Abstract

A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator’s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, H. A. Atwater, “Plasmonics–A route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef] [PubMed]
  4. Y. Cui, C. Zeng, “Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators,” App. Opt. 51, 7482–7486 (2012).
    [CrossRef]
  5. M. Kauranen, A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012).
    [CrossRef]
  6. P.-Y. Chen, C. Argyropoulos, A. Alù, “Enhanced nonlinearities using plasmonic nanoantennas,” Nanopho-tonics 1, 221–233 (2012).
  7. F. Zhou, Y. Liu, Z.-Y. Li, Y. Xia, “Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials,” Opt. Express 18, 13337–13344 (2010).
    [CrossRef] [PubMed]
  8. P.-Y. Chen, A. Alù, “Optical nanoantenna arrays loaded with nonlinear materials,” Phys. Rev. B 82, 235405 (2010).
    [CrossRef]
  9. C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, A. Alù, “Boosting optical nonlinearities in e-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
    [CrossRef]
  10. C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
    [CrossRef] [PubMed]
  11. P.-Y. Chen, M. Farhat, A. Alù, “Bistable and self-tunable negative-index metamaterial at optical frequencies,” Phys. Rev. Lett. 106, 105503 (2011).
    [CrossRef] [PubMed]
  12. P.-Y. Chen, C. Argyropoulos, A. Alù, “Optical Antennas and Enhanced Nonlinear Effects,” in Rectenna Solar Cells (Springer, 2013).
    [CrossRef]
  13. X.-B. Kang, H.-D. Li, J. Ding, Z.-G. Wang, “Fano resonance and step-like transmission via guide-mode resonance structure,” Opt. Lett. 38, 715–717 (2013).
    [CrossRef] [PubMed]
  14. N. Mattiucci, G. D’Aguanno, M. J. Bloemer, “Mode-matched Fano resonances for all-optical switching applications,” Opt. Commun. 285, 1945–1948 (2012).
    [CrossRef]
  15. N. Mattiucci, G. D’Aguanno, M. J. Bloemer, “Long range plasmon assisted all-optical switching at telecommunication wavelengths,” Opt. Lett. 37, 121–123 (2012).
    [CrossRef] [PubMed]
  16. G. D’Aguanno, D. de Ceglia, N. Mattiucci, M. Bloemer, “All-optical switching at the Fano resonances in subwavelength gratings with very narrow slits,” Opt. Lett. 36, 1984–1986 (2011).
    [CrossRef] [PubMed]
  17. N. Mattiucci, M. J. Bloemer, G. D’Aguanno, “Giant field localization in 2-D photonic crystal cavities with defect resonances: Bringing nonlinear optics to the W/cm2 level,” AIP Advances 2, 032112 (2012).
    [CrossRef]
  18. T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008).
    [CrossRef]
  19. T. F. Krauss, “Why do we need slow light?,” Nature Photon. 2, 448–450 (2008).
    [CrossRef]
  20. A. B. Forouzan, Data Communications & Networking (Tata McGraw-Hill Education, 2007).
  21. B. Holdworth, C. Woods, Digital Logic Design (Elsevier, 1994).
  22. V. R. Tuz, S. L. Prosvirnin, “Bistability, multistability, and nonreciprocity in a chiral photonic bandgap structure with nonlinear defect,” J. Opt. Soc. Am. B 28, 1002–1008 (2011).
    [CrossRef]
  23. G. Victor, F. Biancalana, “Bistability, multistability and non-reciprocal light propagation in Thue–Morse multilayered structures,” New J. Phys. 12, 053041 (2010).
    [CrossRef]
  24. G. Victor, F. Biancalana, “Resonant self-pulsations in coupled nonlinear microcavities,” Phys. Rev. A 83, 043816 (2011).
    [CrossRef]
  25. D. Yannick, F. Patrice, “Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling,” Phys. Rev. A 84, 043847 (2011).
    [CrossRef]
  26. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  27. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  28. M. Rahmani, B. Luk’yanchuk, M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7, 329–349 (2013).
    [CrossRef]
  29. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater. 9, 707–715 (2010).
    [CrossRef]
  30. M. Amin, H. Bağcı, “Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity,” Prog. Electromag. Res. 130, 187–206 (2012).
    [CrossRef]
  31. M. Amin, M. Farhat, H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
    [CrossRef] [PubMed]
  32. M. Amin, M. Farhat, H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21, 29938–29948 (2013).
    [CrossRef]
  33. F. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82, 958–960 (2003).
    [CrossRef]
  34. B. Gallinet, O. J. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19, 221675 (2011).
    [CrossRef]
  35. Q. Zhang, C. Qin, K. Chen, M. Xiong, X. Zhang, “Novel optical multi-bistability and multistability characteristics of coupled active microrings,” IEEE J. Quantum Electron. 49, 365–374 (2013).
    [CrossRef]
  36. A. Taflove, S. C. Hagness, Computational Electrodynamics (Artech house, 2000).
  37. S. Thomas, Nonlinear Optics in Telecommunications (Springer, 2004).

2013 (5)

X.-B. Kang, H.-D. Li, J. Ding, Z.-G. Wang, “Fano resonance and step-like transmission via guide-mode resonance structure,” Opt. Lett. 38, 715–717 (2013).
[CrossRef] [PubMed]

M. Rahmani, B. Luk’yanchuk, M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7, 329–349 (2013).
[CrossRef]

M. Amin, M. Farhat, H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[CrossRef] [PubMed]

M. Amin, M. Farhat, H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21, 29938–29948 (2013).
[CrossRef]

Q. Zhang, C. Qin, K. Chen, M. Xiong, X. Zhang, “Novel optical multi-bistability and multistability characteristics of coupled active microrings,” IEEE J. Quantum Electron. 49, 365–374 (2013).
[CrossRef]

2012 (9)

M. Amin, H. Bağcı, “Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity,” Prog. Electromag. Res. 130, 187–206 (2012).
[CrossRef]

N. Mattiucci, G. D’Aguanno, M. J. Bloemer, “Mode-matched Fano resonances for all-optical switching applications,” Opt. Commun. 285, 1945–1948 (2012).
[CrossRef]

N. Mattiucci, G. D’Aguanno, M. J. Bloemer, “Long range plasmon assisted all-optical switching at telecommunication wavelengths,” Opt. Lett. 37, 121–123 (2012).
[CrossRef] [PubMed]

N. Mattiucci, M. J. Bloemer, G. D’Aguanno, “Giant field localization in 2-D photonic crystal cavities with defect resonances: Bringing nonlinear optics to the W/cm2 level,” AIP Advances 2, 032112 (2012).
[CrossRef]

Y. Cui, C. Zeng, “Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators,” App. Opt. 51, 7482–7486 (2012).
[CrossRef]

M. Kauranen, A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012).
[CrossRef]

P.-Y. Chen, C. Argyropoulos, A. Alù, “Enhanced nonlinearities using plasmonic nanoantennas,” Nanopho-tonics 1, 221–233 (2012).

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, A. Alù, “Boosting optical nonlinearities in e-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
[CrossRef]

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[CrossRef] [PubMed]

2011 (6)

P.-Y. Chen, M. Farhat, A. Alù, “Bistable and self-tunable negative-index metamaterial at optical frequencies,” Phys. Rev. Lett. 106, 105503 (2011).
[CrossRef] [PubMed]

V. R. Tuz, S. L. Prosvirnin, “Bistability, multistability, and nonreciprocity in a chiral photonic bandgap structure with nonlinear defect,” J. Opt. Soc. Am. B 28, 1002–1008 (2011).
[CrossRef]

G. D’Aguanno, D. de Ceglia, N. Mattiucci, M. Bloemer, “All-optical switching at the Fano resonances in subwavelength gratings with very narrow slits,” Opt. Lett. 36, 1984–1986 (2011).
[CrossRef] [PubMed]

G. Victor, F. Biancalana, “Resonant self-pulsations in coupled nonlinear microcavities,” Phys. Rev. A 83, 043816 (2011).
[CrossRef]

D. Yannick, F. Patrice, “Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling,” Phys. Rev. A 84, 043847 (2011).
[CrossRef]

B. Gallinet, O. J. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19, 221675 (2011).
[CrossRef]

2010 (4)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater. 9, 707–715 (2010).
[CrossRef]

G. Victor, F. Biancalana, “Bistability, multistability and non-reciprocal light propagation in Thue–Morse multilayered structures,” New J. Phys. 12, 053041 (2010).
[CrossRef]

F. Zhou, Y. Liu, Z.-Y. Li, Y. Xia, “Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials,” Opt. Express 18, 13337–13344 (2010).
[CrossRef] [PubMed]

P.-Y. Chen, A. Alù, “Optical nanoantenna arrays loaded with nonlinear materials,” Phys. Rev. B 82, 235405 (2010).
[CrossRef]

2008 (2)

T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?,” Nature Photon. 2, 448–450 (2008).
[CrossRef]

2006 (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

2003 (2)

F. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82, 958–960 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, H. A. Atwater, “Plasmonics–A route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Alù, A.

P.-Y. Chen, C. Argyropoulos, A. Alù, “Enhanced nonlinearities using plasmonic nanoantennas,” Nanopho-tonics 1, 221–233 (2012).

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, A. Alù, “Boosting optical nonlinearities in e-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
[CrossRef]

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[CrossRef] [PubMed]

P.-Y. Chen, M. Farhat, A. Alù, “Bistable and self-tunable negative-index metamaterial at optical frequencies,” Phys. Rev. Lett. 106, 105503 (2011).
[CrossRef] [PubMed]

P.-Y. Chen, A. Alù, “Optical nanoantenna arrays loaded with nonlinear materials,” Phys. Rev. B 82, 235405 (2010).
[CrossRef]

P.-Y. Chen, C. Argyropoulos, A. Alù, “Optical Antennas and Enhanced Nonlinear Effects,” in Rectenna Solar Cells (Springer, 2013).
[CrossRef]

Amin, M.

M. Amin, M. Farhat, H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[CrossRef] [PubMed]

M. Amin, M. Farhat, H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21, 29938–29948 (2013).
[CrossRef]

M. Amin, H. Bağcı, “Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity,” Prog. Electromag. Res. 130, 187–206 (2012).
[CrossRef]

Argyropoulos, C.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, A. Alù, “Boosting optical nonlinearities in e-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
[CrossRef]

P.-Y. Chen, C. Argyropoulos, A. Alù, “Enhanced nonlinearities using plasmonic nanoantennas,” Nanopho-tonics 1, 221–233 (2012).

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[CrossRef] [PubMed]

P.-Y. Chen, C. Argyropoulos, A. Alù, “Optical Antennas and Enhanced Nonlinear Effects,” in Rectenna Solar Cells (Springer, 2013).
[CrossRef]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, H. A. Atwater, “Plasmonics–A route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008).
[CrossRef]

Bagci, H.

M. Amin, M. Farhat, H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21, 29938–29948 (2013).
[CrossRef]

M. Amin, M. Farhat, H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[CrossRef] [PubMed]

M. Amin, H. Bağcı, “Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity,” Prog. Electromag. Res. 130, 187–206 (2012).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Biancalana, F.

G. Victor, F. Biancalana, “Resonant self-pulsations in coupled nonlinear microcavities,” Phys. Rev. A 83, 043816 (2011).
[CrossRef]

G. Victor, F. Biancalana, “Bistability, multistability and non-reciprocal light propagation in Thue–Morse multilayered structures,” New J. Phys. 12, 053041 (2010).
[CrossRef]

Bloemer, M.

Bloemer, M. J.

N. Mattiucci, M. J. Bloemer, G. D’Aguanno, “Giant field localization in 2-D photonic crystal cavities with defect resonances: Bringing nonlinear optics to the W/cm2 level,” AIP Advances 2, 032112 (2012).
[CrossRef]

N. Mattiucci, G. D’Aguanno, M. J. Bloemer, “Mode-matched Fano resonances for all-optical switching applications,” Opt. Commun. 285, 1945–1948 (2012).
[CrossRef]

N. Mattiucci, G. D’Aguanno, M. J. Bloemer, “Long range plasmon assisted all-optical switching at telecommunication wavelengths,” Opt. Lett. 37, 121–123 (2012).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, H. A. Atwater, “Plasmonics–A route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Chen, K.

Q. Zhang, C. Qin, K. Chen, M. Xiong, X. Zhang, “Novel optical multi-bistability and multistability characteristics of coupled active microrings,” IEEE J. Quantum Electron. 49, 365–374 (2013).
[CrossRef]

Chen, P.-Y.

P.-Y. Chen, C. Argyropoulos, A. Alù, “Enhanced nonlinearities using plasmonic nanoantennas,” Nanopho-tonics 1, 221–233 (2012).

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[CrossRef] [PubMed]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, A. Alù, “Boosting optical nonlinearities in e-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
[CrossRef]

P.-Y. Chen, M. Farhat, A. Alù, “Bistable and self-tunable negative-index metamaterial at optical frequencies,” Phys. Rev. Lett. 106, 105503 (2011).
[CrossRef] [PubMed]

P.-Y. Chen, A. Alù, “Optical nanoantenna arrays loaded with nonlinear materials,” Phys. Rev. B 82, 235405 (2010).
[CrossRef]

P.-Y. Chen, C. Argyropoulos, A. Alù, “Optical Antennas and Enhanced Nonlinear Effects,” in Rectenna Solar Cells (Springer, 2013).
[CrossRef]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater. 9, 707–715 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Cui, Y.

Y. Cui, C. Zeng, “Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators,” App. Opt. 51, 7482–7486 (2012).
[CrossRef]

D’Aguanno, G.

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[CrossRef] [PubMed]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, A. Alù, “Boosting optical nonlinearities in e-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
[CrossRef]

N. Mattiucci, G. D’Aguanno, M. J. Bloemer, “Mode-matched Fano resonances for all-optical switching applications,” Opt. Commun. 285, 1945–1948 (2012).
[CrossRef]

N. Mattiucci, G. D’Aguanno, M. J. Bloemer, “Long range plasmon assisted all-optical switching at telecommunication wavelengths,” Opt. Lett. 37, 121–123 (2012).
[CrossRef] [PubMed]

N. Mattiucci, M. J. Bloemer, G. D’Aguanno, “Giant field localization in 2-D photonic crystal cavities with defect resonances: Bringing nonlinear optics to the W/cm2 level,” AIP Advances 2, 032112 (2012).
[CrossRef]

G. D’Aguanno, D. de Ceglia, N. Mattiucci, M. Bloemer, “All-optical switching at the Fano resonances in subwavelength gratings with very narrow slits,” Opt. Lett. 36, 1984–1986 (2011).
[CrossRef] [PubMed]

de Ceglia, D.

Dereux, A.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Ding, J.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Engheta, N.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, A. Alù, “Boosting optical nonlinearities in e-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
[CrossRef]

Farhat, M.

M. Amin, M. Farhat, H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[CrossRef] [PubMed]

M. Amin, M. Farhat, H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21, 29938–29948 (2013).
[CrossRef]

P.-Y. Chen, M. Farhat, A. Alù, “Bistable and self-tunable negative-index metamaterial at optical frequencies,” Phys. Rev. Lett. 106, 105503 (2011).
[CrossRef] [PubMed]

Forouzan, A. B.

A. B. Forouzan, Data Communications & Networking (Tata McGraw-Hill Education, 2007).

Gallinet, B.

B. Gallinet, O. J. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19, 221675 (2011).
[CrossRef]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater. 9, 707–715 (2010).
[CrossRef]

Gong, Q.

F. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82, 958–960 (2003).
[CrossRef]

Hagness, S. C.

A. Taflove, S. C. Hagness, Computational Electrodynamics (Artech house, 2000).

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater. 9, 707–715 (2010).
[CrossRef]

Holdworth, B.

B. Holdworth, C. Woods, Digital Logic Design (Elsevier, 1994).

Hong, M.

M. Rahmani, B. Luk’yanchuk, M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7, 329–349 (2013).
[CrossRef]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kang, X.-B.

Kauranen, M.

M. Kauranen, A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012).
[CrossRef]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, H. A. Atwater, “Plasmonics–A route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Krauss, T. F.

T. F. Krauss, “Why do we need slow light?,” Nature Photon. 2, 448–450 (2008).
[CrossRef]

Li, H.-D.

Li, Z.-Y.

Liu, W.

F. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82, 958–960 (2003).
[CrossRef]

Liu, Y.

Luk’yanchuk, B.

M. Rahmani, B. Luk’yanchuk, M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7, 329–349 (2013).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater. 9, 707–715 (2010).
[CrossRef]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater. 9, 707–715 (2010).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, H. A. Atwater, “Plasmonics–A route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Martin, O. J.

B. Gallinet, O. J. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19, 221675 (2011).
[CrossRef]

Mattiucci, N.

N. Mattiucci, G. D’Aguanno, M. J. Bloemer, “Mode-matched Fano resonances for all-optical switching applications,” Opt. Commun. 285, 1945–1948 (2012).
[CrossRef]

N. Mattiucci, G. D’Aguanno, M. J. Bloemer, “Long range plasmon assisted all-optical switching at telecommunication wavelengths,” Opt. Lett. 37, 121–123 (2012).
[CrossRef] [PubMed]

N. Mattiucci, M. J. Bloemer, G. D’Aguanno, “Giant field localization in 2-D photonic crystal cavities with defect resonances: Bringing nonlinear optics to the W/cm2 level,” AIP Advances 2, 032112 (2012).
[CrossRef]

G. D’Aguanno, D. de Ceglia, N. Mattiucci, M. Bloemer, “All-optical switching at the Fano resonances in subwavelength gratings with very narrow slits,” Opt. Lett. 36, 1984–1986 (2011).
[CrossRef] [PubMed]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, H. A. Atwater, “Plasmonics–A route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Monticone, F.

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[CrossRef] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater. 9, 707–715 (2010).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Patrice, F.

D. Yannick, F. Patrice, “Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling,” Phys. Rev. A 84, 043847 (2011).
[CrossRef]

Prosvirnin, S. L.

Qin, C.

Q. Zhang, C. Qin, K. Chen, M. Xiong, X. Zhang, “Novel optical multi-bistability and multistability characteristics of coupled active microrings,” IEEE J. Quantum Electron. 49, 365–374 (2013).
[CrossRef]

Rahmani, M.

M. Rahmani, B. Luk’yanchuk, M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7, 329–349 (2013).
[CrossRef]

Requicha, A. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, H. A. Atwater, “Plasmonics–A route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Taflove, A.

A. Taflove, S. C. Hagness, Computational Electrodynamics (Artech house, 2000).

Thomas, S.

S. Thomas, Nonlinear Optics in Telecommunications (Springer, 2004).

Tuz, V. R.

Victor, G.

G. Victor, F. Biancalana, “Resonant self-pulsations in coupled nonlinear microcavities,” Phys. Rev. A 83, 043816 (2011).
[CrossRef]

G. Victor, F. Biancalana, “Bistability, multistability and non-reciprocal light propagation in Thue–Morse multilayered structures,” New J. Phys. 12, 053041 (2010).
[CrossRef]

Wang, D.

F. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82, 958–960 (2003).
[CrossRef]

Wang, S.

F. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82, 958–960 (2003).
[CrossRef]

Wang, Z.-G.

Woods, C.

B. Holdworth, C. Woods, Digital Logic Design (Elsevier, 1994).

Wu, J.

F. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82, 958–960 (2003).
[CrossRef]

Xia, Y.

Xiong, M.

Q. Zhang, C. Qin, K. Chen, M. Xiong, X. Zhang, “Novel optical multi-bistability and multistability characteristics of coupled active microrings,” IEEE J. Quantum Electron. 49, 365–374 (2013).
[CrossRef]

Xue, Z.

F. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82, 958–960 (2003).
[CrossRef]

Yannick, D.

D. Yannick, F. Patrice, “Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling,” Phys. Rev. A 84, 043847 (2011).
[CrossRef]

Zayats, A. V.

M. Kauranen, A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012).
[CrossRef]

Zeng, C.

Y. Cui, C. Zeng, “Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators,” App. Opt. 51, 7482–7486 (2012).
[CrossRef]

Zhang, F.

F. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82, 958–960 (2003).
[CrossRef]

Zhang, Q.

Q. Zhang, C. Qin, K. Chen, M. Xiong, X. Zhang, “Novel optical multi-bistability and multistability characteristics of coupled active microrings,” IEEE J. Quantum Electron. 49, 365–374 (2013).
[CrossRef]

Zhang, X.

Q. Zhang, C. Qin, K. Chen, M. Xiong, X. Zhang, “Novel optical multi-bistability and multistability characteristics of coupled active microrings,” IEEE J. Quantum Electron. 49, 365–374 (2013).
[CrossRef]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater. 9, 707–715 (2010).
[CrossRef]

Zhou, F.

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, H. A. Atwater, “Plasmonics–A route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

AIP Advances (1)

N. Mattiucci, M. J. Bloemer, G. D’Aguanno, “Giant field localization in 2-D photonic crystal cavities with defect resonances: Bringing nonlinear optics to the W/cm2 level,” AIP Advances 2, 032112 (2012).
[CrossRef]

App. Opt. (1)

Y. Cui, C. Zeng, “Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators,” App. Opt. 51, 7482–7486 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

F. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82, 958–960 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

Q. Zhang, C. Qin, K. Chen, M. Xiong, X. Zhang, “Novel optical multi-bistability and multistability characteristics of coupled active microrings,” IEEE J. Quantum Electron. 49, 365–374 (2013).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

M. Rahmani, B. Luk’yanchuk, M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7, 329–349 (2013).
[CrossRef]

Nanopho-tonics (1)

P.-Y. Chen, C. Argyropoulos, A. Alù, “Enhanced nonlinearities using plasmonic nanoantennas,” Nanopho-tonics 1, 221–233 (2012).

Nature (1)

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Nature Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater. 9, 707–715 (2010).
[CrossRef]

Nature Photon. (3)

M. Kauranen, A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?,” Nature Photon. 2, 448–450 (2008).
[CrossRef]

New J. Phys. (1)

G. Victor, F. Biancalana, “Bistability, multistability and non-reciprocal light propagation in Thue–Morse multilayered structures,” New J. Phys. 12, 053041 (2010).
[CrossRef]

Opt. Commun. (1)

N. Mattiucci, G. D’Aguanno, M. J. Bloemer, “Mode-matched Fano resonances for all-optical switching applications,” Opt. Commun. 285, 1945–1948 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. A (2)

G. Victor, F. Biancalana, “Resonant self-pulsations in coupled nonlinear microcavities,” Phys. Rev. A 83, 043816 (2011).
[CrossRef]

D. Yannick, F. Patrice, “Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling,” Phys. Rev. A 84, 043847 (2011).
[CrossRef]

Phys. Rev. B (3)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

P.-Y. Chen, A. Alù, “Optical nanoantenna arrays loaded with nonlinear materials,” Phys. Rev. B 82, 235405 (2010).
[CrossRef]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, A. Alù, “Boosting optical nonlinearities in e-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[CrossRef] [PubMed]

P.-Y. Chen, M. Farhat, A. Alù, “Bistable and self-tunable negative-index metamaterial at optical frequencies,” Phys. Rev. Lett. 106, 105503 (2011).
[CrossRef] [PubMed]

Prog. Electromag. Res. (1)

M. Amin, H. Bağcı, “Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity,” Prog. Electromag. Res. 130, 187–206 (2012).
[CrossRef]

Sci. Rep. (1)

M. Amin, M. Farhat, H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[CrossRef] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Other (6)

P.-Y. Chen, C. Argyropoulos, A. Alù, “Optical Antennas and Enhanced Nonlinear Effects,” in Rectenna Solar Cells (Springer, 2013).
[CrossRef]

R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

A. B. Forouzan, Data Communications & Networking (Tata McGraw-Hill Education, 2007).

B. Holdworth, C. Woods, Digital Logic Design (Elsevier, 1994).

A. Taflove, S. C. Hagness, Computational Electrodynamics (Artech house, 2000).

S. Thomas, Nonlinear Optics in Telecommunications (Springer, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) A example of 8B/6T encoding that uses three states to describe the binary data [20]. (b) Schematic diagram of a three-state logic device and its truth table. The output gate supports a high impedance state in addition to the 0 and 1 logic levels [21]. (c) Example use of a three-state logic gate where several devices share a single bus waveguide.

Fig. 2
Fig. 2

Schematic of the proposed resonator. The gap between the gold frame and the rod is highlighted in red color.

Fig. 3
Fig. 3

Gap electric field enhancement |Eg|/|E0| computed at various values of εg at a band of frequencies between 175 THz and 500 THz. Insets show normalized surface charge density induced on the resonator surface at three different frequencies.

Fig. 4
Fig. 4

An example of how the graphical method is used for computing the nonlinear response of the resonator. Frequency is 410 THz and only |Eg|−εg curves for I0 = 19.5 MW/cm2 and I0 = 3.74 GW/cm2 are plotted for demonstration. The intersection points on the graph represent the solution of the nonlinear simulation.

Fig. 5
Fig. 5

Extinction CS spectrum of the resonator with nonlinear εg = εL + χ(3)|Eg|2, εL = 2.52, χ(3) = 6.72 × 10−18 m2/V2 and with linear εg = 2.52, which is computed for I0 = 0.22 GW/cm2 and I0 = 21 W/cm2, respectively.

Fig. 6
Fig. 6

Near-field response of the resonator with nonlinear permittivity εg = εL + χ(3)|Eg|2, εL = 2.52, χ(3) = 6.72 × 10−18 m2/V2. εg as a function of I0 at (a) 410 THz and (b) 498 THz. Extinction CS as a function of I0 at (c) 410 THz and (d) 498 THz.

Fig. 7
Fig. 7

(a) Schematic of the proposed resonator’s tri-stable output. Stable branches are labeled as state 1, 2, and 3, within the tri-stability region. (b) State flow diagram of tri-stable system’s output. All transitions from one state to another are accompanied by the required changes in the input intensity level. (c) A schematic device model of the cascaded VCSEL controlling the input intensity of a nonlinear resonator with three-state output.

Tables (1)

Tables Icon

Table 1 Switching power and contrast at various threshold switching levels [Figs. 6(c) and 6(d)].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε g = ε L + χ ( 3 ) | E g | 2 ,

Metrics