Abstract

A low phase noise frequency comb generated from a continuous-wave seed is experimentally demonstrated across continuous C- and L-bands. Parametrically generated carriers with optical signal-to-noise ratio in excess of 45dB were used to generate 16-ary quadrature amplitude modulated signals. We characterize 20 GBaud channels’ performance that was varied by only 1.7 dB across the combined C/L band.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [CrossRef]
  2. B. Sprenger, J. Zhang, Z. H. Lu, L. J. Wang, “Atmospheric transfer of optical and radio frequency clock signals,” Opt. Lett. 34(7), 965–967 (2009).
    [CrossRef] [PubMed]
  3. H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
    [CrossRef] [PubMed]
  4. P. Balling, P. Křen, P. Mašika, S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
    [CrossRef] [PubMed]
  5. A. Bartels, D. Heinecke, S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
    [CrossRef] [PubMed]
  6. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
    [CrossRef] [PubMed]
  7. A. Schliesser, M. Brehm, F. Keilmann, D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
    [CrossRef] [PubMed]
  8. F. Quinlan, G. Ycas, S. Osterman, S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
    [CrossRef] [PubMed]
  9. Z. Jiang, C.-B. Huang, D. E. Leaird, A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [CrossRef]
  10. N. K. Fontaine, D. J. Geisler, R. P. Scott, T. He, J. P. Heritage, S. J. B. Yoo, “Demonstration of high-fidelity dynamic optical arbitrary waveform generation,” Opt. Express 18(22), 22988–22995 (2010).
    [CrossRef] [PubMed]
  11. A. R. Chraplyvy, “The coming capacity crunch,” presented at the European Conference on Optical Communication 2009 (ECOC09), Vienna, Austria, 20–24September2009, plenary talk.
  12. S. T. Cundiff, J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [CrossRef]
  13. N. R. Newbury, W. C. Swann, “Low-noise fiber-laser frequency combs,” J. Opt. Soc. Am. B 24(8), 1756–1770 (2007).
    [CrossRef]
  14. A. Bartels, D. Heinecke, S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33(16), 1905–1907 (2008).
    [CrossRef] [PubMed]
  15. T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [CrossRef] [PubMed]
  16. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
    [CrossRef] [PubMed]
  17. J. Pfeifle, M. Lauermann, D. Wegner, J. Li, K. Hartinger, V. Brasch, T. Herr, D. Hillerkuss, R. M. Schmogrow, T. Schimmel, R. Holzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based frequency comb generator as optical source for coherent WDM transmission,” in Proc. OFC 2013 (2013), paper OW3C.2.
    [CrossRef]
  18. S. Fabbri, S. Sygletos, and A. Ellis, “Multi-harmonic optical comb generation,” in Proc. ECOC (2012), paper Mo.2.A.2.
  19. R. Maher, K. Shi, L. P. Barry, J. O’Carroll, B. Kelly, R. Phelan, J. O’Gorman, P. M. Anandarajah, “Implementation of a cost-effective optical comb source in a WDM-PON with 10.7 Gb/s data to each ONU and 50 km reach,” Opt. Express 18(15), 15672–15681 (2010).
    [CrossRef] [PubMed]
  20. J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Proc. OFC/NFOEC 2012 (2012), paper OW1C.4.
    [CrossRef]
  21. L. Barry, R. Watts, E. Martin, C. Browning, K. Merghem, C. Calò, A. Martinez, R. Rosales, and A. Ramdane, “Characterization of optical frequency combs for OFDM based optical transmission systems,” in Proc. International Conference on Fibre Optics and Photonics (2012), paper W2A.2.
    [CrossRef]
  22. Y. Wang, N. Chi, J. Zhang, S. Zou, “Investigation on the generation of coherent optical multi-carriers using cascaded phase modulators,” Proc. SPIE 8309, 83090R (2011).
    [CrossRef]
  23. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
    [CrossRef] [PubMed]
  24. J. M. Chavez Boggio, S. Moro, N. Alic, S. Radic, M. Karlsson, and J. Bland-Hawthorn, “Nearly octave-spanning cascaded four-wave-mixing generation in low dispersion highly nonlinear fiber” in Proc. ECOC2009 (2009), paper 9.1.2.
  25. B. P.-P. Kuo, E. Myslivets, N. Alic, S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightwave Technol. 29(23), 3515–3522 (2011).
    [CrossRef]
  26. E. Myslivets, B. P. P. Kuo, N. Alic, S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012).
    [CrossRef] [PubMed]
  27. B. P.-P. Kuo, E. Myslivets, V. Ataie, E. G. Temprana, N. Alic, S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightwave Technol. 31(21), 3414–3419 (2013).
    [CrossRef]
  28. V. Ataie, B. P.-P. Kuo, E. Myslivets, and S. Radic, “Generation of 1500-tone, 120nm-wide ultraflat frequency comb by single CW source,” in Proc. OFC2013 (2013), paper PDP5C.1.
    [CrossRef]
  29. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012).
    [CrossRef] [PubMed]
  30. A. H. Gnauck, B. P.-P. Kuo, E. Myslivets, R. M. Jopson, M. Dinu, J. E. Simsarian, P. J. Winzer, and S. Radic, “Comb-based 16-QAM transmitter spanning the C and L bands,” to appear in IEEE Photon. Technol. Lett.
  31. T. Pfau, S. Hoffmann, R. Noe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [CrossRef]
  32. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P.-P. Kuo, N. Alic, S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012).
    [CrossRef] [PubMed]
  33. E. Ip, A. P. T. Lau, D. J. F. Barros, J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  34. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photonics Technol. Lett. 16(2), 674–676 (2004).
    [CrossRef]
  35. S. J. Savory, G. Gavioli, R. I. Killey, P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
    [CrossRef] [PubMed]
  36. I. Fatadin, S. J. Savory, “Compensation of frequency offset for 16-QAM optical coherent systems using QPSK partitioning,” IEEE Photonics Technol. Lett. 23(17), 1246–1248 (2011).

2013

2012

2011

B. P.-P. Kuo, E. Myslivets, N. Alic, S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightwave Technol. 29(23), 3515–3522 (2011).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Y. Wang, N. Chi, J. Zhang, S. Zou, “Investigation on the generation of coherent optical multi-carriers using cascaded phase modulators,” Proc. SPIE 8309, 83090R (2011).
[CrossRef]

I. Fatadin, S. J. Savory, “Compensation of frequency offset for 16-QAM optical coherent systems using QPSK partitioning,” IEEE Photonics Technol. Lett. 23(17), 1246–1248 (2011).

2010

2009

2008

2007

2006

2005

2004

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photonics Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

2003

S. T. Cundiff, J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

2000

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Alic, N.

Anandarajah, P. M.

Arcizet, O.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[CrossRef] [PubMed]

Ataie, V.

Balling, P.

Barros, D. J. F.

Barry, L. P.

Bartels, A.

A. Bartels, D. Heinecke, S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

A. Bartels, D. Heinecke, S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33(16), 1905–1907 (2008).
[CrossRef] [PubMed]

Bayvel, P.

Brehm, M.

Chi, N.

Y. Wang, N. Chi, J. Zhang, S. Zou, “Investigation on the generation of coherent optical multi-carriers using cascaded phase modulators,” Proc. SPIE 8309, 83090R (2011).
[CrossRef]

Cundiff, S. T.

S. T. Cundiff, J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

Daimon, Y.

Del’Haye, P.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[CrossRef] [PubMed]

Diddams, S.

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

F. Quinlan, G. Ycas, S. Osterman, S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[CrossRef] [PubMed]

A. Bartels, D. Heinecke, S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

A. Bartels, D. Heinecke, S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33(16), 1905–1907 (2008).
[CrossRef] [PubMed]

Fatadin, I.

I. Fatadin, S. J. Savory, “Compensation of frequency offset for 16-QAM optical coherent systems using QPSK partitioning,” IEEE Photonics Technol. Lett. 23(17), 1246–1248 (2011).

Fontaine, N. K.

Gavioli, G.

Geisler, D. J.

Hänsch, T. W.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

He, T.

Heinecke, D.

A. Bartels, D. Heinecke, S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

A. Bartels, D. Heinecke, S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33(16), 1905–1907 (2008).
[CrossRef] [PubMed]

Heritage, J. P.

Hirano, M.

Hoffmann, S.

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Hong, F.-L.

Huang, C.-B.

Z. Jiang, C.-B. Huang, D. E. Leaird, A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Inaba, H.

Ip, E.

Jiang, Z.

Z. Jiang, C.-B. Huang, D. E. Leaird, A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Kahn, J. M.

Keilmann, F.

Kelly, B.

Killey, R. I.

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[CrossRef] [PubMed]

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Kren, P.

Kuo, B. P. P.

Kuo, B. P.-P.

Lau, A. P. T.

Leaird, D. E.

Long, C. M.

Lu, Z. H.

Maher, R.

Mašika, P.

Matsumoto, H.

Minoshima, K.

Myslivets, E.

Nakazawa, M.

Newbury, N. R.

Noe, R.

O’Carroll, J.

O’Gorman, J.

Okuno, T.

Onae, A.

Onishi, M.

Osterman, S.

F. Quinlan, G. Ycas, S. Osterman, S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[CrossRef] [PubMed]

Pfau, T.

Phelan, R.

Quinlan, F.

F. Quinlan, G. Ycas, S. Osterman, S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[CrossRef] [PubMed]

Radic, S.

Russell, P. S. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Savory, S. J.

I. Fatadin, S. J. Savory, “Compensation of frequency offset for 16-QAM optical coherent systems using QPSK partitioning,” IEEE Photonics Technol. Lett. 23(17), 1246–1248 (2011).

S. J. Savory, G. Gavioli, R. I. Killey, P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
[CrossRef] [PubMed]

Schibli, T. R.

Schliesser, A.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[CrossRef] [PubMed]

A. Schliesser, M. Brehm, F. Keilmann, D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
[CrossRef] [PubMed]

Scott, R. P.

Shi, K.

Sprenger, B.

Supradeepa, V. R.

Swann, W. C.

Taylor, M. G.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photonics Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

Temprana, E. G.

Tong, Z.

Udem, T.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

van den Berg, S. A.

van der Weide, D.

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Wang, L. J.

Wang, Y.

Y. Wang, N. Chi, J. Zhang, S. Zou, “Investigation on the generation of coherent optical multi-carriers using cascaded phase modulators,” Proc. SPIE 8309, 83090R (2011).
[CrossRef]

Weiner, A. M.

Wiberg, A. O. J.

Wu, R.

Ycas, G.

F. Quinlan, G. Ycas, S. Osterman, S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[CrossRef] [PubMed]

Ye, J.

S. T. Cundiff, J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

Yoo, S. J. B.

Zhang, J.

Y. Wang, N. Chi, J. Zhang, S. Zou, “Investigation on the generation of coherent optical multi-carriers using cascaded phase modulators,” Proc. SPIE 8309, 83090R (2011).
[CrossRef]

B. Sprenger, J. Zhang, Z. H. Lu, L. J. Wang, “Atmospheric transfer of optical and radio frequency clock signals,” Opt. Lett. 34(7), 965–967 (2009).
[CrossRef] [PubMed]

Zou, S.

Y. Wang, N. Chi, J. Zhang, S. Zou, “Investigation on the generation of coherent optical multi-carriers using cascaded phase modulators,” Proc. SPIE 8309, 83090R (2011).
[CrossRef]

IEEE Photonics Technol. Lett.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photonics Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

I. Fatadin, S. J. Savory, “Compensation of frequency offset for 16-QAM optical coherent systems using QPSK partitioning,” IEEE Photonics Technol. Lett. 23(17), 1246–1248 (2011).

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat. Photonics

Z. Jiang, C.-B. Huang, D. E. Leaird, A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Opt. Express

A. Schliesser, M. Brehm, F. Keilmann, D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
[CrossRef] [PubMed]

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[CrossRef] [PubMed]

S. J. Savory, G. Gavioli, R. I. Killey, P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
[CrossRef] [PubMed]

E. Ip, A. P. T. Lau, D. J. F. Barros, J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
[CrossRef] [PubMed]

P. Balling, P. Křen, P. Mašika, S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
[CrossRef] [PubMed]

N. K. Fontaine, D. J. Geisler, R. P. Scott, T. He, J. P. Heritage, S. J. B. Yoo, “Demonstration of high-fidelity dynamic optical arbitrary waveform generation,” Opt. Express 18(22), 22988–22995 (2010).
[CrossRef] [PubMed]

R. Maher, K. Shi, L. P. Barry, J. O’Carroll, B. Kelly, R. Phelan, J. O’Gorman, P. M. Anandarajah, “Implementation of a cost-effective optical comb source in a WDM-PON with 10.7 Gb/s data to each ONU and 50 km reach,” Opt. Express 18(15), 15672–15681 (2010).
[CrossRef] [PubMed]

E. Myslivets, B. P. P. Kuo, N. Alic, S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012).
[CrossRef] [PubMed]

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P.-P. Kuo, N. Alic, S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012).
[CrossRef] [PubMed]

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[CrossRef] [PubMed]

Proc. SPIE

Y. Wang, N. Chi, J. Zhang, S. Zou, “Investigation on the generation of coherent optical multi-carriers using cascaded phase modulators,” Proc. SPIE 8309, 83090R (2011).
[CrossRef]

Rev. Mod. Phys.

S. T. Cundiff, J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

Rev. Sci. Instrum.

F. Quinlan, G. Ycas, S. Osterman, S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[CrossRef] [PubMed]

Science

T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

A. Bartels, D. Heinecke, S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

Other

A. R. Chraplyvy, “The coming capacity crunch,” presented at the European Conference on Optical Communication 2009 (ECOC09), Vienna, Austria, 20–24September2009, plenary talk.

J. Pfeifle, M. Lauermann, D. Wegner, J. Li, K. Hartinger, V. Brasch, T. Herr, D. Hillerkuss, R. M. Schmogrow, T. Schimmel, R. Holzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based frequency comb generator as optical source for coherent WDM transmission,” in Proc. OFC 2013 (2013), paper OW3C.2.
[CrossRef]

S. Fabbri, S. Sygletos, and A. Ellis, “Multi-harmonic optical comb generation,” in Proc. ECOC (2012), paper Mo.2.A.2.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Proc. OFC/NFOEC 2012 (2012), paper OW1C.4.
[CrossRef]

L. Barry, R. Watts, E. Martin, C. Browning, K. Merghem, C. Calò, A. Martinez, R. Rosales, and A. Ramdane, “Characterization of optical frequency combs for OFDM based optical transmission systems,” in Proc. International Conference on Fibre Optics and Photonics (2012), paper W2A.2.
[CrossRef]

J. M. Chavez Boggio, S. Moro, N. Alic, S. Radic, M. Karlsson, and J. Bland-Hawthorn, “Nearly octave-spanning cascaded four-wave-mixing generation in low dispersion highly nonlinear fiber” in Proc. ECOC2009 (2009), paper 9.1.2.

V. Ataie, B. P.-P. Kuo, E. Myslivets, and S. Radic, “Generation of 1500-tone, 120nm-wide ultraflat frequency comb by single CW source,” in Proc. OFC2013 (2013), paper PDP5C.1.
[CrossRef]

A. H. Gnauck, B. P.-P. Kuo, E. Myslivets, R. M. Jopson, M. Dinu, J. E. Simsarian, P. J. Winzer, and S. Radic, “Comb-based 16-QAM transmitter spanning the C and L bands,” to appear in IEEE Photon. Technol. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A three-stage shock-wave mixer-based comb generation schematic.

Fig. 2
Fig. 2

Parametric frequency comb spectrum taken with 0.1 nm resolution.

Fig. 3
Fig. 3

Homodyne phase-noise characterization setup.

Fig. 4
Fig. 4

Characterized phase variance distribution over the comb’s spectral span.

Fig. 5
Fig. 5

BER characterization experimental schematic; Acronyms: BPF – band-pass filter; QAM – quadrature amplitude modulation; AWG – arbitrary waveform generator; ASE – amplified spontaneous emission; VOA – variable optical attenuator; PC – personal computer.

Fig. 6
Fig. 6

20 Gbaud 16QAM BER performance. (left) C-band; (right) L-band.

Fig. 7
Fig. 7

Receiver Sensitivity at BER = 10−3 against carrier wavelength.

Metrics