Abstract

Quantitative description of the self-healing ability of a beam is very important for studying or comparing the self-healing ability of different beams. As describing the similarity by using the angle of two infinite-dimensional complex vectors in Hilbert space, the angle of two intensity profiles is proposed to quantitatively describe the self-healing ability of different beams. As a special case, quantitative description of the self-healing ability of a Bessel-Gaussian beam is studied. Results show that the angle of two intensity profiles can be used to describe the self-healing ability of arbitrary beams as the reconstruction distance for quantitatively describing the self-healing ability of Bessel beam. It offers a new method for studying or comparing the self-healing ability of different beams.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, eds., Localized Waves: Theory and. Applications (John Wiley, 2008).
  2. V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
    [Crossref]
  3. X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
    [Crossref]
  4. M. Boguslawski, P. Rose, and C. Denz, “Nondiffracting kagome lattice,” Appl. Phys. Lett. 98(6), 061111 (2011).
    [Crossref]
  5. A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).
    [Crossref]
  6. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
    [Crossref]
  7. S. Vyas, Y. Kozawa, and S. Sato, “Self-healing of tightly focused scalar and vector Bessel-Gauss beams at the focal plane,” J. Opt. Soc. Am. A 28(5), 837–843 (2011).
    [Crossref] [PubMed]
  8. J. D. Ring, J. Lindberg, A. Mourka, M. Mazilu, K. Dholakia, and M. R. Dennis, “Auto-focusing and self-healing of Pearcey beams,” Opt. Express 20(17), 18955–18966 (2012).
    [Crossref] [PubMed]
  9. R. Cao, Y. Hua, C. Min, S. Zhu, and X. C. Yuan, “Self-healing optical pillar array,” Opt. Lett. 37(17), 3540–3542 (2012).
    [Crossref] [PubMed]
  10. M. Anguiano-Morales, A. Martínez, M. D. Iturbe-Castillo, S. Chávez-Cerda, and N. Alcalá-Ochoa, “Self-healing property of a caustic optical beam,” Appl. Opt. 46(34), 8284–8290 (2007).
    [Crossref] [PubMed]
  11. P. Vaity and R. P. Singh, “Self-healing property of optical ring lattice,” Opt. Lett. 36(15), 2994–2996 (2011).
    [Crossref] [PubMed]
  12. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
    [Crossref] [PubMed]
  13. I. A. Litvin, M. G. Mclaren, and A. Forbes, “A conical wave approach to calculating Bessel–Gauss beam reconstruction after complex obstacles,” Opt. Commun. 282(6), 1078–1082 (2009).
    [Crossref]
  14. M. Anguiano-Morales, M. M. Méndez-Otero, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46(7), 078001 (2007).
    [Crossref]
  15. E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
    [Crossref] [PubMed]
  16. Y. Kaganovsky and E. Heyman, “Wave analysis of Airy beams,” Opt. Express 18(8), 8440–8452 (2010).
    [Crossref] [PubMed]
  17. R. Martínez-Herrero, I. Juvells, and A. Carnicer, “On the physical realizability of highly focused electromagnetic field distributions,” Opt. Lett. 38(12), 2065–2067 (2013).
    [Crossref] [PubMed]
  18. J. James, Mathematics Dictionary Mathematics Dictionary, 5th ed. (Springer, 1992).

2013 (1)

2012 (2)

2011 (4)

P. Vaity and R. P. Singh, “Self-healing property of optical ring lattice,” Opt. Lett. 36(15), 2994–2996 (2011).
[Crossref] [PubMed]

M. Boguslawski, P. Rose, and C. Denz, “Nondiffracting kagome lattice,” Appl. Phys. Lett. 98(6), 061111 (2011).
[Crossref]

S. Vyas, Y. Kozawa, and S. Sato, “Self-healing of tightly focused scalar and vector Bessel-Gauss beams at the focal plane,” J. Opt. Soc. Am. A 28(5), 837–843 (2011).
[Crossref] [PubMed]

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

2010 (2)

Y. Kaganovsky and E. Heyman, “Wave analysis of Airy beams,” Opt. Express 18(8), 8440–8452 (2010).
[Crossref] [PubMed]

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).
[Crossref]

2009 (1)

I. A. Litvin, M. G. Mclaren, and A. Forbes, “A conical wave approach to calculating Bessel–Gauss beam reconstruction after complex obstacles,” Opt. Commun. 282(6), 1078–1082 (2009).
[Crossref]

2008 (1)

2007 (3)

M. Anguiano-Morales, A. Martínez, M. D. Iturbe-Castillo, S. Chávez-Cerda, and N. Alcalá-Ochoa, “Self-healing property of a caustic optical beam,” Appl. Opt. 46(34), 8284–8290 (2007).
[Crossref] [PubMed]

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

M. Anguiano-Morales, M. M. Méndez-Otero, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46(7), 078001 (2007).
[Crossref]

2004 (1)

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

1979 (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Agate, B.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

Alcalá-Ochoa, N.

Anguiano-Morales, M.

M. Anguiano-Morales, A. Martínez, M. D. Iturbe-Castillo, S. Chávez-Cerda, and N. Alcalá-Ochoa, “Self-healing property of a caustic optical beam,” Appl. Opt. 46(34), 8284–8290 (2007).
[Crossref] [PubMed]

M. Anguiano-Morales, M. M. Méndez-Otero, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46(7), 078001 (2007).
[Crossref]

Balazs, N. L.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Berry, M. V.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Boguslawski, M.

M. Boguslawski, P. Rose, and C. Denz, “Nondiffracting kagome lattice,” Appl. Phys. Lett. 98(6), 061111 (2011).
[Crossref]

Broky, J.

Brown, C. T. A.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

Cao, R.

Carnicer, A.

Chávez-Cerda, S.

M. Anguiano-Morales, A. Martínez, M. D. Iturbe-Castillo, S. Chávez-Cerda, and N. Alcalá-Ochoa, “Self-healing property of a caustic optical beam,” Appl. Opt. 46(34), 8284–8290 (2007).
[Crossref] [PubMed]

M. Anguiano-Morales, M. M. Méndez-Otero, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46(7), 078001 (2007).
[Crossref]

Chong, A.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).
[Crossref]

Christodoulides, D. N.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).
[Crossref]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

Comrie, M.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

Dennis, M. R.

Denz, C.

M. Boguslawski, P. Rose, and C. Denz, “Nondiffracting kagome lattice,” Appl. Phys. Lett. 98(6), 061111 (2011).
[Crossref]

Dholakia, K.

J. D. Ring, J. Lindberg, A. Mourka, M. Mazilu, K. Dholakia, and M. R. Dennis, “Auto-focusing and self-healing of Pearcey beams,” Opt. Express 20(17), 18955–18966 (2012).
[Crossref] [PubMed]

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

Dogariu, A.

Forbes, A.

I. A. Litvin, M. G. Mclaren, and A. Forbes, “A conical wave approach to calculating Bessel–Gauss beam reconstruction after complex obstacles,” Opt. Commun. 282(6), 1078–1082 (2009).
[Crossref]

Garcés-Chávez, V.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

Greenfield, E.

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

Gunn-Moore, F.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

Heyman, E.

Hua, Y.

Iturbe-Castillo, M. D.

M. Anguiano-Morales, A. Martínez, M. D. Iturbe-Castillo, S. Chávez-Cerda, and N. Alcalá-Ochoa, “Self-healing property of a caustic optical beam,” Appl. Opt. 46(34), 8284–8290 (2007).
[Crossref] [PubMed]

M. Anguiano-Morales, M. M. Méndez-Otero, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46(7), 078001 (2007).
[Crossref]

Juvells, I.

Kaganovsky, Y.

Kozawa, Y.

Lindberg, J.

Litvin, I. A.

I. A. Litvin, M. G. Mclaren, and A. Forbes, “A conical wave approach to calculating Bessel–Gauss beam reconstruction after complex obstacles,” Opt. Commun. 282(6), 1078–1082 (2009).
[Crossref]

Martínez, A.

Martínez-Herrero, R.

Mazilu, M.

McGloin, D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

Mclaren, M. G.

I. A. Litvin, M. G. Mclaren, and A. Forbes, “A conical wave approach to calculating Bessel–Gauss beam reconstruction after complex obstacles,” Opt. Commun. 282(6), 1078–1082 (2009).
[Crossref]

Melville, H.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

Méndez-Otero, M. M.

M. Anguiano-Morales, M. M. Méndez-Otero, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46(7), 078001 (2007).
[Crossref]

Min, C.

Mourka, A.

Raz, O.

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

Renninger, W. H.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).
[Crossref]

Ring, J. D.

Rose, P.

M. Boguslawski, P. Rose, and C. Denz, “Nondiffracting kagome lattice,” Appl. Phys. Lett. 98(6), 061111 (2011).
[Crossref]

Roskey, D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

Sato, S.

Segev, M.

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

Singh, R. P.

Siviloglou, G. A.

Stevenson, D. J.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

Summers, M. D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

Tsampoula, X.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

Vaity, P.

Vyas, S.

Walasik, W.

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

Wise, F. W.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).
[Crossref]

Wright, E. M.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

Yuan, X. C.

Zhu, S.

Am. J. Phys. (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

M. Boguslawski, P. Rose, and C. Denz, “Nondiffracting kagome lattice,” Appl. Phys. Lett. 98(6), 061111 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).
[Crossref]

Opt. Commun. (1)

I. A. Litvin, M. G. Mclaren, and A. Forbes, “A conical wave approach to calculating Bessel–Gauss beam reconstruction after complex obstacles,” Opt. Commun. 282(6), 1078–1082 (2009).
[Crossref]

Opt. Eng. (1)

M. Anguiano-Morales, M. M. Méndez-Otero, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46(7), 078001 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

Other (2)

J. James, Mathematics Dictionary Mathematics Dictionary, 5th ed. (Springer, 1992).

H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, eds., Localized Waves: Theory and. Applications (John Wiley, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Generation of a Bessel-Gaussian beam.

Fig. 2
Fig. 2

Intensity distribution of a Bessel-Gaussian beam at initial plane where w0 = 4μm (a) with an opaque obstacle (R = w0/5) (b) without opaque obstacle.

Fig. 3
Fig. 3

Intensity evolution of a Bessel-Gaussian beam propagating along z-axis where y = 0 and w0 = 4μm (a) with an opaque obstacle (R = w0/5) (b) without opaque obstacle.

Fig. 4
Fig. 4

One-dimensional similarity of the Bessel-Gaussian beam during propagation (a) with different w0 where R = 0.8μm and dmin = 3μm (b) with different R where w0 = 10μm, d1min = 1.5μm, d2min = 3μm and d3min = 4.5μm.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

cos ( E E ) = ( E , E ) E E
( E , E ) = E ( x , y , z ) E ¯ ( x , y , z ) d x d y .
f ( x , y , z ) = f ( x , y , z ) f ¯ ( x , y , z ) d x d y .
( E , E ) E E
E ( x , y , z ) E ¯ ( x , y , z ) d x d y = G ( u , v , z ) G ¯ ( u , v , z ) d u d v
E ( x , y , z ) E ¯ ( x , y , z ) d x d y = G ( u , v , z ) G ¯ ( u , v , z ) d u d v .
cos ( E E ) = cos ( G G ) = ( G , G ) G G
( G ( u , v , z ) G ( u , v , z ) ) = ( G ( u , v , 0 ) G ( u , v , 0 ) ) M ( u , v )
M ( u , v ) = exp ( i z k 2 u 2 v 2 )
| E E | | E | | E | ,
S = cos ( | E | | E | ) = ( | E | , | E | ) E E
d min = R / tan α
T ( κ ) = 1 κ δ ( κ k sin α )
G ( κ , z = 0 ) = 1 2 w 0 2 I 0 ( k 2 κ w 0 2 sin α ) exp { w 0 2 4 [ κ 2 + ( k sin α ) 2 ] }
M ( κ , z ) = exp ( i z k 2 κ 2 ) ,
G ( κ , z ) = 1 2 w 0 2 I 0 ( k 2 κ w 0 2 sin α ) exp { w 0 2 4 [ κ 2 + ( k sin α ) 2 ] } exp ( i z k 2 κ 2 ) .
E ( r , z ) = w 0 2 k w 0 2 k + 2 i z J 0 ( w 0 2 k 2 sin α w 0 2 k + 2 i z r ) exp [ k ( r 2 + 2 z 2 ) w 0 2 k + 2 i z + w 0 2 k 2 z i cos α w 0 2 k + 2 i z ]
E ( r , z = 0 ) = J 0 ( k r sin α ) exp ( r 2 w 0 2 )
E ( r , z ) = J 0 ( k r sin α ) exp ( i k z cos α ) .
g ( r , z = 0 ) = 1 exp ( r 2 R 2 )
E ( r , z ) = E ( r , z ) w 01 2 k w 01 2 k + 2 i z J 0 ( w 01 2 k 2 sin α w 01 2 k + 2 i z r ) exp [ k ( r 2 + 2 z 2 ) w 01 2 k + 2 i z + w 01 2 k 2 z i cos α w 01 2 k + 2 i z ]

Metrics