Abstract

We propose a symmetric 40-Gb/s time and wavelength division multiplexed passive optical network (TWDM-PON) system with directly modulated laser (DML) as both downstream and upstream transmitters. A single bi-pass delay interferometer (DI), deployed in the optical line terminal (OLT), is used to mitigate multiple channels’ signal distortions induced by laser chirp and fiber chromatic dispersion. With the help of the DI, we successfully demonstrate error-free transmission with the aggregate capacity of 40 Gb/s over different transmission distance. And in back-to-back case, by using a 0.2-nm free spectrum range (FSR) DI, ~11 dB optical power budget improvement is achieved at a bit error ratio of 1e-3. Owing to this high power budget, the maximum reach can be extended to 50 km for 1024 splits, 75 km for 256 splits, and 100 km for 64 splits. Meanwhile, the impacts of FSR of DI and laser wavelength shift on system performance are investigated in terms of receiver sensitivity. It is shown that, our system can achieve more than 43-dB power budget and support ± 2.5-GHz wavelength shift when the FSR is less than 0.2 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Nakamura, “NG-PON2 Technology,” in Proc. OFC 2013, paper NTh4F.5 (2013).
  2. D. Iida, S. Kuwano, J. Kani, J. Terada, “Dynamic TWDM-PON for mobile radio access networks,” Opt. Express 21(22), 26209–26218 (2013).
    [CrossRef] [PubMed]
  3. C. W. Chow, C. H. Yeh, “Using downstream DPSK and upstream wavelength-shifted ASK for rayleigh backscattering mitigation in TDM-PON to WDM-PON migration scheme,” IEEE Photon. J. 5(2), 7900407 (2013).
    [CrossRef]
  4. N. Cvijetic, “OFDM for Next Generation Optical Access Networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
    [CrossRef]
  5. S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in Proc. OFC, 2012, Paper PDPD4.
  6. K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
    [CrossRef]
  7. Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, Y. Ma, “Time and Wavelength Division Multiplexed Passive Optical Network (TWDM-PON) for Next Generation PON Stage 2 (NG-PON2),” J. Lightwave Technol. 31(4), 587–593 (2013).
    [CrossRef]
  8. R. Murano and M. J. Cahill, “Low Cost Tunable Receivers for Wavelength Agile PONs,” in Proc. ECOC 2012, Paper We.2.B.3.
  9. Z. Li, L. Yi, M. Bi, J. Li, H. He, X. Yang, and W. Hu, “Experimental demonstration of a symmetric 40-Gb/s TWDM-PON,” in Proc. OFC 2013, Paper NTh4F.3.
    [CrossRef]
  10. L. Yi, Z. Li, M. Bi, W. Wei, W. Hu, “Symmetric 40-Gb/s TWDM-PON with 39dB Power Budget,” IEEE Photon. Technol. Lett. 25(7), 644–647 (2013).
    [CrossRef]
  11. P. P. Iannone, K. C. Reichmann, C. Brinton, J. Nakagawa, T. Cusick, E. M. Kimber, C. Doerr, L. L. Buhl, M. Cappuzzo, E. Y. Chen, L. Gomez, J. Johnson, A. M. Kanan, J. Lentz, Y. F. Chang, B. Palsdottir, T. Tokle, and L. Spiekman, “Bi-directionally amplified extended reach 40Gb/s CWDM-TDM PON with burst-mode upstream transmission,” in Proc. OFC 2011, Paper PDPD6.
    [CrossRef]
  12. Y. Ma, Y. Qian, G. Peng, X. Zhou, X. Wang, J. Yu, Y. Luo, X. Yan, and F. Effenberger, “Demonstration of a 40Gb/s time and wavelength division multiplexed passive optical network prototype system,” in proc. OFC2012, paper PDP5D.7.
  13. E. Wong, M. Mueller, M. C. Amann, “Characterization of energy-efficient and colorless ONUs for future TWDM-PONs,” Opt. Express 21(18), 20747–20761 (2013).
    [CrossRef] [PubMed]
  14. E. Wong, M. Mueller, M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Ele. Lett. 49(4), 282–284 (2013).
    [CrossRef]
  15. M. Bi, S. Xiao, H. He, L. Yi, Z. Li, J. Li, X. Yang, W. Hu, “Simultaneous DPSK demodulation and chirp management using delay interferometer in symmetric 40-Gb/s capability TWDM-PON system,” Opt. Express 21(14), 16528–16535 (2013).
    [CrossRef] [PubMed]
  16. J. L. Wei, C. Sánchez, R. P. Giddings, E. Hugues-Salas, J. M. Tang, “Wavelength-Offset Filtering in Optical OFDM IMDD Systems Using Directly Modulated DFB Lasers,” J. Lightwave Technol. 29(18), 2861–2870 (2011).
    [CrossRef]
  17. C. R. Doerr, S. Chandrasekhar, P. J. Winzer, A. H. Gnauck, L. W. Stulz, R. Pafchek, E. Burrows, “Simple multichannel optical equalizer mitigating intersymbol interference for 40-Gb/s nonreturn-to-zero signals,” J. Lightwave Technol. 22(1), 249–256 (2004).
    [CrossRef]
  18. B. Wedding, B. Franz, B. Junginger, “10-Gb/s optical transmission up to 253 km via standard single-mode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12(10), 1720–1727 (1994).
    [CrossRef]

2013 (7)

2012 (2)

N. Cvijetic, “OFDM for Next Generation Optical Access Networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
[CrossRef]

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

2011 (1)

2004 (1)

1994 (1)

B. Wedding, B. Franz, B. Junginger, “10-Gb/s optical transmission up to 253 km via standard single-mode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12(10), 1720–1727 (1994).
[CrossRef]

Agata, A.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

Amann, M. C.

E. Wong, M. Mueller, M. C. Amann, “Characterization of energy-efficient and colorless ONUs for future TWDM-PONs,” Opt. Express 21(18), 20747–20761 (2013).
[CrossRef] [PubMed]

E. Wong, M. Mueller, M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Ele. Lett. 49(4), 282–284 (2013).
[CrossRef]

Bi, M.

Burrows, E.

Chandrasekhar, S.

Cho, K. Y.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

Chow, C. W.

C. W. Chow, C. H. Yeh, “Using downstream DPSK and upstream wavelength-shifted ASK for rayleigh backscattering mitigation in TDM-PON to WDM-PON migration scheme,” IEEE Photon. J. 5(2), 7900407 (2013).
[CrossRef]

Chung, Y. C.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

Cvijetic, N.

Doerr, C. R.

Effenberger, F.

Franz, B.

B. Wedding, B. Franz, B. Junginger, “10-Gb/s optical transmission up to 253 km via standard single-mode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12(10), 1720–1727 (1994).
[CrossRef]

Giddings, R. P.

Gnauck, A. H.

He, H.

Hong, U. H.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

Hu, W.

Hugues-Salas, E.

Hyun, H. Ui

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

Iida, D.

Junginger, B.

B. Wedding, B. Franz, B. Junginger, “10-Gb/s optical transmission up to 253 km via standard single-mode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12(10), 1720–1727 (1994).
[CrossRef]

Kani, J.

Kuwano, S.

Li, J.

Li, Z.

Luo, Y.

Ma, Y.

Mueller, M.

E. Wong, M. Mueller, M. C. Amann, “Characterization of energy-efficient and colorless ONUs for future TWDM-PONs,” Opt. Express 21(18), 20747–20761 (2013).
[CrossRef] [PubMed]

E. Wong, M. Mueller, M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Ele. Lett. 49(4), 282–284 (2013).
[CrossRef]

Pafchek, R.

Peng, G.

Qian, Y.

Sánchez, C.

Sano, T.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

Stulz, L. W.

Suzuki, M.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

Takushima, Y.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

Tang, J. M.

Terada, J.

Wedding, B.

B. Wedding, B. Franz, B. Junginger, “10-Gb/s optical transmission up to 253 km via standard single-mode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12(10), 1720–1727 (1994).
[CrossRef]

Wei, J. L.

Wei, W.

L. Yi, Z. Li, M. Bi, W. Wei, W. Hu, “Symmetric 40-Gb/s TWDM-PON with 39dB Power Budget,” IEEE Photon. Technol. Lett. 25(7), 644–647 (2013).
[CrossRef]

Winzer, P. J.

Wong, E.

E. Wong, M. Mueller, M. C. Amann, “Characterization of energy-efficient and colorless ONUs for future TWDM-PONs,” Opt. Express 21(18), 20747–20761 (2013).
[CrossRef] [PubMed]

E. Wong, M. Mueller, M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Ele. Lett. 49(4), 282–284 (2013).
[CrossRef]

Xiao, S.

Yan, X.

Yang, X.

Yeh, C. H.

C. W. Chow, C. H. Yeh, “Using downstream DPSK and upstream wavelength-shifted ASK for rayleigh backscattering mitigation in TDM-PON to WDM-PON migration scheme,” IEEE Photon. J. 5(2), 7900407 (2013).
[CrossRef]

Yeong, C. Keun

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

Yi, L.

Zhou, X.

Ele. Lett. (1)

E. Wong, M. Mueller, M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Ele. Lett. 49(4), 282–284 (2013).
[CrossRef]

IEEE Photon. J. (1)

C. W. Chow, C. H. Yeh, “Using downstream DPSK and upstream wavelength-shifted ASK for rayleigh backscattering mitigation in TDM-PON to WDM-PON migration scheme,” IEEE Photon. J. 5(2), 7900407 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012).
[CrossRef]

L. Yi, Z. Li, M. Bi, W. Wei, W. Hu, “Symmetric 40-Gb/s TWDM-PON with 39dB Power Budget,” IEEE Photon. Technol. Lett. 25(7), 644–647 (2013).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (3)

Other (6)

P. P. Iannone, K. C. Reichmann, C. Brinton, J. Nakagawa, T. Cusick, E. M. Kimber, C. Doerr, L. L. Buhl, M. Cappuzzo, E. Y. Chen, L. Gomez, J. Johnson, A. M. Kanan, J. Lentz, Y. F. Chang, B. Palsdottir, T. Tokle, and L. Spiekman, “Bi-directionally amplified extended reach 40Gb/s CWDM-TDM PON with burst-mode upstream transmission,” in Proc. OFC 2011, Paper PDPD6.
[CrossRef]

Y. Ma, Y. Qian, G. Peng, X. Zhou, X. Wang, J. Yu, Y. Luo, X. Yan, and F. Effenberger, “Demonstration of a 40Gb/s time and wavelength division multiplexed passive optical network prototype system,” in proc. OFC2012, paper PDP5D.7.

H. Nakamura, “NG-PON2 Technology,” in Proc. OFC 2013, paper NTh4F.5 (2013).

S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in Proc. OFC, 2012, Paper PDPD4.

R. Murano and M. J. Cahill, “Low Cost Tunable Receivers for Wavelength Agile PONs,” in Proc. ECOC 2012, Paper We.2.B.3.

Z. Li, L. Yi, M. Bi, J. Li, H. He, X. Yang, and W. Hu, “Experimental demonstration of a symmetric 40-Gb/s TWDM-PON,” in Proc. OFC 2013, Paper NTh4F.3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Proposed TWDM-PON architecture, the inset (i) the spectra of the downstream channels, (ii) the spectra of the upstream channels, and (iii) the transmission spectrum of DI in the C-band wavelength and L-band wavelength.

Fig. 2
Fig. 2

optical spectrum of signal for 25-km SMF without and with the 0.2-nm FSR DI, and the DI transmittance spectrum in (a) downstream, (b) upstream.

Fig. 3
Fig. 3

measured upstream channel optical eye diagrams for various transmission distances (a) without and (b) with the DI.

Fig. 4
Fig. 4

measured BER with different fiber distance and electrical eye diagrams for (a) downstream and (b) upstream.

Fig. 5
Fig. 5

measured upstream sensitivity at BER = 1e-3 versus the fiber length with the different FSR of DI, the insets (i) the DI transmission spectrum with different FSR.

Fig. 6
Fig. 6

Received sensitivity penalty versus the wavelength shift of DML with 0.2-nm FSR DI.

Fig. 7
Fig. 7

Power budget of the proposed TWDM-PON system as a function of fiber length and the FSR of DI.

Tables (1)

Tables Icon

Table 1 Comparisons of ER and Power Budget (at BER = 1e-3) Performance for Our Proposed TWDM-PON System

Metrics