Abstract

A new method to improve the sensitivity and absolute accuracy simultaneously for coherent population trapping (CPT) magnetometer based on the differential detection method is presented. Two modulated optical beams with orthogonal circular polarizations are applied, in one of which two magnetic resonances are excited simultaneously by modulating a 3.4GHz microwave with Larmor frequency. When a microwave frequency shift is introduced, the difference in the power transmitted through the cell in each beam shows a low noise resonance. The sensitivity of 2pT/Hz @ 10Hz is achieved. Meanwhile, the absolute accuracy of ± 0.5nT within the magnetic field ranging from 20000nT to 100000nT is realized.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. D. Schwindt, L. Hollberg, J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76(12), 126103 (2005).
    [CrossRef]
  2. I. K. Kominis, T. W. Kornack, J. C. Allred, M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
    [CrossRef] [PubMed]
  3. V. Schultze, R. IJsselsteijn, H. G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100(4), 717–724 (2010).
    [CrossRef]
  4. V. Sapunov, J. Rasson, A. Denisov, D. Saveliev, S. Kiselev, O. Denisova, Y. Podmogov, S. Khomutov, “Theodolite-borne vector Overhauser magnetometer: DIMOVER,” Earth Planets Space 58, 711–716 (2006).
  5. A. Pollinger, R. Lammegger, W. Magnes, M. Ellmeier, W. Baumjohann, and L. Windholz, “Control loops for a Coupled Dark State Magnetometer,” in Sensors (IEEE, 2010), 779–784.
  6. A. Pollinger, M. Ellmeier, W. Magnes, C. Hagen, W. Baumjohann, E. Leitgeb, R. Lammegger, “Enable the inherent omni-directionality of an absolute coupled dark state magnetometer for e.g. scientific space applications,” in Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), 33–36.
    [CrossRef]
  7. P. Yun, B. Tan, W. Deng, J. Yang, S. Gu, “Quasi-bichromatic laser for a lin⊥lin coherent population trapping clock produced by vertical-cavity surface-emitting lasers,” Rev. Sci. Instrum. 83(9), 093111 (2012).
    [CrossRef] [PubMed]
  8. E. E. Mikhailov, T. Horrom, N. Belcher, I. Novikova, “Performance of a prototype atomic clock based on lin ‖ lin coherent population trapping resonances in Rb atomic vapor,” J. Opt. Soc. Am. B 27(3), 417–422 (2010).
    [CrossRef]
  9. A. L. Yang, G. Q. Yang, Y. F. Xu, Q. Lin, “High contrast atomic magnetometer based on coherent population trapping,” Chin. Phys. B. 23(2), 027601 (2014).
    [CrossRef]
  10. X. C. Liu, J. M. M’erolla, S. Gu’erandel, C. Gorecki, E. D. Clercq, R. Boudot, “Coherent-population-trapping resonances in buffer-gas-filled Cs-vapor cells with push-pull optical pumping,” Phys. Rev. A 87(1), 013416 (2013).
    [CrossRef]
  11. M. Rosenbluh, V. Shah, S. Knappe, J. Kitching, “Differentially detected coherent population trapping resonances excited by orthogonally polarized laser fields,” Opt. Express 14(15), 6588–6594 (2006).
    [CrossRef] [PubMed]
  12. J. Vanier, M. W. Levine, D. Janssen, M. Delaney, “Contrast and linewidth of the coherent population trapping transmission hyperfine resonance line in 87Rb: Effect of optical pumping,” Phys. Rev. A 67(6), 065801 (2003).
    [CrossRef]
  13. R. Jiménez-Martínez, W. C. Griffith, Y. J. Wang, S. Knappe, J. Kitching, K. Smith, and M. D. Prouty, “Sensitivity Comparison of Mx and Frequency-Modulated Bell–Bloom Cs Magnetometers in a Microfabricated Cell,” in Instrumentation and Measurement (IEEE, 2010), 372–378.
  14. Th. Haslwanter, H. Ritsch, J. Cooper, P. Zoller, “Laser-noise-induced population fluctuations in two- and three-level systems,” Phys. Rev. A 38(11), 5652–5659 (1988).
    [CrossRef] [PubMed]
  15. J. C. Camparo, “Conversion of laser phase noise to amplitude noise in an optically thick vapor,” Opt. Soc. Am. B 15(3), 1177–1186 (1998).
    [CrossRef]
  16. J. Kitching, N. Vukicevic, L. Hollberg, S. Knappe, R. Wynands, W. Weidemann, “A microwave frequency reference based on VCSEL driven dark line resonances in CS vapor,” IEEE Trans. Instrum. Meas. 49(6), 1313–1317 (2000).
    [CrossRef]

2014 (1)

A. L. Yang, G. Q. Yang, Y. F. Xu, Q. Lin, “High contrast atomic magnetometer based on coherent population trapping,” Chin. Phys. B. 23(2), 027601 (2014).
[CrossRef]

2013 (1)

X. C. Liu, J. M. M’erolla, S. Gu’erandel, C. Gorecki, E. D. Clercq, R. Boudot, “Coherent-population-trapping resonances in buffer-gas-filled Cs-vapor cells with push-pull optical pumping,” Phys. Rev. A 87(1), 013416 (2013).
[CrossRef]

2012 (1)

P. Yun, B. Tan, W. Deng, J. Yang, S. Gu, “Quasi-bichromatic laser for a lin⊥lin coherent population trapping clock produced by vertical-cavity surface-emitting lasers,” Rev. Sci. Instrum. 83(9), 093111 (2012).
[CrossRef] [PubMed]

2010 (2)

2006 (2)

M. Rosenbluh, V. Shah, S. Knappe, J. Kitching, “Differentially detected coherent population trapping resonances excited by orthogonally polarized laser fields,” Opt. Express 14(15), 6588–6594 (2006).
[CrossRef] [PubMed]

V. Sapunov, J. Rasson, A. Denisov, D. Saveliev, S. Kiselev, O. Denisova, Y. Podmogov, S. Khomutov, “Theodolite-borne vector Overhauser magnetometer: DIMOVER,” Earth Planets Space 58, 711–716 (2006).

2005 (1)

P. D. D. Schwindt, L. Hollberg, J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76(12), 126103 (2005).
[CrossRef]

2003 (2)

I. K. Kominis, T. W. Kornack, J. C. Allred, M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

J. Vanier, M. W. Levine, D. Janssen, M. Delaney, “Contrast and linewidth of the coherent population trapping transmission hyperfine resonance line in 87Rb: Effect of optical pumping,” Phys. Rev. A 67(6), 065801 (2003).
[CrossRef]

2000 (1)

J. Kitching, N. Vukicevic, L. Hollberg, S. Knappe, R. Wynands, W. Weidemann, “A microwave frequency reference based on VCSEL driven dark line resonances in CS vapor,” IEEE Trans. Instrum. Meas. 49(6), 1313–1317 (2000).
[CrossRef]

1998 (1)

J. C. Camparo, “Conversion of laser phase noise to amplitude noise in an optically thick vapor,” Opt. Soc. Am. B 15(3), 1177–1186 (1998).
[CrossRef]

1988 (1)

Th. Haslwanter, H. Ritsch, J. Cooper, P. Zoller, “Laser-noise-induced population fluctuations in two- and three-level systems,” Phys. Rev. A 38(11), 5652–5659 (1988).
[CrossRef] [PubMed]

Allred, J. C.

I. K. Kominis, T. W. Kornack, J. C. Allred, M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

Baumjohann, W.

A. Pollinger, M. Ellmeier, W. Magnes, C. Hagen, W. Baumjohann, E. Leitgeb, R. Lammegger, “Enable the inherent omni-directionality of an absolute coupled dark state magnetometer for e.g. scientific space applications,” in Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), 33–36.
[CrossRef]

Belcher, N.

Boudot, R.

X. C. Liu, J. M. M’erolla, S. Gu’erandel, C. Gorecki, E. D. Clercq, R. Boudot, “Coherent-population-trapping resonances in buffer-gas-filled Cs-vapor cells with push-pull optical pumping,” Phys. Rev. A 87(1), 013416 (2013).
[CrossRef]

Camparo, J. C.

J. C. Camparo, “Conversion of laser phase noise to amplitude noise in an optically thick vapor,” Opt. Soc. Am. B 15(3), 1177–1186 (1998).
[CrossRef]

Clercq, E. D.

X. C. Liu, J. M. M’erolla, S. Gu’erandel, C. Gorecki, E. D. Clercq, R. Boudot, “Coherent-population-trapping resonances in buffer-gas-filled Cs-vapor cells with push-pull optical pumping,” Phys. Rev. A 87(1), 013416 (2013).
[CrossRef]

Cooper, J.

Th. Haslwanter, H. Ritsch, J. Cooper, P. Zoller, “Laser-noise-induced population fluctuations in two- and three-level systems,” Phys. Rev. A 38(11), 5652–5659 (1988).
[CrossRef] [PubMed]

Delaney, M.

J. Vanier, M. W. Levine, D. Janssen, M. Delaney, “Contrast and linewidth of the coherent population trapping transmission hyperfine resonance line in 87Rb: Effect of optical pumping,” Phys. Rev. A 67(6), 065801 (2003).
[CrossRef]

Deng, W.

P. Yun, B. Tan, W. Deng, J. Yang, S. Gu, “Quasi-bichromatic laser for a lin⊥lin coherent population trapping clock produced by vertical-cavity surface-emitting lasers,” Rev. Sci. Instrum. 83(9), 093111 (2012).
[CrossRef] [PubMed]

Denisov, A.

V. Sapunov, J. Rasson, A. Denisov, D. Saveliev, S. Kiselev, O. Denisova, Y. Podmogov, S. Khomutov, “Theodolite-borne vector Overhauser magnetometer: DIMOVER,” Earth Planets Space 58, 711–716 (2006).

Denisova, O.

V. Sapunov, J. Rasson, A. Denisov, D. Saveliev, S. Kiselev, O. Denisova, Y. Podmogov, S. Khomutov, “Theodolite-borne vector Overhauser magnetometer: DIMOVER,” Earth Planets Space 58, 711–716 (2006).

Ellmeier, M.

A. Pollinger, M. Ellmeier, W. Magnes, C. Hagen, W. Baumjohann, E. Leitgeb, R. Lammegger, “Enable the inherent omni-directionality of an absolute coupled dark state magnetometer for e.g. scientific space applications,” in Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), 33–36.
[CrossRef]

Gorecki, C.

X. C. Liu, J. M. M’erolla, S. Gu’erandel, C. Gorecki, E. D. Clercq, R. Boudot, “Coherent-population-trapping resonances in buffer-gas-filled Cs-vapor cells with push-pull optical pumping,” Phys. Rev. A 87(1), 013416 (2013).
[CrossRef]

Gu, S.

P. Yun, B. Tan, W. Deng, J. Yang, S. Gu, “Quasi-bichromatic laser for a lin⊥lin coherent population trapping clock produced by vertical-cavity surface-emitting lasers,” Rev. Sci. Instrum. 83(9), 093111 (2012).
[CrossRef] [PubMed]

Gu’erandel, S.

X. C. Liu, J. M. M’erolla, S. Gu’erandel, C. Gorecki, E. D. Clercq, R. Boudot, “Coherent-population-trapping resonances in buffer-gas-filled Cs-vapor cells with push-pull optical pumping,” Phys. Rev. A 87(1), 013416 (2013).
[CrossRef]

Hagen, C.

A. Pollinger, M. Ellmeier, W. Magnes, C. Hagen, W. Baumjohann, E. Leitgeb, R. Lammegger, “Enable the inherent omni-directionality of an absolute coupled dark state magnetometer for e.g. scientific space applications,” in Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), 33–36.
[CrossRef]

Haslwanter, Th.

Th. Haslwanter, H. Ritsch, J. Cooper, P. Zoller, “Laser-noise-induced population fluctuations in two- and three-level systems,” Phys. Rev. A 38(11), 5652–5659 (1988).
[CrossRef] [PubMed]

Hollberg, L.

P. D. D. Schwindt, L. Hollberg, J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76(12), 126103 (2005).
[CrossRef]

J. Kitching, N. Vukicevic, L. Hollberg, S. Knappe, R. Wynands, W. Weidemann, “A microwave frequency reference based on VCSEL driven dark line resonances in CS vapor,” IEEE Trans. Instrum. Meas. 49(6), 1313–1317 (2000).
[CrossRef]

Horrom, T.

IJsselsteijn, R.

V. Schultze, R. IJsselsteijn, H. G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100(4), 717–724 (2010).
[CrossRef]

Janssen, D.

J. Vanier, M. W. Levine, D. Janssen, M. Delaney, “Contrast and linewidth of the coherent population trapping transmission hyperfine resonance line in 87Rb: Effect of optical pumping,” Phys. Rev. A 67(6), 065801 (2003).
[CrossRef]

Khomutov, S.

V. Sapunov, J. Rasson, A. Denisov, D. Saveliev, S. Kiselev, O. Denisova, Y. Podmogov, S. Khomutov, “Theodolite-borne vector Overhauser magnetometer: DIMOVER,” Earth Planets Space 58, 711–716 (2006).

Kiselev, S.

V. Sapunov, J. Rasson, A. Denisov, D. Saveliev, S. Kiselev, O. Denisova, Y. Podmogov, S. Khomutov, “Theodolite-borne vector Overhauser magnetometer: DIMOVER,” Earth Planets Space 58, 711–716 (2006).

Kitching, J.

M. Rosenbluh, V. Shah, S. Knappe, J. Kitching, “Differentially detected coherent population trapping resonances excited by orthogonally polarized laser fields,” Opt. Express 14(15), 6588–6594 (2006).
[CrossRef] [PubMed]

P. D. D. Schwindt, L. Hollberg, J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76(12), 126103 (2005).
[CrossRef]

J. Kitching, N. Vukicevic, L. Hollberg, S. Knappe, R. Wynands, W. Weidemann, “A microwave frequency reference based on VCSEL driven dark line resonances in CS vapor,” IEEE Trans. Instrum. Meas. 49(6), 1313–1317 (2000).
[CrossRef]

Knappe, S.

M. Rosenbluh, V. Shah, S. Knappe, J. Kitching, “Differentially detected coherent population trapping resonances excited by orthogonally polarized laser fields,” Opt. Express 14(15), 6588–6594 (2006).
[CrossRef] [PubMed]

J. Kitching, N. Vukicevic, L. Hollberg, S. Knappe, R. Wynands, W. Weidemann, “A microwave frequency reference based on VCSEL driven dark line resonances in CS vapor,” IEEE Trans. Instrum. Meas. 49(6), 1313–1317 (2000).
[CrossRef]

Kominis, I. K.

I. K. Kominis, T. W. Kornack, J. C. Allred, M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

Kornack, T. W.

I. K. Kominis, T. W. Kornack, J. C. Allred, M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

Lammegger, R.

A. Pollinger, M. Ellmeier, W. Magnes, C. Hagen, W. Baumjohann, E. Leitgeb, R. Lammegger, “Enable the inherent omni-directionality of an absolute coupled dark state magnetometer for e.g. scientific space applications,” in Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), 33–36.
[CrossRef]

Leitgeb, E.

A. Pollinger, M. Ellmeier, W. Magnes, C. Hagen, W. Baumjohann, E. Leitgeb, R. Lammegger, “Enable the inherent omni-directionality of an absolute coupled dark state magnetometer for e.g. scientific space applications,” in Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), 33–36.
[CrossRef]

Levine, M. W.

J. Vanier, M. W. Levine, D. Janssen, M. Delaney, “Contrast and linewidth of the coherent population trapping transmission hyperfine resonance line in 87Rb: Effect of optical pumping,” Phys. Rev. A 67(6), 065801 (2003).
[CrossRef]

Lin, Q.

A. L. Yang, G. Q. Yang, Y. F. Xu, Q. Lin, “High contrast atomic magnetometer based on coherent population trapping,” Chin. Phys. B. 23(2), 027601 (2014).
[CrossRef]

Liu, X. C.

X. C. Liu, J. M. M’erolla, S. Gu’erandel, C. Gorecki, E. D. Clercq, R. Boudot, “Coherent-population-trapping resonances in buffer-gas-filled Cs-vapor cells with push-pull optical pumping,” Phys. Rev. A 87(1), 013416 (2013).
[CrossRef]

M’erolla, J. M.

X. C. Liu, J. M. M’erolla, S. Gu’erandel, C. Gorecki, E. D. Clercq, R. Boudot, “Coherent-population-trapping resonances in buffer-gas-filled Cs-vapor cells with push-pull optical pumping,” Phys. Rev. A 87(1), 013416 (2013).
[CrossRef]

Magnes, W.

A. Pollinger, M. Ellmeier, W. Magnes, C. Hagen, W. Baumjohann, E. Leitgeb, R. Lammegger, “Enable the inherent omni-directionality of an absolute coupled dark state magnetometer for e.g. scientific space applications,” in Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), 33–36.
[CrossRef]

Meyer, H. G.

V. Schultze, R. IJsselsteijn, H. G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100(4), 717–724 (2010).
[CrossRef]

Mikhailov, E. E.

Novikova, I.

Podmogov, Y.

V. Sapunov, J. Rasson, A. Denisov, D. Saveliev, S. Kiselev, O. Denisova, Y. Podmogov, S. Khomutov, “Theodolite-borne vector Overhauser magnetometer: DIMOVER,” Earth Planets Space 58, 711–716 (2006).

Pollinger, A.

A. Pollinger, M. Ellmeier, W. Magnes, C. Hagen, W. Baumjohann, E. Leitgeb, R. Lammegger, “Enable the inherent omni-directionality of an absolute coupled dark state magnetometer for e.g. scientific space applications,” in Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), 33–36.
[CrossRef]

Rasson, J.

V. Sapunov, J. Rasson, A. Denisov, D. Saveliev, S. Kiselev, O. Denisova, Y. Podmogov, S. Khomutov, “Theodolite-borne vector Overhauser magnetometer: DIMOVER,” Earth Planets Space 58, 711–716 (2006).

Ritsch, H.

Th. Haslwanter, H. Ritsch, J. Cooper, P. Zoller, “Laser-noise-induced population fluctuations in two- and three-level systems,” Phys. Rev. A 38(11), 5652–5659 (1988).
[CrossRef] [PubMed]

Romalis, M. V.

I. K. Kominis, T. W. Kornack, J. C. Allred, M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

Rosenbluh, M.

Sapunov, V.

V. Sapunov, J. Rasson, A. Denisov, D. Saveliev, S. Kiselev, O. Denisova, Y. Podmogov, S. Khomutov, “Theodolite-borne vector Overhauser magnetometer: DIMOVER,” Earth Planets Space 58, 711–716 (2006).

Saveliev, D.

V. Sapunov, J. Rasson, A. Denisov, D. Saveliev, S. Kiselev, O. Denisova, Y. Podmogov, S. Khomutov, “Theodolite-borne vector Overhauser magnetometer: DIMOVER,” Earth Planets Space 58, 711–716 (2006).

Schultze, V.

V. Schultze, R. IJsselsteijn, H. G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100(4), 717–724 (2010).
[CrossRef]

Schwindt, P. D. D.

P. D. D. Schwindt, L. Hollberg, J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76(12), 126103 (2005).
[CrossRef]

Shah, V.

Tan, B.

P. Yun, B. Tan, W. Deng, J. Yang, S. Gu, “Quasi-bichromatic laser for a lin⊥lin coherent population trapping clock produced by vertical-cavity surface-emitting lasers,” Rev. Sci. Instrum. 83(9), 093111 (2012).
[CrossRef] [PubMed]

Vanier, J.

J. Vanier, M. W. Levine, D. Janssen, M. Delaney, “Contrast and linewidth of the coherent population trapping transmission hyperfine resonance line in 87Rb: Effect of optical pumping,” Phys. Rev. A 67(6), 065801 (2003).
[CrossRef]

Vukicevic, N.

J. Kitching, N. Vukicevic, L. Hollberg, S. Knappe, R. Wynands, W. Weidemann, “A microwave frequency reference based on VCSEL driven dark line resonances in CS vapor,” IEEE Trans. Instrum. Meas. 49(6), 1313–1317 (2000).
[CrossRef]

Weidemann, W.

J. Kitching, N. Vukicevic, L. Hollberg, S. Knappe, R. Wynands, W. Weidemann, “A microwave frequency reference based on VCSEL driven dark line resonances in CS vapor,” IEEE Trans. Instrum. Meas. 49(6), 1313–1317 (2000).
[CrossRef]

Wynands, R.

J. Kitching, N. Vukicevic, L. Hollberg, S. Knappe, R. Wynands, W. Weidemann, “A microwave frequency reference based on VCSEL driven dark line resonances in CS vapor,” IEEE Trans. Instrum. Meas. 49(6), 1313–1317 (2000).
[CrossRef]

Xu, Y. F.

A. L. Yang, G. Q. Yang, Y. F. Xu, Q. Lin, “High contrast atomic magnetometer based on coherent population trapping,” Chin. Phys. B. 23(2), 027601 (2014).
[CrossRef]

Yang, A. L.

A. L. Yang, G. Q. Yang, Y. F. Xu, Q. Lin, “High contrast atomic magnetometer based on coherent population trapping,” Chin. Phys. B. 23(2), 027601 (2014).
[CrossRef]

Yang, G. Q.

A. L. Yang, G. Q. Yang, Y. F. Xu, Q. Lin, “High contrast atomic magnetometer based on coherent population trapping,” Chin. Phys. B. 23(2), 027601 (2014).
[CrossRef]

Yang, J.

P. Yun, B. Tan, W. Deng, J. Yang, S. Gu, “Quasi-bichromatic laser for a lin⊥lin coherent population trapping clock produced by vertical-cavity surface-emitting lasers,” Rev. Sci. Instrum. 83(9), 093111 (2012).
[CrossRef] [PubMed]

Yun, P.

P. Yun, B. Tan, W. Deng, J. Yang, S. Gu, “Quasi-bichromatic laser for a lin⊥lin coherent population trapping clock produced by vertical-cavity surface-emitting lasers,” Rev. Sci. Instrum. 83(9), 093111 (2012).
[CrossRef] [PubMed]

Zoller, P.

Th. Haslwanter, H. Ritsch, J. Cooper, P. Zoller, “Laser-noise-induced population fluctuations in two- and three-level systems,” Phys. Rev. A 38(11), 5652–5659 (1988).
[CrossRef] [PubMed]

Appl. Phys. B (1)

V. Schultze, R. IJsselsteijn, H. G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100(4), 717–724 (2010).
[CrossRef]

Chin. Phys. B. (1)

A. L. Yang, G. Q. Yang, Y. F. Xu, Q. Lin, “High contrast atomic magnetometer based on coherent population trapping,” Chin. Phys. B. 23(2), 027601 (2014).
[CrossRef]

Earth Planets Space (1)

V. Sapunov, J. Rasson, A. Denisov, D. Saveliev, S. Kiselev, O. Denisova, Y. Podmogov, S. Khomutov, “Theodolite-borne vector Overhauser magnetometer: DIMOVER,” Earth Planets Space 58, 711–716 (2006).

IEEE Trans. Instrum. Meas. (1)

J. Kitching, N. Vukicevic, L. Hollberg, S. Knappe, R. Wynands, W. Weidemann, “A microwave frequency reference based on VCSEL driven dark line resonances in CS vapor,” IEEE Trans. Instrum. Meas. 49(6), 1313–1317 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Soc. Am. B (1)

J. C. Camparo, “Conversion of laser phase noise to amplitude noise in an optically thick vapor,” Opt. Soc. Am. B 15(3), 1177–1186 (1998).
[CrossRef]

Phys. Rev. A (3)

Th. Haslwanter, H. Ritsch, J. Cooper, P. Zoller, “Laser-noise-induced population fluctuations in two- and three-level systems,” Phys. Rev. A 38(11), 5652–5659 (1988).
[CrossRef] [PubMed]

X. C. Liu, J. M. M’erolla, S. Gu’erandel, C. Gorecki, E. D. Clercq, R. Boudot, “Coherent-population-trapping resonances in buffer-gas-filled Cs-vapor cells with push-pull optical pumping,” Phys. Rev. A 87(1), 013416 (2013).
[CrossRef]

J. Vanier, M. W. Levine, D. Janssen, M. Delaney, “Contrast and linewidth of the coherent population trapping transmission hyperfine resonance line in 87Rb: Effect of optical pumping,” Phys. Rev. A 67(6), 065801 (2003).
[CrossRef]

Rev. Sci. Instrum. (2)

P. D. D. Schwindt, L. Hollberg, J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76(12), 126103 (2005).
[CrossRef]

P. Yun, B. Tan, W. Deng, J. Yang, S. Gu, “Quasi-bichromatic laser for a lin⊥lin coherent population trapping clock produced by vertical-cavity surface-emitting lasers,” Rev. Sci. Instrum. 83(9), 093111 (2012).
[CrossRef] [PubMed]

Other (3)

R. Jiménez-Martínez, W. C. Griffith, Y. J. Wang, S. Knappe, J. Kitching, K. Smith, and M. D. Prouty, “Sensitivity Comparison of Mx and Frequency-Modulated Bell–Bloom Cs Magnetometers in a Microfabricated Cell,” in Instrumentation and Measurement (IEEE, 2010), 372–378.

A. Pollinger, R. Lammegger, W. Magnes, M. Ellmeier, W. Baumjohann, and L. Windholz, “Control loops for a Coupled Dark State Magnetometer,” in Sensors (IEEE, 2010), 779–784.

A. Pollinger, M. Ellmeier, W. Magnes, C. Hagen, W. Baumjohann, E. Leitgeb, R. Lammegger, “Enable the inherent omni-directionality of an absolute coupled dark state magnetometer for e.g. scientific space applications,” in Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), 33–36.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The experimental setup of magnetometer in this experiment. (b) 87Rb atom’s energy levels of D1 line in magnetic field and Λ-type configurations excited by σ+ laser (red lines) and σ- laser (green lines).

Fig. 2
Fig. 2

(a) CPT resonance excited by σ- laser. (b) CPT resonance excited by σ+ laser. (c) CPT signal after differential detection.

Fig. 3
Fig. 3

The Lock-in signals after differential detection (blue line) and of single photo detector (red line). The peak-peak noise of the signal after differential detection is about 10mVp-p while the other one is about 100mVp-p.

Fig. 4
Fig. 4

Magnetometer noise. The red line represents the noise of single photo detector while the blue line represents the noise after differential detection.

Tables (1)

Tables Icon

Table 1 Comparison between Overhausera and CPT magnetometer

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ν 22 = ν L ( ν 0 + ν mod ) ν 20 = ν L ν 0 ν 22 = ν L ( ν 0 ν mod ) ν L = ν L ν 12 = ν L +( ν 0 ν mod ) ν 10 = ν L + ν 0 ν 12 = ν L +( ν 0 + ν mod )
ν 22 = ν L ( ν 0 + ν Larmor )Δν ν 22 = ν L ( ν 0 ν Larmor )Δν ν 12 = ν L +( ν 0 ν Larmor )+Δν ν 12 = ν L +( ν 0 + ν Larmor )+Δν
δB= 1 γ Δν S N
Δ V S N = 2 e I d c · G

Metrics