Abstract

We theoretically demonstrate the realization of a complete canonical set of all-optical logic gates (AND, OR, NOT), with a persistent (stored) output, by combining propagative spatial solitons in a photorefractive crystal and dissipative cavity solitons in a downstream broad-area vertical cavity surface emitting laser (VCSEL). The system uses same-color, optical-axis aligned input and output channels with fixed readout locations, while switching from one gate to another is achieved by simply varying the potential applied to the photorefractive crystal. The inputs are Gaussian beams launched in the photorefractive crystal and the output is a bistable, persistent soliton in the VCSEL with a ’robust’ eye diagram and large signal-to-noise ratio (SNR). Fast switching and intrinsic parallelism suggest that high bit flow rates can be obtained.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Firstenberg, T. Peyronel, Q. Liang, A. V. Gorshkov, M. D. Lukin, V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–76 (2013).
    [CrossRef] [PubMed]
  2. R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodulides, A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1(94) 1–6 (2011).
    [CrossRef]
  3. H. Wei, Z. Wang, X. Tian, M. Käll, H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(387), 1–5 (2011).
    [CrossRef]
  4. T. Kanna, M. Lakshmanan, “Exact soliton solutions of coupled nonlinear Schrödinger equations: Shape-changing collisions, logic gates, and partially coherent solitons,” Phys. Rev. E 67, 046617(2003).
    [CrossRef]
  5. S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
    [CrossRef] [PubMed]
  6. P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
    [CrossRef] [PubMed]
  7. F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
    [CrossRef]
  8. F. Pedaci, G. Tissoni, S. Barland, M. Giudici, J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
    [CrossRef]
  9. M. Eslami, R. Kheradmand, “All optical logic gates based on cavity solitons with nonlinear gain,” Opt. Rev. 19, 242–246 (2012).
    [CrossRef]
  10. T. Maggipinto, M. Brambilla, G. K. Harkness, W. J. Firth, “Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726–8739 (2000).
    [CrossRef]
  11. R. Landauer, “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183–191 (1961).
    [CrossRef]
  12. A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–190 (2012).
    [CrossRef]
  13. L. Columbo, C. Rizza, M. Brambilla, F. Prati, G. Tissoni, “Controlling cavity solitons by means of photorefractive soliton electro-activation,” Opt. Lett. 37, 4696–4698 (2012).
    [CrossRef] [PubMed]
  14. R. McLeod, K. Wagner, S. Blair, “(3+1)-dimensional optical soliton dragging logic,” Phys. Rev. A 52, 3254–3278 (1995).
    [CrossRef] [PubMed]
  15. S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photonics Technol. Lett. 18, 1287–1289 (2006).
    [CrossRef]
  16. A. Piccardi, A. Alberucci, U. Bertolozzo, S. Residori, G. Assanto, “Soliton gating and switching in liquid crystal light valve,” Appl. Phys. Lett. 96, 071104 (2010).
    [CrossRef]
  17. A. Jacobo, D. Gomila, M. A. Matias, P. Colet, “Logical operations with localized structures,” New J. Phys. 14, 013040 (2012).
    [CrossRef]
  18. M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
    [CrossRef]
  19. H. Enderton, A Mathematical Introduction to Logic (Academic2001).
  20. N. Sapiens, A. Weissbrod, A. J. Agranat, “Fast electroholographic switching,” Opt. Lett. 34, 353–355 (2009).
    [CrossRef] [PubMed]
  21. E. DelRe, A. Ciattoni, E. Palange, “Role of charge saturation in photorefractive dynamics of micron-sized beams and departure from soliton behavior,” Phys. Rev. E 73, 017601 (2006).
    [CrossRef]
  22. A. Ciattoni, E. DelRe, A. Marini, C. Rizza, “Wiggling and bending-free micron-sized solitons in periodically biased photorefractives,” Opt. Express 16, 10867–10872 (2008).
    [CrossRef] [PubMed]
  23. M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
    [CrossRef]
  24. L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
    [CrossRef]
  25. M. Segev, A. J. Agranat, “Spatial solitons in centrosymmetric photorefractive media,” Opt. Lett. 22, 1299–1301 (1997).
    [CrossRef]
  26. In all simulations, we used the following parameters: Lx= 200μ m, LPR= 1mm, LV= 2μ m, χ= 104, Na= 3.04 · 1022m−3, Nd= 101 · Na, nPR= 2.4, g= 0.13m4C−2, εr= 3 · 104, α= 5, θ= −2, C= 0.45, Ip= 2, τp= 11.7ps, nV= 3.5, τe= 1ns, R= 1 − T= 0.996 and LA= 50nm, EHB/(E0T)=0.77
  27. S. Gronenborn, J. Pollmann-Retsch, P. Pekarski, M. Miller, M. Strösser, J. Kolb, H. Mönch, P. Loosen, “High-power VCSELs with a rectangular aperture,” Appl. Phys B 105, 783–792 (2011).
    [CrossRef]
  28. E. DelRe, M. Tamburrini, A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett., 25, 963–965 (2000).
    [CrossRef]
  29. L. M. Surhone, M. T. Timpledon, S. F. Marseken, XOR Gate (Betascript, 2010).
  30. E. DelRe, B. Crosignani, P. Di Porto, “Chapter 3 Photorefractive solitons and their underlying nonlocal physics,” Prog. Opt. 53, 153–200 (2009).
    [CrossRef]
  31. X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
    [CrossRef]
  32. M. Ahmed, M. Yamada, “Effect of intensity noise of semiconductor lasers on the digital modulation characteristics and the bit error rate of optical communication systems,” J. Appl. Phys. 104, 013104 (2008).
    [CrossRef]
  33. M. San Miguel, R. Toral, “Stochastic effects in physical systems,” in Nonlinear Phenomena and Complex Systems, Vol. 5 of Instabilities and Nonequilibrium Structures VI (Kluwer Academic, 2000), pp. 35–127.
    [CrossRef]
  34. C. H. Wu, F. Tan, M. K. Wu, M. Feng, N. Holonyak, “The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity,” J. Appl. Phys. 109, 053112 (2011).
    [CrossRef]

2013

O. Firstenberg, T. Peyronel, Q. Liang, A. V. Gorshkov, M. D. Lukin, V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–76 (2013).
[CrossRef] [PubMed]

2012

M. Eslami, R. Kheradmand, “All optical logic gates based on cavity solitons with nonlinear gain,” Opt. Rev. 19, 242–246 (2012).
[CrossRef]

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–190 (2012).
[CrossRef]

L. Columbo, C. Rizza, M. Brambilla, F. Prati, G. Tissoni, “Controlling cavity solitons by means of photorefractive soliton electro-activation,” Opt. Lett. 37, 4696–4698 (2012).
[CrossRef] [PubMed]

A. Jacobo, D. Gomila, M. A. Matias, P. Colet, “Logical operations with localized structures,” New J. Phys. 14, 013040 (2012).
[CrossRef]

2011

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodulides, A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1(94) 1–6 (2011).
[CrossRef]

H. Wei, Z. Wang, X. Tian, M. Käll, H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(387), 1–5 (2011).
[CrossRef]

S. Gronenborn, J. Pollmann-Retsch, P. Pekarski, M. Miller, M. Strösser, J. Kolb, H. Mönch, P. Loosen, “High-power VCSELs with a rectangular aperture,” Appl. Phys B 105, 783–792 (2011).
[CrossRef]

C. H. Wu, F. Tan, M. K. Wu, M. Feng, N. Holonyak, “The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity,” J. Appl. Phys. 109, 053112 (2011).
[CrossRef]

2010

A. Piccardi, A. Alberucci, U. Bertolozzo, S. Residori, G. Assanto, “Soliton gating and switching in liquid crystal light valve,” Appl. Phys. Lett. 96, 071104 (2010).
[CrossRef]

2009

E. DelRe, B. Crosignani, P. Di Porto, “Chapter 3 Photorefractive solitons and their underlying nonlocal physics,” Prog. Opt. 53, 153–200 (2009).
[CrossRef]

N. Sapiens, A. Weissbrod, A. J. Agranat, “Fast electroholographic switching,” Opt. Lett. 34, 353–355 (2009).
[CrossRef] [PubMed]

2008

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
[CrossRef]

P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[CrossRef] [PubMed]

A. Ciattoni, E. DelRe, A. Marini, C. Rizza, “Wiggling and bending-free micron-sized solitons in periodically biased photorefractives,” Opt. Express 16, 10867–10872 (2008).
[CrossRef] [PubMed]

M. Ahmed, M. Yamada, “Effect of intensity noise of semiconductor lasers on the digital modulation characteristics and the bit error rate of optical communication systems,” J. Appl. Phys. 104, 013104 (2008).
[CrossRef]

2006

F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[CrossRef]

S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photonics Technol. Lett. 18, 1287–1289 (2006).
[CrossRef]

E. DelRe, A. Ciattoni, E. Palange, “Role of charge saturation in photorefractive dynamics of micron-sized beams and departure from soliton behavior,” Phys. Rev. E 73, 017601 (2006).
[CrossRef]

2005

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[CrossRef]

2003

T. Kanna, M. Lakshmanan, “Exact soliton solutions of coupled nonlinear Schrödinger equations: Shape-changing collisions, logic gates, and partially coherent solitons,” Phys. Rev. E 67, 046617(2003).
[CrossRef]

2002

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

2000

T. Maggipinto, M. Brambilla, G. K. Harkness, W. J. Firth, “Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726–8739 (2000).
[CrossRef]

E. DelRe, M. Tamburrini, A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett., 25, 963–965 (2000).
[CrossRef]

1998

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

1997

M. Segev, A. J. Agranat, “Spatial solitons in centrosymmetric photorefractive media,” Opt. Lett. 22, 1299–1301 (1997).
[CrossRef]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[CrossRef]

1995

R. McLeod, K. Wagner, S. Blair, “(3+1)-dimensional optical soliton dragging logic,” Phys. Rev. A 52, 3254–3278 (1995).
[CrossRef] [PubMed]

1961

R. Landauer, “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183–191 (1961).
[CrossRef]

Agranat, A. J.

Ahmed, M.

M. Ahmed, M. Yamada, “Effect of intensity noise of semiconductor lasers on the digital modulation characteristics and the bit error rate of optical communication systems,” J. Appl. Phys. 104, 013104 (2008).
[CrossRef]

Alberucci, A.

A. Piccardi, A. Alberucci, U. Bertolozzo, S. Residori, G. Assanto, “Soliton gating and switching in liquid crystal light valve,” Appl. Phys. Lett. 96, 071104 (2010).
[CrossRef]

Arakelyan, A.

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–190 (2012).
[CrossRef]

Assanto, G.

A. Piccardi, A. Alberucci, U. Bertolozzo, S. Residori, G. Assanto, “Soliton gating and switching in liquid crystal light valve,” Appl. Phys. Lett. 96, 071104 (2010).
[CrossRef]

S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photonics Technol. Lett. 18, 1287–1289 (2006).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

Balle, S.

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[CrossRef]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[CrossRef] [PubMed]

Barland, S.

P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[CrossRef] [PubMed]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
[CrossRef]

F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[CrossRef]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[CrossRef] [PubMed]

Bertolozzo, U.

A. Piccardi, A. Alberucci, U. Bertolozzo, S. Residori, G. Assanto, “Soliton gating and switching in liquid crystal light valve,” Appl. Phys. Lett. 96, 071104 (2010).
[CrossRef]

Bérut, A.

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–190 (2012).
[CrossRef]

Blair, S.

R. McLeod, K. Wagner, S. Blair, “(3+1)-dimensional optical soliton dragging logic,” Phys. Rev. A 52, 3254–3278 (1995).
[CrossRef] [PubMed]

Brambilla, M.

L. Columbo, C. Rizza, M. Brambilla, F. Prati, G. Tissoni, “Controlling cavity solitons by means of photorefractive soliton electro-activation,” Opt. Lett. 37, 4696–4698 (2012).
[CrossRef] [PubMed]

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[CrossRef]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[CrossRef] [PubMed]

T. Maggipinto, M. Brambilla, G. K. Harkness, W. J. Firth, “Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726–8739 (2000).
[CrossRef]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[CrossRef]

Christodulides, D. N.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodulides, A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1(94) 1–6 (2011).
[CrossRef]

Ciattoni, A.

A. Ciattoni, E. DelRe, A. Marini, C. Rizza, “Wiggling and bending-free micron-sized solitons in periodically biased photorefractives,” Opt. Express 16, 10867–10872 (2008).
[CrossRef] [PubMed]

E. DelRe, A. Ciattoni, E. Palange, “Role of charge saturation in photorefractive dynamics of micron-sized beams and departure from soliton behavior,” Phys. Rev. E 73, 017601 (2006).
[CrossRef]

Ciliberto, S.

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–190 (2012).
[CrossRef]

Colet, P.

A. Jacobo, D. Gomila, M. A. Matias, P. Colet, “Logical operations with localized structures,” New J. Phys. 14, 013040 (2012).
[CrossRef]

Columbo, L.

Conti, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

Crosignani, B.

E. DelRe, B. Crosignani, P. Di Porto, “Chapter 3 Photorefractive solitons and their underlying nonlocal physics,” Prog. Opt. 53, 153–200 (2009).
[CrossRef]

De Luca, A.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

DelRe, E.

E. DelRe, B. Crosignani, P. Di Porto, “Chapter 3 Photorefractive solitons and their underlying nonlocal physics,” Prog. Opt. 53, 153–200 (2009).
[CrossRef]

A. Ciattoni, E. DelRe, A. Marini, C. Rizza, “Wiggling and bending-free micron-sized solitons in periodically biased photorefractives,” Opt. Express 16, 10867–10872 (2008).
[CrossRef] [PubMed]

E. DelRe, A. Ciattoni, E. Palange, “Role of charge saturation in photorefractive dynamics of micron-sized beams and departure from soliton behavior,” Phys. Rev. E 73, 017601 (2006).
[CrossRef]

E. DelRe, M. Tamburrini, A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett., 25, 963–965 (2000).
[CrossRef]

Di Porto, P.

E. DelRe, B. Crosignani, P. Di Porto, “Chapter 3 Photorefractive solitons and their underlying nonlocal physics,” Prog. Opt. 53, 153–200 (2009).
[CrossRef]

Dillenschneider, R.

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–190 (2012).
[CrossRef]

Dreisow, F.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodulides, A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1(94) 1–6 (2011).
[CrossRef]

Enderton, H.

H. Enderton, A Mathematical Introduction to Logic (Academic2001).

Eslami, M.

M. Eslami, R. Kheradmand, “All optical logic gates based on cavity solitons with nonlinear gain,” Opt. Rev. 19, 242–246 (2012).
[CrossRef]

Feng, M.

C. H. Wu, F. Tan, M. K. Wu, M. Feng, N. Holonyak, “The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity,” J. Appl. Phys. 109, 053112 (2011).
[CrossRef]

Firstenberg, O.

O. Firstenberg, T. Peyronel, Q. Liang, A. V. Gorshkov, M. D. Lukin, V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–76 (2013).
[CrossRef] [PubMed]

Firth, W. J.

T. Maggipinto, M. Brambilla, G. K. Harkness, W. J. Firth, “Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726–8739 (2000).
[CrossRef]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[CrossRef]

Furfaro, L.

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[CrossRef]

Genevet, P.

P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[CrossRef] [PubMed]

F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[CrossRef]

Giudici, M.

P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[CrossRef] [PubMed]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
[CrossRef]

F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[CrossRef]

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[CrossRef]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[CrossRef] [PubMed]

Gomila, D.

A. Jacobo, D. Gomila, M. A. Matias, P. Colet, “Logical operations with localized structures,” New J. Phys. 14, 013040 (2012).
[CrossRef]

Gorshkov, A. V.

O. Firstenberg, T. Peyronel, Q. Liang, A. V. Gorshkov, M. D. Lukin, V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–76 (2013).
[CrossRef] [PubMed]

Gronenborn, S.

S. Gronenborn, J. Pollmann-Retsch, P. Pekarski, M. Miller, M. Strösser, J. Kolb, H. Mönch, P. Loosen, “High-power VCSELs with a rectangular aperture,” Appl. Phys B 105, 783–792 (2011).
[CrossRef]

Hachair, X.

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[CrossRef]

Harkness, G. K.

T. Maggipinto, M. Brambilla, G. K. Harkness, W. J. Firth, “Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726–8739 (2000).
[CrossRef]

Heinrich, M.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodulides, A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1(94) 1–6 (2011).
[CrossRef]

Holonyak, N.

C. H. Wu, F. Tan, M. K. Wu, M. Feng, N. Holonyak, “The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity,” J. Appl. Phys. 109, 053112 (2011).
[CrossRef]

Jacobo, A.

A. Jacobo, D. Gomila, M. A. Matias, P. Colet, “Logical operations with localized structures,” New J. Phys. 14, 013040 (2012).
[CrossRef]

Jäger, R.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[CrossRef] [PubMed]

Javaloyes, J.

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[CrossRef]

Käll, M.

H. Wei, Z. Wang, X. Tian, M. Käll, H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(387), 1–5 (2011).
[CrossRef]

Kanna, T.

T. Kanna, M. Lakshmanan, “Exact soliton solutions of coupled nonlinear Schrödinger equations: Shape-changing collisions, logic gates, and partially coherent solitons,” Phys. Rev. E 67, 046617(2003).
[CrossRef]

Keil, R.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodulides, A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1(94) 1–6 (2011).
[CrossRef]

Kheradmand, R.

M. Eslami, R. Kheradmand, “All optical logic gates based on cavity solitons with nonlinear gain,” Opt. Rev. 19, 242–246 (2012).
[CrossRef]

Knödl, T.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[CrossRef] [PubMed]

Kolb, J.

S. Gronenborn, J. Pollmann-Retsch, P. Pekarski, M. Miller, M. Strösser, J. Kolb, H. Mönch, P. Loosen, “High-power VCSELs with a rectangular aperture,” Appl. Phys B 105, 783–792 (2011).
[CrossRef]

Lakshmanan, M.

T. Kanna, M. Lakshmanan, “Exact soliton solutions of coupled nonlinear Schrödinger equations: Shape-changing collisions, logic gates, and partially coherent solitons,” Phys. Rev. E 67, 046617(2003).
[CrossRef]

Landauer, R.

R. Landauer, “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183–191 (1961).
[CrossRef]

Liang, Q.

O. Firstenberg, T. Peyronel, Q. Liang, A. V. Gorshkov, M. D. Lukin, V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–76 (2013).
[CrossRef] [PubMed]

Loosen, P.

S. Gronenborn, J. Pollmann-Retsch, P. Pekarski, M. Miller, M. Strösser, J. Kolb, H. Mönch, P. Loosen, “High-power VCSELs with a rectangular aperture,” Appl. Phys B 105, 783–792 (2011).
[CrossRef]

Lugiato, L. A.

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[CrossRef]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[CrossRef] [PubMed]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[CrossRef]

Lukin, M. D.

O. Firstenberg, T. Peyronel, Q. Liang, A. V. Gorshkov, M. D. Lukin, V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–76 (2013).
[CrossRef] [PubMed]

Lutz, E.

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–190 (2012).
[CrossRef]

Maggipinto, T.

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[CrossRef]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[CrossRef] [PubMed]

T. Maggipinto, M. Brambilla, G. K. Harkness, W. J. Firth, “Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726–8739 (2000).
[CrossRef]

Marini, A.

Marseken, S. F.

L. M. Surhone, M. T. Timpledon, S. F. Marseken, XOR Gate (Betascript, 2010).

Matias, M. A.

A. Jacobo, D. Gomila, M. A. Matias, P. Colet, “Logical operations with localized structures,” New J. Phys. 14, 013040 (2012).
[CrossRef]

McLeod, R.

R. McLeod, K. Wagner, S. Blair, “(3+1)-dimensional optical soliton dragging logic,” Phys. Rev. A 52, 3254–3278 (1995).
[CrossRef] [PubMed]

Miller, M.

S. Gronenborn, J. Pollmann-Retsch, P. Pekarski, M. Miller, M. Strösser, J. Kolb, H. Mönch, P. Loosen, “High-power VCSELs with a rectangular aperture,” Appl. Phys B 105, 783–792 (2011).
[CrossRef]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[CrossRef] [PubMed]

Mönch, H.

S. Gronenborn, J. Pollmann-Retsch, P. Pekarski, M. Miller, M. Strösser, J. Kolb, H. Mönch, P. Loosen, “High-power VCSELs with a rectangular aperture,” Appl. Phys B 105, 783–792 (2011).
[CrossRef]

Nolte, S.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodulides, A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1(94) 1–6 (2011).
[CrossRef]

Palange, E.

E. DelRe, A. Ciattoni, E. Palange, “Role of charge saturation in photorefractive dynamics of micron-sized beams and departure from soliton behavior,” Phys. Rev. E 73, 017601 (2006).
[CrossRef]

Peccianti, M.

S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photonics Technol. Lett. 18, 1287–1289 (2006).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

Pedaci, F.

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
[CrossRef]

F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[CrossRef]

Pekarski, P.

S. Gronenborn, J. Pollmann-Retsch, P. Pekarski, M. Miller, M. Strösser, J. Kolb, H. Mönch, P. Loosen, “High-power VCSELs with a rectangular aperture,” Appl. Phys B 105, 783–792 (2011).
[CrossRef]

Pertsch, T.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodulides, A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1(94) 1–6 (2011).
[CrossRef]

Petrosyan, A.

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–190 (2012).
[CrossRef]

Peyronel, T.

O. Firstenberg, T. Peyronel, Q. Liang, A. V. Gorshkov, M. D. Lukin, V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–76 (2013).
[CrossRef] [PubMed]

Piccardi, A.

A. Piccardi, A. Alberucci, U. Bertolozzo, S. Residori, G. Assanto, “Soliton gating and switching in liquid crystal light valve,” Appl. Phys. Lett. 96, 071104 (2010).
[CrossRef]

Pollmann-Retsch, J.

S. Gronenborn, J. Pollmann-Retsch, P. Pekarski, M. Miller, M. Strösser, J. Kolb, H. Mönch, P. Loosen, “High-power VCSELs with a rectangular aperture,” Appl. Phys B 105, 783–792 (2011).
[CrossRef]

Prati, F.

L. Columbo, C. Rizza, M. Brambilla, F. Prati, G. Tissoni, “Controlling cavity solitons by means of photorefractive soliton electro-activation,” Opt. Lett. 37, 4696–4698 (2012).
[CrossRef] [PubMed]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[CrossRef]

Residori, S.

A. Piccardi, A. Alberucci, U. Bertolozzo, S. Residori, G. Assanto, “Soliton gating and switching in liquid crystal light valve,” Appl. Phys. Lett. 96, 071104 (2010).
[CrossRef]

Rizza, C.

San Miguel, M.

M. San Miguel, R. Toral, “Stochastic effects in physical systems,” in Nonlinear Phenomena and Complex Systems, Vol. 5 of Instabilities and Nonequilibrium Structures VI (Kluwer Academic, 2000), pp. 35–127.
[CrossRef]

Sapiens, N.

Segev, M.

Serak, S. V.

S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photonics Technol. Lett. 18, 1287–1289 (2006).
[CrossRef]

Spinelli, L.

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[CrossRef] [PubMed]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[CrossRef]

Strösser, M.

S. Gronenborn, J. Pollmann-Retsch, P. Pekarski, M. Miller, M. Strösser, J. Kolb, H. Mönch, P. Loosen, “High-power VCSELs with a rectangular aperture,” Appl. Phys B 105, 783–792 (2011).
[CrossRef]

Surhone, L. M.

L. M. Surhone, M. T. Timpledon, S. F. Marseken, XOR Gate (Betascript, 2010).

Szameit, A.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodulides, A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1(94) 1–6 (2011).
[CrossRef]

Tabiryan, N. V.

S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photonics Technol. Lett. 18, 1287–1289 (2006).
[CrossRef]

Tamburrini, M.

E. DelRe, M. Tamburrini, A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett., 25, 963–965 (2000).
[CrossRef]

Tan, F.

C. H. Wu, F. Tan, M. K. Wu, M. Feng, N. Holonyak, “The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity,” J. Appl. Phys. 109, 053112 (2011).
[CrossRef]

Tian, X.

H. Wei, Z. Wang, X. Tian, M. Käll, H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(387), 1–5 (2011).
[CrossRef]

Timpledon, M. T.

L. M. Surhone, M. T. Timpledon, S. F. Marseken, XOR Gate (Betascript, 2010).

Tissoni, G.

L. Columbo, C. Rizza, M. Brambilla, F. Prati, G. Tissoni, “Controlling cavity solitons by means of photorefractive soliton electro-activation,” Opt. Lett. 37, 4696–4698 (2012).
[CrossRef] [PubMed]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
[CrossRef]

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[CrossRef]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[CrossRef] [PubMed]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

Toral, R.

M. San Miguel, R. Toral, “Stochastic effects in physical systems,” in Nonlinear Phenomena and Complex Systems, Vol. 5 of Instabilities and Nonequilibrium Structures VI (Kluwer Academic, 2000), pp. 35–127.
[CrossRef]

Tredicce, J.

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
[CrossRef]

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[CrossRef]

Tredicce, J. R.

P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[CrossRef] [PubMed]

F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[CrossRef]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[CrossRef] [PubMed]

Tünnermann, A.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodulides, A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1(94) 1–6 (2011).
[CrossRef]

Umeton, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

Vuletic, V.

O. Firstenberg, T. Peyronel, Q. Liang, A. V. Gorshkov, M. D. Lukin, V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–76 (2013).
[CrossRef] [PubMed]

Wagner, K.

R. McLeod, K. Wagner, S. Blair, “(3+1)-dimensional optical soliton dragging logic,” Phys. Rev. A 52, 3254–3278 (1995).
[CrossRef] [PubMed]

Wang, Z.

H. Wei, Z. Wang, X. Tian, M. Käll, H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(387), 1–5 (2011).
[CrossRef]

Wei, H.

H. Wei, Z. Wang, X. Tian, M. Käll, H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(387), 1–5 (2011).
[CrossRef]

Weissbrod, A.

Wu, C. H.

C. H. Wu, F. Tan, M. K. Wu, M. Feng, N. Holonyak, “The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity,” J. Appl. Phys. 109, 053112 (2011).
[CrossRef]

Wu, M. K.

C. H. Wu, F. Tan, M. K. Wu, M. Feng, N. Holonyak, “The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity,” J. Appl. Phys. 109, 053112 (2011).
[CrossRef]

Xu, H.

H. Wei, Z. Wang, X. Tian, M. Käll, H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(387), 1–5 (2011).
[CrossRef]

Yamada, M.

M. Ahmed, M. Yamada, “Effect of intensity noise of semiconductor lasers on the digital modulation characteristics and the bit error rate of optical communication systems,” J. Appl. Phys. 104, 013104 (2008).
[CrossRef]

Appl. Phys B

S. Gronenborn, J. Pollmann-Retsch, P. Pekarski, M. Miller, M. Strösser, J. Kolb, H. Mönch, P. Loosen, “High-power VCSELs with a rectangular aperture,” Appl. Phys B 105, 783–792 (2011).
[CrossRef]

Appl. Phys. Lett.

F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[CrossRef]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
[CrossRef]

A. Piccardi, A. Alberucci, U. Bertolozzo, S. Residori, G. Assanto, “Soliton gating and switching in liquid crystal light valve,” Appl. Phys. Lett. 96, 071104 (2010).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

IBM J. Res. Dev.

R. Landauer, “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183–191 (1961).
[CrossRef]

IEEE Photonics Technol. Lett.

S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photonics Technol. Lett. 18, 1287–1289 (2006).
[CrossRef]

J. Appl. Phys.

M. Ahmed, M. Yamada, “Effect of intensity noise of semiconductor lasers on the digital modulation characteristics and the bit error rate of optical communication systems,” J. Appl. Phys. 104, 013104 (2008).
[CrossRef]

C. H. Wu, F. Tan, M. K. Wu, M. Feng, N. Holonyak, “The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity,” J. Appl. Phys. 109, 053112 (2011).
[CrossRef]

Nat. Commun.

H. Wei, Z. Wang, X. Tian, M. Käll, H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(387), 1–5 (2011).
[CrossRef]

Nature

O. Firstenberg, T. Peyronel, Q. Liang, A. V. Gorshkov, M. D. Lukin, V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–76 (2013).
[CrossRef] [PubMed]

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–190 (2012).
[CrossRef]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002).
[CrossRef] [PubMed]

New J. Phys.

A. Jacobo, D. Gomila, M. A. Matias, P. Colet, “Logical operations with localized structures,” New J. Phys. 14, 013040 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Lett.,

E. DelRe, M. Tamburrini, A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett., 25, 963–965 (2000).
[CrossRef]

Opt. Rev.

M. Eslami, R. Kheradmand, “All optical logic gates based on cavity solitons with nonlinear gain,” Opt. Rev. 19, 242–246 (2012).
[CrossRef]

Phys. Rev. A

R. McLeod, K. Wagner, S. Blair, “(3+1)-dimensional optical soliton dragging logic,” Phys. Rev. A 52, 3254–3278 (1995).
[CrossRef] [PubMed]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005).
[CrossRef]

Phys. Rev. E

E. DelRe, A. Ciattoni, E. Palange, “Role of charge saturation in photorefractive dynamics of micron-sized beams and departure from soliton behavior,” Phys. Rev. E 73, 017601 (2006).
[CrossRef]

T. Maggipinto, M. Brambilla, G. K. Harkness, W. J. Firth, “Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726–8739 (2000).
[CrossRef]

T. Kanna, M. Lakshmanan, “Exact soliton solutions of coupled nonlinear Schrödinger equations: Shape-changing collisions, logic gates, and partially coherent solitons,” Phys. Rev. E 67, 046617(2003).
[CrossRef]

Phys. Rev. Lett.

P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[CrossRef] [PubMed]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[CrossRef]

Prog. Opt.

E. DelRe, B. Crosignani, P. Di Porto, “Chapter 3 Photorefractive solitons and their underlying nonlocal physics,” Prog. Opt. 53, 153–200 (2009).
[CrossRef]

Sci. Rep.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodulides, A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1(94) 1–6 (2011).
[CrossRef]

Other

H. Enderton, A Mathematical Introduction to Logic (Academic2001).

L. M. Surhone, M. T. Timpledon, S. F. Marseken, XOR Gate (Betascript, 2010).

In all simulations, we used the following parameters: Lx= 200μ m, LPR= 1mm, LV= 2μ m, χ= 104, Na= 3.04 · 1022m−3, Nd= 101 · Na, nPR= 2.4, g= 0.13m4C−2, εr= 3 · 104, α= 5, θ= −2, C= 0.45, Ip= 2, τp= 11.7ps, nV= 3.5, τe= 1ns, R= 1 − T= 0.996 and LA= 50nm, EHB/(E0T)=0.77

M. San Miguel, R. Toral, “Stochastic effects in physical systems,” in Nonlinear Phenomena and Complex Systems, Vol. 5 of Instabilities and Nonequilibrium Structures VI (Kluwer Academic, 2000), pp. 35–127.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the proposed setup. A centrosymmetric photorefractive crystal PRC is coupled with a broad area VCSEL driven by a spatially uniform field (not shown in the picture). At the ’input ports’ infrared Gaussian beams are launched into the PRC and propagate through solitonic waveguides written by using the photorefractive effect and eletroactivated by the potential Ve(t). The latter, applied to the PRC using electrodes e1,2 at a distance Lx, allows to control the field intensity and phase landscape at the exit of the PRC on the scale of tens of nanosecond and eventually to switch on a CS in the VCSEL.

Fig. 2
Fig. 2

Numerically calculated refractive index δn(x, z) in the PRC for the opposite values Ve=37.5 V (left) and Ve=−37.5 V (right). For negative values of Ve we expect that the injected radiation propagates confined along the PRC center.

Fig. 3
Fig. 3

Logic AND for Ve=−37.5 V. In the bottom panels it is shown the field amplitude in the PRC (in the color scale the dark red corresponds to the maximum amplitude). The black and red lines in the upper panel represent the injected field amplitude and the field amplitude at steady state in the VCSEL respectively. A CS is switched on and persists in XOut if and only if two input Gaussian beams are launched in XA and XB. As indicated by the arrows, (left) and (right) refer to the input (1, 1) and (0, 1) respectively.

Fig. 4
Fig. 4

Logic OR operator for Ve=−42 V. Field amplitude in the PRC and in the VCSEL. The black and red lines in the upper panel represent the injected field amplitude and the field amplitude at steady state in the VCSEL respectively. A CS is switched on and persists in XOut if an input Gaussian beam is launched in XA or in XB. As indicated by the arrows, (left) and (right) refer to the input (1, 1) and (0, 1) respectively.

Fig. 5
Fig. 5

Logic NOT A operator for Ve = −40 V. Field amplitude in the PRC and in the VCSEL. The black and red lines in the upper panel represent the injected field amplitude and the field amplitude at steady state in the VCSEL respectively. A CS is switched on and persists in XOut if an input Gaussian beam is launched in XB, but not in XA. As indicated by the arrows, (left) and (right) refer to the input (1, 1) and (0, 1) respectively.

Fig. 6
Fig. 6

Eye diagram for a NOT A gate. We plot the electric field intensity in the VCSEL averaged over an interval of ≃20 μm centered at X = 0 μm (|EV,m|2) for 300 operation cycles as described in the text. (a) Temporal variation of the electric field amplitude in the VCSEL during a sequence of 10 operation cycles associated with 10 random values of the input A. (b) Eye diagram for the NOT A logic gate in presence of noise with amplitude σ = 0.001 (black symbols) and σ = 0.03 (gray symbols). The ’0’ and ’1’ output levels are also indicated. In the inset plot the values of the turn-on delay time (TON) and the associated jitter (TOJ) are reported for different noise levels.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

t ρ = μ q [ ( N e E ( S C ) ) + K B T P R q 2 N e ] ,
N e = β 2 γ [ ( Q χ S ) 2 + 4 χ Q ( N d / N a ) Q χ S ]
i z E P R + x 2 E P R 2 k P R = k P R n P R δ n E P R
δ n = 1 2 n P R 3 g ε 0 2 ( ε r 1 ) 2 [ E x ( S C ) ] 2 ,
t E V = 1 τ p [ ( 1 + i θ ) E V + E I + 2 C ( 1 i α ) ( N 1 ) E V ] + i c 2 k V n V x 2 E V
t N = 1 τ e [ N I p + | E V | 2 ( N 1 ) ] ,
E P R ( x , z = 0 ) = 0 , t < t 0 E P R ( x , z = 0 ) = u 0 e ( x X A , B ) 2 / 2 σ 2 + i ϕ , t 0 t t 1 E P R ( x , z = 0 ) = 0 , t > t 1
δ n ( x , z = L P R ) 1 2 n P R 2 g ε 0 2 ( ε r 1 ) 2 ( V s L x ) 2 ( 1 1 + | E P R , s | 2 | E b | 2 1 + V e V s ) 2 .
Q signal = I 1 I 0 σ 1 + σ 0 ,
SNR j = I j σ j .

Metrics