Abstract

Optical properties and sensing capabilities of fused silica microbubbles were studied numerically using a finite element method. Mode characteristics, such as quality factor (Q) and effective refractive index, were determined for different bubble diameters and shell thicknesses. For sensing applications with whispering gallery modes (WGMs), thinner shells yield improved sensitivity. However, the Q-factor decreases with reduced thickness and this limits the final resolution. Three types of sensing applications with microbubbles, based on their optimized geometrical parameters, were studied. Herein the so-called quasi-droplet regime is defined and discussed. It is shown that best resolution can be achieved when microbubbles act as quasi-droplets, even for water-filled cavities at the telecommunications C-band.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839–846 (2003).
    [CrossRef]
  2. L. N. He, S. K. Ozdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
    [CrossRef]
  3. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature (London) 415, 621–623 (2002).
    [CrossRef]
  4. Y. Q. Wu, J. M. Ward, S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF4 − BaF2 − NaF− AlF3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
    [CrossRef]
  5. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London) 443, 671–674 (2006).
    [CrossRef]
  6. Y. S. Park, A. K. Cook, H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
    [CrossRef] [PubMed]
  7. T. J. Kippenberg, K. J. Vahala, “Cavity optomechanics,” Opt. Express 15, 17172–17205 (2007).
    [CrossRef] [PubMed]
  8. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [CrossRef] [PubMed]
  9. F. Vollmer, S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [CrossRef] [PubMed]
  10. M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, O. Benson, “An alignment-free fiber-coupled micro-sphere resonator for gas sensing applications,” Appl. Phys. Lett. 96, 231102 (2010).
    [CrossRef]
  11. C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
    [CrossRef]
  12. J. Ward, Y. Yang, S. Nic Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photon. Technol. Lett. 25, 2350 (2013).
    [CrossRef]
  13. R. Henze, T. Seifert, J. Ward, O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36, 4536–4538 (2011).
    [CrossRef] [PubMed]
  14. V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
    [CrossRef]
  15. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
    [CrossRef] [PubMed]
  16. T. Beck, S. Schloer, T. Grossmann, T. Mappes, H. Kalt, “Flexible coupling of high-Q goblet resonators for formation of tunable photonic molecules,” Opt. Express 20, 22012–22017 (2012).
    [CrossRef] [PubMed]
  17. M. Sumetsky, Y. Dulashko, “SNAP: fabrication of long coupled microresonator chains with sub-angstrom precision,” Opt. Express 20, 27896–27901 (2012).
    [CrossRef] [PubMed]
  18. C.-L. Zou, F.-W. Sun, C.-H. Dong, F.-J. Shu, X.-W. Wu, J.-M. Cui, Y. Yang, Z.-F. Han, G.-C. Guo, “High-Q and unidirectional emission whispering gallery modes: Principles and design,” IEEE J. Sel. Top. Quantum Electron. 19, 1–6 (2013).
    [CrossRef]
  19. T. Oo, C. Dong, V. Fiore, H. Wang, “Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere,” Appl. Phys. Lett. 103, 031116 (2013).
    [CrossRef]
  20. Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
    [CrossRef]
  21. M. R. Disfani, M. S. Abrishamian, P. Berini, “Teardrop-shaped surface-plasmon resonators,” Opt. Express 20, 6472–6477 (2012).
    [CrossRef] [PubMed]
  22. Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. H. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
    [CrossRef]
  23. I. M. White, H. Oveys, X. D. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006).
    [CrossRef] [PubMed]
  24. M. Sumetsky, Y. Dulashko, R. S. Windeler, “Optical microbubble resonator,” Opt. Lett. 35, 898–900 (2010).
    [CrossRef] [PubMed]
  25. A. Watkins, J. Ward, Y. Q. Wu, S. Nic Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36, 2113–2115 (2011).
    [CrossRef] [PubMed]
  26. S. Berneschi, D. Farnesi, F. Cosi, G. N. Conti, S. Pelli, G. C. Righini, S. Soria, “High Q silica microbubble resonators fabricated by arc discharge,” Opt. Lett. 36, 3521–3523 (2011).
    [CrossRef] [PubMed]
  27. H. Li, Y. Guo, Y. Sun, K. Reddy, X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18, 25081–25088 (2010).
    [CrossRef] [PubMed]
  28. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55, 1209–1218 (2007).
    [CrossRef]
  29. M. I. Cheema, A. G. Kirk, “Accurate determination of the quality factor and tunneling distance of axisymmetric resonators for biosensing applications,” Opt. Express 21, 8724–8735 (2013).
    [CrossRef] [PubMed]
  30. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
    [CrossRef] [PubMed]
  31. M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
    [CrossRef] [PubMed]
  32. S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, “Lasing droplets: Highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
    [CrossRef] [PubMed]
  33. S. Uetake, R. S. D. Sihombing, K. Hakuta, “Stimulated raman scattering of a high-q liquid-hydrogen droplet in the ultraviolet region,” Opt. Lett. 27, 421–423 (2002).
    [CrossRef]
  34. W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
    [CrossRef]
  35. M. Sumetsky, Y. Dulashko, R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35, 1866–1868 (2010).
    [CrossRef] [PubMed]
  36. R. Henze, J. M. Ward, O. Benson, “Temperature independent tuning of whispering gallery modes in a cryogenic environment,” Opt. Express 21, 675–680 (2013).
    [CrossRef] [PubMed]
  37. J. D. Suter, I. M. White, H. Y. Zhu, X. D. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007).
    [CrossRef] [PubMed]
  38. I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
    [CrossRef]
  39. I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. D. Fan, “Refractometric sensors for lab-on-a-chip based on optical. ring resonators,” IEEE Sensors J. 7, 28–35 (2007).
    [CrossRef]
  40. H. Li, X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97, 011105 (2010).
    [CrossRef]
  41. J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nature Photon. 4, 122(2010).
    [CrossRef]
  42. A. Kaplan, M. Tomes, T. Carmon, M. Kozlov, O. Cohen, G. Bartal, H. G. L. Schwefel, “Finite element simulation of a perturbed axial-symmetric whispering-gallery mode and its use for intensity enhancement with a nanoparticle coupled to a microtoroid,” Opt. Express 21, 14169–14180 (2013).
    [CrossRef] [PubMed]
  43. M. Li, X. Wu, L. Liu, L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21, 16908–16913 (2013).
    [CrossRef] [PubMed]

2013 (9)

L. N. He, S. K. Ozdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[CrossRef]

J. Ward, Y. Yang, S. Nic Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photon. Technol. Lett. 25, 2350 (2013).
[CrossRef]

C.-L. Zou, F.-W. Sun, C.-H. Dong, F.-J. Shu, X.-W. Wu, J.-M. Cui, Y. Yang, Z.-F. Han, G.-C. Guo, “High-Q and unidirectional emission whispering gallery modes: Principles and design,” IEEE J. Sel. Top. Quantum Electron. 19, 1–6 (2013).
[CrossRef]

T. Oo, C. Dong, V. Fiore, H. Wang, “Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere,” Appl. Phys. Lett. 103, 031116 (2013).
[CrossRef]

M. I. Cheema, A. G. Kirk, “Accurate determination of the quality factor and tunneling distance of axisymmetric resonators for biosensing applications,” Opt. Express 21, 8724–8735 (2013).
[CrossRef] [PubMed]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

R. Henze, J. M. Ward, O. Benson, “Temperature independent tuning of whispering gallery modes in a cryogenic environment,” Opt. Express 21, 675–680 (2013).
[CrossRef] [PubMed]

A. Kaplan, M. Tomes, T. Carmon, M. Kozlov, O. Cohen, G. Bartal, H. G. L. Schwefel, “Finite element simulation of a perturbed axial-symmetric whispering-gallery mode and its use for intensity enhancement with a nanoparticle coupled to a microtoroid,” Opt. Express 21, 14169–14180 (2013).
[CrossRef] [PubMed]

M. Li, X. Wu, L. Liu, L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21, 16908–16913 (2013).
[CrossRef] [PubMed]

2012 (4)

2011 (4)

2010 (8)

M. Sumetsky, Y. Dulashko, R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35, 1866–1868 (2010).
[CrossRef] [PubMed]

H. Li, Y. Guo, Y. Sun, K. Reddy, X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18, 25081–25088 (2010).
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, R. S. Windeler, “Optical microbubble resonator,” Opt. Lett. 35, 898–900 (2010).
[CrossRef] [PubMed]

M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, O. Benson, “An alignment-free fiber-coupled micro-sphere resonator for gas sensing applications,” Appl. Phys. Lett. 96, 231102 (2010).
[CrossRef]

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[CrossRef]

Y. Q. Wu, J. M. Ward, S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF4 − BaF2 − NaF− AlF3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
[CrossRef]

H. Li, X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97, 011105 (2010).
[CrossRef]

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nature Photon. 4, 122(2010).
[CrossRef]

2009 (1)

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

2008 (1)

F. Vollmer, S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef] [PubMed]

2007 (5)

T. J. Kippenberg, K. J. Vahala, “Cavity optomechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55, 1209–1218 (2007).
[CrossRef]

J. D. Suter, I. M. White, H. Y. Zhu, X. D. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007).
[CrossRef] [PubMed]

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. D. Fan, “Refractometric sensors for lab-on-a-chip based on optical. ring resonators,” IEEE Sensors J. 7, 28–35 (2007).
[CrossRef]

2006 (4)

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

I. M. White, H. Oveys, X. D. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006).
[CrossRef] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London) 443, 671–674 (2006).
[CrossRef]

Y. S. Park, A. K. Cook, H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[CrossRef] [PubMed]

2003 (2)

2002 (2)

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature (London) 415, 621–623 (2002).
[CrossRef]

S. Uetake, R. S. D. Sihombing, K. Hakuta, “Stimulated raman scattering of a high-q liquid-hydrogen droplet in the ultraviolet region,” Opt. Lett. 27, 421–423 (2002).
[CrossRef]

2000 (1)

M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

1998 (1)

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[CrossRef]

1986 (1)

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, “Lasing droplets: Highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

Abrishamian, M. S.

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London) 443, 671–674 (2006).
[CrossRef]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Arnold, S.

F. Vollmer, S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef] [PubMed]

Bahl, G.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

Bartal, G.

Beck, T.

Benson, O.

Berini, P.

Berneschi, S.

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London) 443, 671–674 (2006).
[CrossRef]

Cai, M.

M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Carmon, T.

Chang, R. K.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, “Lasing droplets: Highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

Cheema, M. I.

Chen, D. R.

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nature Photon. 4, 122(2010).
[CrossRef]

Chen, Y.-L.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. H. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
[CrossRef]

Cohen, O.

Conti, G. N.

Cook, A. K.

Y. S. Park, A. K. Cook, H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[CrossRef] [PubMed]

Cosi, F.

Cui, J.-M.

C.-L. Zou, F.-W. Sun, C.-H. Dong, F.-J. Shu, X.-W. Wu, J.-M. Cui, Y. Yang, Z.-F. Han, G.-C. Guo, “High-Q and unidirectional emission whispering gallery modes: Principles and design,” IEEE J. Sel. Top. Quantum Electron. 19, 1–6 (2013).
[CrossRef]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London) 443, 671–674 (2006).
[CrossRef]

Disfani, M. R.

Dong, C.

T. Oo, C. Dong, V. Fiore, H. Wang, “Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere,” Appl. Phys. Lett. 103, 031116 (2013).
[CrossRef]

Dong, C. H.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Dong, C.-H.

C.-L. Zou, F.-W. Sun, C.-H. Dong, F.-J. Shu, X.-W. Wu, J.-M. Cui, Y. Yang, Z.-F. Han, G.-C. Guo, “High-Q and unidirectional emission whispering gallery modes: Principles and design,” IEEE J. Sel. Top. Quantum Electron. 19, 1–6 (2013).
[CrossRef]

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[CrossRef]

Dulashko, Y.

Fan, X.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[CrossRef]

H. Li, X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97, 011105 (2010).
[CrossRef]

H. Li, Y. Guo, Y. Sun, K. Reddy, X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18, 25081–25088 (2010).
[CrossRef] [PubMed]

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Fan, X. D.

Farnesi, D.

Fiore, V.

T. Oo, C. Dong, V. Fiore, H. Wang, “Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere,” Appl. Phys. Lett. 103, 031116 (2013).
[CrossRef]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Gaddam, V. R.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Gong, Q. H.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. H. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
[CrossRef]

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[CrossRef]

Gregor, M.

M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, O. Benson, “An alignment-free fiber-coupled micro-sphere resonator for gas sensing applications,” Appl. Phys. Lett. 96, 231102 (2010).
[CrossRef]

Grossmann, T.

Guo, G. C.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Guo, G.-C.

C.-L. Zou, F.-W. Sun, C.-H. Dong, F.-J. Shu, X.-W. Wu, J.-M. Cui, Y. Yang, Z.-F. Han, G.-C. Guo, “High-Q and unidirectional emission whispering gallery modes: Principles and design,” IEEE J. Sel. Top. Quantum Electron. 19, 1–6 (2013).
[CrossRef]

Guo, Y.

Hakuta, K.

Han, Z. F.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Han, Z.-F.

C.-L. Zou, F.-W. Sun, C.-H. Dong, F.-J. Shu, X.-W. Wu, J.-M. Cui, Y. Yang, Z.-F. Han, G.-C. Guo, “High-Q and unidirectional emission whispering gallery modes: Principles and design,” IEEE J. Sel. Top. Quantum Electron. 19, 1–6 (2013).
[CrossRef]

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[CrossRef]

Hanumegowda, N. M.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. D. Fan, “Refractometric sensors for lab-on-a-chip based on optical. ring resonators,” IEEE Sensors J. 7, 28–35 (2007).
[CrossRef]

Haroche, S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[CrossRef]

He, L.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

He, L. N.

L. N. He, S. K. Ozdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[CrossRef]

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nature Photon. 4, 122(2010).
[CrossRef]

Henze, R.

Holler, S.

Ilchenko, V. S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[CrossRef]

Kalt, H.

Kaplan, A.

Khoshsima, M.

Kim, K. H.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London) 443, 671–674 (2006).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, K. J. Vahala, “Cavity optomechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London) 443, 671–674 (2006).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature (London) 415, 621–623 (2002).
[CrossRef]

Kirk, A. G.

Kozlov, M.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Lee, W.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[CrossRef]

Lefèvre-Seguin, V.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[CrossRef]

Li, B.-B.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. H. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
[CrossRef]

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[CrossRef]

Li, H.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[CrossRef]

H. Li, X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97, 011105 (2010).
[CrossRef]

H. Li, Y. Guo, Y. Sun, K. Reddy, X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18, 25081–25088 (2010).
[CrossRef] [PubMed]

Li, L.

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nature Photon. 4, 122(2010).
[CrossRef]

Li, M.

Li, Y.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. H. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
[CrossRef]

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[CrossRef]

Liu, J.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

Liu, L.

Liu, Y.-C.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. H. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
[CrossRef]

Mappes, T.

Nic Chormaic, S.

J. Ward, Y. Yang, S. Nic Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photon. Technol. Lett. 25, 2350 (2013).
[CrossRef]

A. Watkins, J. Ward, Y. Q. Wu, S. Nic Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36, 2113–2115 (2011).
[CrossRef] [PubMed]

Y. Q. Wu, J. M. Ward, S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF4 − BaF2 − NaF− AlF3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
[CrossRef]

Oo, T.

T. Oo, C. Dong, V. Fiore, H. Wang, “Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere,” Appl. Phys. Lett. 103, 031116 (2013).
[CrossRef]

Oveys, H.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. D. Fan, “Refractometric sensors for lab-on-a-chip based on optical. ring resonators,” IEEE Sensors J. 7, 28–35 (2007).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

I. M. White, H. Oveys, X. D. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006).
[CrossRef] [PubMed]

Oxborrow, M.

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55, 1209–1218 (2007).
[CrossRef]

Ozdemir, S. K.

L. N. He, S. K. Ozdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[CrossRef]

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nature Photon. 4, 122(2010).
[CrossRef]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Painter, O.

M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Park, Y. S.

Y. S. Park, A. K. Cook, H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[CrossRef] [PubMed]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London) 443, 671–674 (2006).
[CrossRef]

Pelli, S.

Peters, A.

M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, O. Benson, “An alignment-free fiber-coupled micro-sphere resonator for gas sensing applications,” Appl. Phys. Lett. 96, 231102 (2010).
[CrossRef]

Pyrlik, C.

M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, O. Benson, “An alignment-free fiber-coupled micro-sphere resonator for gas sensing applications,” Appl. Phys. Lett. 96, 231102 (2010).
[CrossRef]

Qian, S.-X.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, “Lasing droplets: Highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

Raimond, J. M.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[CrossRef]

Reddy, K.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[CrossRef]

H. Li, Y. Guo, Y. Sun, K. Reddy, X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18, 25081–25088 (2010).
[CrossRef] [PubMed]

Righini, G. C.

Schloer, S.

Schwefel, H. G. L.

Seifert, T.

Shu, F.-J.

C.-L. Zou, F.-W. Sun, C.-H. Dong, F.-J. Shu, X.-W. Wu, J.-M. Cui, Y. Yang, Z.-F. Han, G.-C. Guo, “High-Q and unidirectional emission whispering gallery modes: Principles and design,” IEEE J. Sel. Top. Quantum Electron. 19, 1–6 (2013).
[CrossRef]

Sihombing, R. S. D.

Smith, T. L.

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Snow, J. B.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, “Lasing droplets: Highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

Soria, S.

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature (London) 415, 621–623 (2002).
[CrossRef]

Sumetsky, M.

Sun, F.-W.

C.-L. Zou, F.-W. Sun, C.-H. Dong, F.-J. Shu, X.-W. Wu, J.-M. Cui, Y. Yang, Z.-F. Han, G.-C. Guo, “High-Q and unidirectional emission whispering gallery modes: Principles and design,” IEEE J. Sel. Top. Quantum Electron. 19, 1–6 (2013).
[CrossRef]

Sun, Y.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[CrossRef]

H. Li, Y. Guo, Y. Sun, K. Reddy, X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18, 25081–25088 (2010).
[CrossRef] [PubMed]

Suter, J. D.

J. D. Suter, I. M. White, H. Y. Zhu, X. D. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007).
[CrossRef] [PubMed]

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. D. Fan, “Refractometric sensors for lab-on-a-chip based on optical. ring resonators,” IEEE Sensors J. 7, 28–35 (2007).
[CrossRef]

Teraoka, I.

Tomes, M.

Treussart, F.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[CrossRef]

Tzeng, H.-M.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, “Lasing droplets: Highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

Uetake, S.

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

T. J. Kippenberg, K. J. Vahala, “Cavity optomechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London) 443, 671–674 (2006).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839–846 (2003).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature (London) 415, 621–623 (2002).
[CrossRef]

M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Velichansky, V. L.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[CrossRef]

Volikov, P. S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[CrossRef]

Vollmer, F.

F. Vollmer, S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef] [PubMed]

Wang, H.

T. Oo, C. Dong, V. Fiore, H. Wang, “Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere,” Appl. Phys. Lett. 103, 031116 (2013).
[CrossRef]

Wang, H. L.

Y. S. Park, A. K. Cook, H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[CrossRef] [PubMed]

Ward, J.

Ward, J. M.

R. Henze, J. M. Ward, O. Benson, “Temperature independent tuning of whispering gallery modes in a cryogenic environment,” Opt. Express 21, 675–680 (2013).
[CrossRef] [PubMed]

Y. Q. Wu, J. M. Ward, S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF4 − BaF2 − NaF− AlF3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
[CrossRef]

Watkins, A.

White, I. M.

J. D. Suter, I. M. White, H. Y. Zhu, X. D. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007).
[CrossRef] [PubMed]

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. D. Fan, “Refractometric sensors for lab-on-a-chip based on optical. ring resonators,” IEEE Sensors J. 7, 28–35 (2007).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

I. M. White, H. Oveys, X. D. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006).
[CrossRef] [PubMed]

Wicht, A.

M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, O. Benson, “An alignment-free fiber-coupled micro-sphere resonator for gas sensing applications,” Appl. Phys. Lett. 96, 231102 (2010).
[CrossRef]

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London) 443, 671–674 (2006).
[CrossRef]

Windeler, R. S.

Wu, X.

Wu, X.-W.

C.-L. Zou, F.-W. Sun, C.-H. Dong, F.-J. Shu, X.-W. Wu, J.-M. Cui, Y. Yang, Z.-F. Han, G.-C. Guo, “High-Q and unidirectional emission whispering gallery modes: Principles and design,” IEEE J. Sel. Top. Quantum Electron. 19, 1–6 (2013).
[CrossRef]

Wu, Y. Q.

A. Watkins, J. Ward, Y. Q. Wu, S. Nic Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36, 2113–2115 (2011).
[CrossRef] [PubMed]

Y. Q. Wu, J. M. Ward, S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF4 − BaF2 − NaF− AlF3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
[CrossRef]

Xiao, Y. F.

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nature Photon. 4, 122(2010).
[CrossRef]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Xiao, Y.-F.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. H. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
[CrossRef]

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[CrossRef]

Xu, L.

Yang, L.

L. N. He, S. K. Ozdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[CrossRef]

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nature Photon. 4, 122(2010).
[CrossRef]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Yang, Y.

J. Ward, Y. Yang, S. Nic Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photon. Technol. Lett. 25, 2350 (2013).
[CrossRef]

C.-L. Zou, F.-W. Sun, C.-H. Dong, F.-J. Shu, X.-W. Wu, J.-M. Cui, Y. Yang, Z.-F. Han, G.-C. Guo, “High-Q and unidirectional emission whispering gallery modes: Principles and design,” IEEE J. Sel. Top. Quantum Electron. 19, 1–6 (2013).
[CrossRef]

Zhang, J. Y.

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Zhu, H. Y.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. D. Fan, “Refractometric sensors for lab-on-a-chip based on optical. ring resonators,” IEEE Sensors J. 7, 28–35 (2007).
[CrossRef]

J. D. Suter, I. M. White, H. Y. Zhu, X. D. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007).
[CrossRef] [PubMed]

Zhu, J. G.

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nature Photon. 4, 122(2010).
[CrossRef]

Zou, C.-L.

C.-L. Zou, F.-W. Sun, C.-H. Dong, F.-J. Shu, X.-W. Wu, J.-M. Cui, Y. Yang, Z.-F. Han, G.-C. Guo, “High-Q and unidirectional emission whispering gallery modes: Principles and design,” IEEE J. Sel. Top. Quantum Electron. 19, 1–6 (2013).
[CrossRef]

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[CrossRef]

Zourob, M.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. D. Fan, “Refractometric sensors for lab-on-a-chip based on optical. ring resonators,” IEEE Sensors J. 7, 28–35 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

H. Li, X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97, 011105 (2010).
[CrossRef]

M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, O. Benson, “An alignment-free fiber-coupled micro-sphere resonator for gas sensing applications,” Appl. Phys. Lett. 96, 231102 (2010).
[CrossRef]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

T. Oo, C. Dong, V. Fiore, H. Wang, “Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere,” Appl. Phys. Lett. 103, 031116 (2013).
[CrossRef]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C.-L. Zou, F.-W. Sun, C.-H. Dong, F.-J. Shu, X.-W. Wu, J.-M. Cui, Y. Yang, Z.-F. Han, G.-C. Guo, “High-Q and unidirectional emission whispering gallery modes: Principles and design,” IEEE J. Sel. Top. Quantum Electron. 19, 1–6 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Ward, Y. Yang, S. Nic Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photon. Technol. Lett. 25, 2350 (2013).
[CrossRef]

IEEE Sensors J. (1)

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. D. Fan, “Refractometric sensors for lab-on-a-chip based on optical. ring resonators,” IEEE Sensors J. 7, 28–35 (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55, 1209–1218 (2007).
[CrossRef]

J. Appl. Phys. (1)

Y. Q. Wu, J. M. Ward, S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF4 − BaF2 − NaF− AlF3) microspheres,” J. Appl. Phys. 107, 033103 (2010).
[CrossRef]

Laser Photon. Rev. (1)

L. N. He, S. K. Ozdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[CrossRef]

Nano Lett. (1)

Y. S. Park, A. K. Cook, H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[CrossRef] [PubMed]

Nat. Commun. (1)

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

Nat. Methods (1)

F. Vollmer, S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef] [PubMed]

Nature (London) (3)

K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839–846 (2003).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature (London) 415, 621–623 (2002).
[CrossRef]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London) 443, 671–674 (2006).
[CrossRef]

Nature Photon. (1)

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nature Photon. 4, 122(2010).
[CrossRef]

Opt. Commun. (1)

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[CrossRef]

Opt. Express (9)

T. Beck, S. Schloer, T. Grossmann, T. Mappes, H. Kalt, “Flexible coupling of high-Q goblet resonators for formation of tunable photonic molecules,” Opt. Express 20, 22012–22017 (2012).
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, “SNAP: fabrication of long coupled microresonator chains with sub-angstrom precision,” Opt. Express 20, 27896–27901 (2012).
[CrossRef] [PubMed]

T. J. Kippenberg, K. J. Vahala, “Cavity optomechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef] [PubMed]

M. I. Cheema, A. G. Kirk, “Accurate determination of the quality factor and tunneling distance of axisymmetric resonators for biosensing applications,” Opt. Express 21, 8724–8735 (2013).
[CrossRef] [PubMed]

H. Li, Y. Guo, Y. Sun, K. Reddy, X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18, 25081–25088 (2010).
[CrossRef] [PubMed]

M. R. Disfani, M. S. Abrishamian, P. Berini, “Teardrop-shaped surface-plasmon resonators,” Opt. Express 20, 6472–6477 (2012).
[CrossRef] [PubMed]

A. Kaplan, M. Tomes, T. Carmon, M. Kozlov, O. Cohen, G. Bartal, H. G. L. Schwefel, “Finite element simulation of a perturbed axial-symmetric whispering-gallery mode and its use for intensity enhancement with a nanoparticle coupled to a microtoroid,” Opt. Express 21, 14169–14180 (2013).
[CrossRef] [PubMed]

M. Li, X. Wu, L. Liu, L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21, 16908–16913 (2013).
[CrossRef] [PubMed]

R. Henze, J. M. Ward, O. Benson, “Temperature independent tuning of whispering gallery modes in a cryogenic environment,” Opt. Express 21, 675–680 (2013).
[CrossRef] [PubMed]

Opt. Lett. (8)

Phys. Rev. A (1)

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. H. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[CrossRef]

M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Science (2)

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, “Lasing droplets: Highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Images of double-pass and single-pass microbubbles. (b) Whispering gallery modes propagate along the surface of a microbubble (red trace). For purpose of illustration, a microbubble is cut transversely along the polar axis. R is the outer radius of the microbubble and t is the shell thickness. The mode number, m, determines the relationship between the azimuthal field, E, and the azimuthal coordinate, ϕ, as E ∝ exp(imϕ). Therefore, the solution of the 3D FEM problem can be reduced to 2D along the bubble’s symmetry axis. Radial mode distribution patterns are shown in (c), (d) and (e). (c) is the first radial order fundamental mode, (d) is the second radial order mode, and (e) is a higher transverse mode. All are quasi-TE modes. To derive Q-factor values, perfectly matched layers (PMLs) are required (c) – (e).

Fig. 2
Fig. 2

Q-factors of microbubbles drop exponentially with decreasing radii due to greater radiation loss for smaller WGM cavities. This is illustrated on the plot with quasi TE fundamental modes. Two different shell thicknesses, 800 nm (black square) and 2 μm (blue circle), are compared. The red dotted line represents the absorption Q limit of a silica microsphere calculated using the same FEM simulation method with a diameter of 50 μm. Due to material loss, the Q-factor is limited by the absorption Q.

Fig. 3
Fig. 3

Three different types of modes coexist in microbubbles, represented as squares (TE), circles (TM) and triangles (q = 2 TE). However, due to inner surface tunneling loss, higher radial modes have lower Q-factors than lower modes. The diameter of the microbubble for this plot is 50 μm. The TE mode is higher than the TM mode, especially when the shell is thin. The maximum Q-factor is limited by the silica absorption.

Fig. 4
Fig. 4

Effective index of a 50 μm diameter microbubble for different shell thickness and different modes. Black squares are the fundamental TE mode and red circles are the TM mode. The effective index of the second radial order is plotted in blue triangles for a shell thickness from 1.1 μm, where the air-filled bubble starts to support high order modes. The taper effective index for a fiber waist of 0.5–1.0 μm radius is also presented (dashed pink line). Once the geometry of a microbubble is set, a proper taper size can be chosen to satisfy the phase matching condition.

Fig. 5
Fig. 5

Radial field distribution for a water-filled, 50 μm microbubble. From (a) to (d) shell thickness decreases from 500 nm to 200 nm. The y-axis represents |E|2 along the radius r, for the TE fundamental modes. When the shell is less than 300 nm thick, the maximum shifts completely inside the core and this is defined as the quasi-droplet regime. In (e), the percentage of light intensities for different radial modes inside the core are calculated. It can been seen that higher order modes have more light distributed in the core, even for microbubbles with thicker shells.

Fig. 6
Fig. 6

The effective refractive indices of microbubbles with shell thicknesses from 200 nm to 3 μm. First (black squares), second (red circles) and third (blue triangles) order radial modes are shown and compared with those of a liquid droplet (horizontal dashed lines) and a silica microsphere (horizontal solid lines) of the same diameter. Water was chosen as the liquid and the structures are 50 μm in diameter.

Fig. 7
Fig. 7

Resolution ℜ versus shell thickness for a microbubble used in pressure sensing. The diameter of the microbubble is 50 μm. The blue line shows the minimum range of resolution. It corresponds to an optimized thickness around 1.4 μm. Lines joining the data points are simply guides for the eye.

Fig. 8
Fig. 8

(a) Sensitivity is higher for thinner shells while (b) Q-factors drop for microbubbles filled with water for different bubble diameters (20 μm to 50 μm) and shell thicknesses (500 nm to 3 μm). For a certain thickness, an optimized resolution, defined by Eq. 2, can be achieved in (c) (horizontal, blue dashed line shows the minimum). Diameters in the Fig. are: 20 μm (black squares), 30 μm (red circles), 40 μm (purple triangles) and 50 μm (blue spades). (d) Comparison of ℜ with q = 1 (black squares) and q = 2 (red circles) for the same microbubbles. Lines joining the data points are simply guides for the eye.

Fig. 9
Fig. 9

(a) Sensitivity of a microbubble for nanoparticle sensing. A relative frequency shift to the WGM is caused by a spherical nanoparticle (diameter 500 nm) attached to a water-filled 50 μm microbubble. Inset: schematic picture of the simulation condition. (b) ℜ versus shell thickness for a 50 μm microbubble for sensing the 500 nm nanoparticle. The axis of resolution is plotted on a log scale, which implies that the resolution improves nearly exponentially for a thinner shell for the first order fundamental mode (black squares). Here, the first order mode is plotted as black squares while the red circles represent the second order mode. Lines joining the data points are simply guides for the eye.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d V ( ( × H ˜ * ) ε 1 ( × H ) α ( H ˜ * ) ( H ) + c 2 H ˜ 2 H t 2 ) = 0 .
= λ Q ( λ ( U ) U ) 1 .
d λ ( p i ) λ = 2 n 0 ( R t ) 3 + 12 C G ( R t ) 3 4 G n 0 ( R 3 ( R t ) 3 ) p i .
S r = λ p R 3 R 3 ( R t ) 3 .
S = λ U = κ c n c λ U + κ s n s λ U .
Δ ω ω = d 3 r Δ ε ( | E ( r ) | ) 2 2 d 3 r ε ( | E ( r ) | ) 2 .

Metrics