Abstract

For manipulating nanometric particles, we propose a photonic crystal waveguide cavity design with a waist structure to enhance resonance characteristic of the cavity. For trapping a polystyrene particle of 50 nm radius on the lateral side of the waist, the optical force can reach 2308 pN/W with 24.7% signal transmission. Threshold power of only 0.32 mW is required for stable trapping. The total length of the device is relatively short with only ten photonic crystal periods, and the trapping can occur precisely and only at the waist. The designed cavity can also provide particle detection and surrounding medium sensing using the transmission spectrum with narrow linewidth. The simulated figure of merit of 110.6 is relatively high compared with those obtained from most plasmonic structures for sensing application. We anticipate this design with features of compact, efficient, and versatile in functionality will be beneficial for developing lab-on-chip in the future.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  3. R. Omori, T. Kobayashi, A. Suzuki, “Observation of a single-beam gradient-force optical trap for dielectric particles in air,” Opt. Lett. 22(11), 816–818 (1997).
    [CrossRef] [PubMed]
  4. W. H. Wright, G. J. Sonek, M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33(9), 1735–1748 (1994).
    [CrossRef] [PubMed]
  5. S. Kawata, T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17(11), 772–774 (1992).
    [CrossRef] [PubMed]
  6. K. Okamoto, S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
    [CrossRef]
  7. S. Kawata, T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996).
    [CrossRef] [PubMed]
  8. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
    [CrossRef] [PubMed]
  9. B. S. Schmidt, A. H. J. Yang, D. Erickson, M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
    [CrossRef] [PubMed]
  10. A. Rahmani, P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14(13), 6353–6358 (2006).
    [CrossRef] [PubMed]
  11. M. Barth, O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006).
    [CrossRef]
  12. S. Lin, J. Hu, L. Kimerling, K. Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection,” Opt. Lett. 34(21), 3451–3453 (2009).
    [CrossRef] [PubMed]
  13. O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
    [CrossRef] [PubMed]
  14. A. H. J. Yang, T. Lerdsuchatawanich, D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
    [CrossRef] [PubMed]
  15. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [CrossRef] [PubMed]
  16. J. Ma, L. J. Martínez, M. L. Povinelli, “Optical trapping via guided resonance modes in a slot-Suzuki-phase photonic crystal lattice,” Opt. Express 20(6), 6816–6824 (2012).
    [CrossRef] [PubMed]
  17. V. R. Almeida, Q. F. Xu, C. A. Barrios, M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  18. T. Asano, B. S. Song, Y. Akahane, S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1123–1134 (2006).
    [CrossRef]
  19. X. Serey, S. Mandal, D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21(30), 305202 (2010).
    [CrossRef] [PubMed]
  20. K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [CrossRef] [PubMed]
  21. M. Nieto-Vesperinas, P. C. Chaumet, A. Rahmani, “Near-field photonic forces,” Philos Trans A Math Phys Eng Sci 362(1817), 719–737 (2004).
    [CrossRef] [PubMed]
  22. J. D. Jackson, Classical Electrodynamics (John Wiley, 1975), Chap. 6.
  23. A. H. J. Yang, D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
    [CrossRef] [PubMed]
  24. P. E. Barclay, K. Srinivasan, O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
    [CrossRef] [PubMed]
  25. A. E. Cetin, H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
    [CrossRef] [PubMed]

2012 (3)

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[CrossRef] [PubMed]

A. E. Cetin, H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

J. Ma, L. J. Martínez, M. L. Povinelli, “Optical trapping via guided resonance modes in a slot-Suzuki-phase photonic crystal lattice,” Opt. Express 20(6), 6816–6824 (2012).
[CrossRef] [PubMed]

2010 (1)

X. Serey, S. Mandal, D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21(30), 305202 (2010).
[CrossRef] [PubMed]

2009 (3)

A. H. J. Yang, T. Lerdsuchatawanich, D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[CrossRef] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

S. Lin, J. Hu, L. Kimerling, K. Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection,” Opt. Lett. 34(21), 3451–3453 (2009).
[CrossRef] [PubMed]

2008 (1)

A. H. J. Yang, D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (3)

A. Rahmani, P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14(13), 6353–6358 (2006).
[CrossRef] [PubMed]

M. Barth, O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006).
[CrossRef]

T. Asano, B. S. Song, Y. Akahane, S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1123–1134 (2006).
[CrossRef]

2005 (2)

2004 (3)

V. R. Almeida, Q. F. Xu, C. A. Barrios, M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
[CrossRef] [PubMed]

K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

M. Nieto-Vesperinas, P. C. Chaumet, A. Rahmani, “Near-field photonic forces,” Philos Trans A Math Phys Eng Sci 362(1817), 719–737 (2004).
[CrossRef] [PubMed]

1999 (1)

K. Okamoto, S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[CrossRef]

1997 (1)

1996 (1)

1994 (1)

1992 (1)

1986 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Ahluwalia, B. S.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[CrossRef] [PubMed]

Akahane, Y.

T. Asano, B. S. Song, Y. Akahane, S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1123–1134 (2006).
[CrossRef]

Almeida, V. R.

Altug, H.

A. E. Cetin, H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

Asano, T.

T. Asano, B. S. Song, Y. Akahane, S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1123–1134 (2006).
[CrossRef]

Ashkin, A.

Barclay, P. E.

Barrios, C. A.

Barth, M.

M. Barth, O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006).
[CrossRef]

Benson, O.

M. Barth, O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006).
[CrossRef]

Berns, M. W.

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Cetin, A. E.

A. E. Cetin, H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

Chatelain, F.

Chaumet, P. C.

A. Rahmani, P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14(13), 6353–6358 (2006).
[CrossRef] [PubMed]

M. Nieto-Vesperinas, P. C. Chaumet, A. Rahmani, “Near-field photonic forces,” Philos Trans A Math Phys Eng Sci 362(1817), 719–737 (2004).
[CrossRef] [PubMed]

Chu, S.

Colas, G.

Crozier, K.

Dérouard, J.

Dziedzic, J. M.

Erickson, D.

X. Serey, S. Mandal, D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21(30), 305202 (2010).
[CrossRef] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

A. H. J. Yang, T. Lerdsuchatawanich, D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[CrossRef] [PubMed]

A. H. J. Yang, D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

Fedeli, J. M.

Fuchs, A.

Gaugiran, S.

Gétin, S.

Hellesø, O. G.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[CrossRef] [PubMed]

Hu, J.

Kawata, S.

Kimerling, L.

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Kobayashi, T.

Lerdsuchatawanich, T.

A. H. J. Yang, T. Lerdsuchatawanich, D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[CrossRef] [PubMed]

Lin, S.

Lipson, M.

Løvhaugen, P.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[CrossRef] [PubMed]

Ma, J.

Mandal, S.

X. Serey, S. Mandal, D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21(30), 305202 (2010).
[CrossRef] [PubMed]

Martínez, L. J.

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Neuman, K. C.

K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

M. Nieto-Vesperinas, P. C. Chaumet, A. Rahmani, “Near-field photonic forces,” Philos Trans A Math Phys Eng Sci 362(1817), 719–737 (2004).
[CrossRef] [PubMed]

Noda, S.

T. Asano, B. S. Song, Y. Akahane, S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1123–1134 (2006).
[CrossRef]

Okamoto, K.

K. Okamoto, S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[CrossRef]

Omori, R.

Painter, O.

Povinelli, M. L.

Rahmani, A.

A. Rahmani, P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14(13), 6353–6358 (2006).
[CrossRef] [PubMed]

M. Nieto-Vesperinas, P. C. Chaumet, A. Rahmani, “Near-field photonic forces,” Philos Trans A Math Phys Eng Sci 362(1817), 719–737 (2004).
[CrossRef] [PubMed]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

Serey, X.

X. Serey, S. Mandal, D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21(30), 305202 (2010).
[CrossRef] [PubMed]

Sonek, G. J.

Song, B. S.

T. Asano, B. S. Song, Y. Akahane, S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1123–1134 (2006).
[CrossRef]

Srinivasan, K.

Subramanian, A. Z.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[CrossRef] [PubMed]

Sugiura, T.

Suzuki, A.

Tani, T.

Wilkinson, J. S.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[CrossRef] [PubMed]

Wright, W. H.

Xu, Q. F.

Yang, A. H. J.

A. H. J. Yang, T. Lerdsuchatawanich, D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[CrossRef] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

A. H. J. Yang, D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

ACS Nano (1)

A. E. Cetin, H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Barth, O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Asano, B. S. Song, Y. Akahane, S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1123–1134 (2006).
[CrossRef]

Lab Chip (1)

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[CrossRef] [PubMed]

Nano Lett. (1)

A. H. J. Yang, T. Lerdsuchatawanich, D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[CrossRef] [PubMed]

Nanotechnology (2)

X. Serey, S. Mandal, D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21(30), 305202 (2010).
[CrossRef] [PubMed]

A. H. J. Yang, D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[CrossRef] [PubMed]

Nature (1)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (6)

Philos Trans A Math Phys Eng Sci (1)

M. Nieto-Vesperinas, P. C. Chaumet, A. Rahmani, “Near-field photonic forces,” Philos Trans A Math Phys Eng Sci 362(1817), 719–737 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

K. Okamoto, S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Other (1)

J. D. Jackson, Classical Electrodynamics (John Wiley, 1975), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic illustrations of the basic cavity (gray) and waist cavity (blue) with parameters indicated. (b) Transmission spectra of the designed photonic crystal lattice (black curve) and waist cavity (red curve). The shaded region is the PBG. Top and cross-sectional views of |E| distributions of the resonant modes in (c) the basic cavity and (d) the waist cavity.

Fig. 2
Fig. 2

(a) Distributions of |E|2 of the resonant modes in the basic and waist cavities along y axis when they resonate with the same total energy. (b) Quality factor of the designed waist cavity as a function of ww when s is 70 nm and wl is 950 nm.

Fig. 3
Fig. 3

Dependences of Q and trapping force Fy on the (a) input and (b) output side period numbers. Qs are calculated when the PS is trapped at the side of the waist. (c) Dependence of transmission of the waist cavity on the output side period number when there is only four periods on the input side.

Fig. 4
Fig. 4

(a) Evolution of Fy and distribution of trapping potential when the PS moves toward the waist in –y direction (x = 0 and z = 0). (b) Evolution of Fz and distribution of trapping potential when the PS moves toward the waist in –z direction (x = 0 and y = 220 nm). Here T is set at 300K.

Fig. 5
Fig. 5

Schematic illustration of the designed waist cavity with three possible trapping positions indicated. The positions are at entrance of the nearest hole (position a.), on top center (position b.), or at the lateral side of the waist (position c.).

Fig. 6
Fig. 6

Spectra of transmission and trapping force Fy on the PS when it is trapped on the lateral side of (a) the waist of the designed cavity, (b) the basic cavity without the waist, (c) the waist of a ridge waveguide, and (d) a ridge waveguide. In each of these cases, the PS is at position x = z = 0 and a 20 nm separation between the particle and CCW or edge of the waveguide.

Fig. 7
Fig. 7

(a) Transmission spectra of the designed waist cavity when no particle is trapped and when a PS of 50, 75, or 100 nm radius is trapped. (b) Resonant wavelength of the transmission peak as a function of refractive index of the surrounding medium.

Tables (1)

Tables Icon

Table 1 Comparison of trapping forces on the PS when it is at different positions.

Metrics