier is added to the data signal through an unmodulated waveguide. This allows for a much larger carrier to mix with the signal at the receiver. Here we depict ideal SSB generation through optical filtering.

Fig. 2
Fig. 2

In the proposed system, the carrier is added to the data signal through an unmodulated waveguide and VSB generation is achieved through a waveguide MZI integrated with a single MZM.

Fig. 3
Fig. 3

(a) The integrated waveguide MZI consists of two waveguides with a propagation delay difference of td. (b) The transfer function of the MZI is periodic in frequency.

Fig. 4
Fig. 4

(a) Simulated spectrum of DSB-OFDM signal produced by MZM. In this particular example, there is no guard band against signal-signal beating. The resolution in this plot is 2 MHz. (b) Spectrum after filtering by the MZI with FSR of 90 GHz and null centered in the lower sideband. (c) Spectrum after adding the carrier through a parallel waveguide.

Fig. 5
Fig. 5

(a) Simulation of the back-to-back performance of VSB-OFDM for 56 Gb/s and 112 Gb/s. (b) Simulation of optically unamplified link to compare VSB with SSB and DSB transmission, including the effect of MZI offsets. The BER in all cases was 10−3.

Fig. 6
Fig. 6

This modified transmitter configuration was used in the experiments for convenience of implementation. Its operation is essentially equivalent to that of the original transmitter configuration of Fig. 2.

Fig. 7
Fig. 7

Measured BER after 80 km of S-SMF. (a) Measured BER as a function of bit rate. (b) Measured BER as a function of MZI offset relative to the carrier at 65 Gb/s.

Fig. 8
Fig. 8

(a) Channel SNR for 80-km link. (b) Optimal bit allocation for 72 Gb/s transmission across 80 km S-SMF. The 256th subcarrier was zeroed due to strong DAC nonlinearity at that frequency.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

K = R cl 2 a m ,
( A + x ( t ) * f ( t ) ) * g ( t ) ,
r ( t ) = | B + x ( t ) * h ( t ) | 2 = | B | 2 + | x ( t ) * h ( t ) | 2 + 2 Re { B * x ( t ) * h ( t ) } .
y ( t ) = x ( t ) * h eq ( t ) ,
h eq ( t ) = B * h ( t ) + B h * ( t ) .
H eq ( ω ) = B * H ( ω ) + B H * ( ω ) .
G ( ω ) = exp ( j β 2 L ω 2 2 ) ,
H eq ( ω ) = exp ( j β 2 L ω 2 2 ) + exp ( j β 2 L ω 2 2 ) = 2 cos ( β 2 L ω 2 2 ) .
F ( ω ) = { 1 if ω > 0 0 otherwise
F ( ω ) = 1 2 + 1 2 e j ( ω + ω c ) t d
H eq ( ω ) = F ( ω ) exp ( j β 2 L ω 2 2 ) + F * ( ω ) exp ( j β 2 L ω 2 2 ) .
b i = log 2 ( 1 + SNR i Γ ) ,
x + ( t ) = 1 2 x ( t ) + 1 2 j x ^ ( t ) .
e 1 ( t ) = A c w 2 a m ( x + j x ^ + 2 C e j ω B t ) = A c w a m ( x + + C e j ω B t ) .
r 1 ( t ) = ( A c w a m C e j ω B t ) ( A c w a m x + ( t ) ) = ( A c w a m ) 2 C e j ω B t x + ( t ) .
F ( ω ) = { 1 if ω > 0 0 otherwise
e 2 ( t ) = A c w 2 + 1 2 A c w a m y + ( t ) .
r 2 ( t ) = 2 4 A c w 2 a m y + ( t ) .
K = 1 2 2 a m C .
C = 1 2 R cl ,
K = R cl 2 a m .

Metrics