Abstract

We report what is to our knowledge the first mode-locked Cr4+:YAG single-crystal fiber laser, which generates pulses of 120-fs duration with an output power of 23 mW at a center wavelength of 1520 nm for a single pulse in a cavity-round-trip. The laser contains a single-crystal fiber multi-mode waveguide about 120 μm in diameter and 40-mm long. The fundamental transverse mode is selected with an external cavity. This design strategy turned out to be well suited for direct high-power-laser-diode pumping.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ishida, K. Naganuma, “Compact diode-pumped all-solid-state femtosecond Cr4+:YAG laser,” Opt. Lett. 21(1), 51–53 (1996).
    [CrossRef] [PubMed]
  2. S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, Y. G. Zhang, S. Y. Choi, F. Rotermund, G. Reali, F. Pirzio, “Sub-50 fs mode-locking of a Cr:YAG laser using an SWCNT-SA,” Laser Phys. Lett. 10(8), 085801 (2013).
    [CrossRef]
  3. C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, T. Tschudi, “All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 μm,” Opt. Lett. 26(5), 292–294 (2001).
    [CrossRef] [PubMed]
  4. S. Ozharar, I. Baylam, M. N. Cizmeciyan, O. Balci, E. Pince, C. Kocabas, A. Sennaroglu, “Graphene mode-locked multipass-cavity femtosecond Cr4+: forsterite laser,” J. Opt. Soc. Am. B 30(5), 1270–1275 (2013).
    [CrossRef]
  5. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi, “Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24(9), 631–633 (1999).
    [CrossRef] [PubMed]
  6. R. Ell, U. Morgner, F. X. Kãârtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26(6), 373–375 (2001).
    [CrossRef] [PubMed]
  7. A. G. Okhrimchuk, A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. 3(1), 1–13 (1994).
    [CrossRef]
  8. Y. Ishida, K. Naganuma, “Characteristics of femtosecond pulses near 1.5 µm in a self-mode-locked Cr4+:YAG laser,” Opt. Lett. 19(23), 2003–2005 (1994).
    [CrossRef] [PubMed]
  9. A. Sennaroglu, C. R. Pollock, H. Nathel, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt. Soc. Am. B 12(5), 930–937 (1995).
    [CrossRef]
  10. D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, T. Tschudi, “Generation of 20-fs pulses by a prismless Cr4+:YAG laser,” Opt. Lett. 27(1), 61–63 (2002).
    [CrossRef] [PubMed]
  11. E. Sorokin, S. Naumov, I. T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 690–712 (2005).
    [CrossRef]
  12. A. J. Alcock, P. Scorah, K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215(1–3), 153–157 (2003).
    [CrossRef]
  13. S. Naumov, E. Sorokin, I. T. Sorokina, “Directly diode-pumped Kerr-lens mode-locked Cr4+:YAG laser,” Opt. Lett. 29(11), 1276–1278 (2004).
    [CrossRef] [PubMed]
  14. S. Ishibashi and K. Naganuma, “Diode-pumped Cr4+:YAG single crystal fiber laser,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper MD4.
  15. S. Naumov, E. Sorokin, and I. Sorokina, “Directly diode-pumped femtosecond Cr4+:YAG laser,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 163.
  16. J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008).
    [CrossRef] [PubMed]
  17. F. D. Brunner, O.-P. Kwon, S.-J. Kwon, M. Jazbinsek, A. Schneider, P. Günter, “A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection,” Opt. Express 16(21), 16496–16508 (2008).
    [CrossRef] [PubMed]
  18. J. Stone, C. A. Burrus, A. G. Dentai, B. I. Miller, “Nd:YAG single-crystal fiber laser: Room-temperature cw operation using a single LED as an end pump,” Appl. Phys. Lett. 29(1), 37–39 (1976).
    [CrossRef]
  19. J. Stone, C. A. Burrus, “Self-contained LED-pumped single-crystal Nd:YAG fiber laser,” Fiber Integrated Opt. 2(1), 19–46 (1979).
    [CrossRef]
  20. M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
    [CrossRef]
  21. S. Ishibashi, K. Naganuma, I. Yokohama, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” J. Cryst. Growth 183(4), 614–621 (1998).
    [CrossRef]
  22. M. E. Fermann, A. Galvanauskas, M. Hofer, “Ultrafast pulse sources based on multi-mode optical fibers,” Appl. Phys. B 70(S1), S13–S23 (2000).
    [CrossRef]
  23. J. A. Au, D. Kopf, F. Morier-Genoud, M. Moser, U. Keller, “60-fs pulses from a diode-pumped Nd:glass laser,” Opt. Lett. 22(5), 307–309 (1997).
    [CrossRef] [PubMed]
  24. F. X. Kärtner, J. Aus der Au, U. Keller, “Modelocking with slow and fast saturable absorbers - What's the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
    [CrossRef]

2013 (2)

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, Y. G. Zhang, S. Y. Choi, F. Rotermund, G. Reali, F. Pirzio, “Sub-50 fs mode-locking of a Cr:YAG laser using an SWCNT-SA,” Laser Phys. Lett. 10(8), 085801 (2013).
[CrossRef]

S. Ozharar, I. Baylam, M. N. Cizmeciyan, O. Balci, E. Pince, C. Kocabas, A. Sennaroglu, “Graphene mode-locked multipass-cavity femtosecond Cr4+: forsterite laser,” J. Opt. Soc. Am. B 30(5), 1270–1275 (2013).
[CrossRef]

2008 (2)

2005 (1)

E. Sorokin, S. Naumov, I. T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 690–712 (2005).
[CrossRef]

2004 (1)

2003 (1)

A. J. Alcock, P. Scorah, K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215(1–3), 153–157 (2003).
[CrossRef]

2002 (1)

2001 (2)

2000 (1)

M. E. Fermann, A. Galvanauskas, M. Hofer, “Ultrafast pulse sources based on multi-mode optical fibers,” Appl. Phys. B 70(S1), S13–S23 (2000).
[CrossRef]

1999 (1)

1998 (2)

S. Ishibashi, K. Naganuma, I. Yokohama, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” J. Cryst. Growth 183(4), 614–621 (1998).
[CrossRef]

F. X. Kärtner, J. Aus der Au, U. Keller, “Modelocking with slow and fast saturable absorbers - What's the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

1997 (1)

1996 (1)

1995 (1)

1994 (2)

1984 (1)

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[CrossRef]

1979 (1)

J. Stone, C. A. Burrus, “Self-contained LED-pumped single-crystal Nd:YAG fiber laser,” Fiber Integrated Opt. 2(1), 19–46 (1979).
[CrossRef]

1976 (1)

J. Stone, C. A. Burrus, A. G. Dentai, B. I. Miller, “Nd:YAG single-crystal fiber laser: Room-temperature cw operation using a single LED as an end pump,” Appl. Phys. Lett. 29(1), 37–39 (1976).
[CrossRef]

Agnesi, A.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, Y. G. Zhang, S. Y. Choi, F. Rotermund, G. Reali, F. Pirzio, “Sub-50 fs mode-locking of a Cr:YAG laser using an SWCNT-SA,” Laser Phys. Lett. 10(8), 085801 (2013).
[CrossRef]

Alcock, A. J.

A. J. Alcock, P. Scorah, K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215(1–3), 153–157 (2003).
[CrossRef]

Angelow, G.

Au, J. A.

Aus der Au, J.

F. X. Kärtner, J. Aus der Au, U. Keller, “Modelocking with slow and fast saturable absorbers - What's the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

Balci, O.

Baylam, I.

Boiko, A.

Brunner, F. D.

Burrus, C. A.

J. Stone, C. A. Burrus, “Self-contained LED-pumped single-crystal Nd:YAG fiber laser,” Fiber Integrated Opt. 2(1), 19–46 (1979).
[CrossRef]

J. Stone, C. A. Burrus, A. G. Dentai, B. I. Miller, “Nd:YAG single-crystal fiber laser: Room-temperature cw operation using a single LED as an end pump,” Appl. Phys. Lett. 29(1), 37–39 (1976).
[CrossRef]

Byer, R. L.

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[CrossRef]

Cho, W. B.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, Y. G. Zhang, S. Y. Choi, F. Rotermund, G. Reali, F. Pirzio, “Sub-50 fs mode-locking of a Cr:YAG laser using an SWCNT-SA,” Laser Phys. Lett. 10(8), 085801 (2013).
[CrossRef]

Choi, S. Y.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, Y. G. Zhang, S. Y. Choi, F. Rotermund, G. Reali, F. Pirzio, “Sub-50 fs mode-locking of a Cr:YAG laser using an SWCNT-SA,” Laser Phys. Lett. 10(8), 085801 (2013).
[CrossRef]

Chudoba, C.

Cizmeciyan, M. N.

Dentai, A. G.

J. Stone, C. A. Burrus, A. G. Dentai, B. I. Miller, “Nd:YAG single-crystal fiber laser: Room-temperature cw operation using a single LED as an end pump,” Appl. Phys. Lett. 29(1), 37–39 (1976).
[CrossRef]

Di Dio Cafiso, S. D.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, Y. G. Zhang, S. Y. Choi, F. Rotermund, G. Reali, F. Pirzio, “Sub-50 fs mode-locking of a Cr:YAG laser using an SWCNT-SA,” Laser Phys. Lett. 10(8), 085801 (2013).
[CrossRef]

Ell, R.

Fejer, M. M.

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[CrossRef]

Fermann, M. E.

M. E. Fermann, A. Galvanauskas, M. Hofer, “Ultrafast pulse sources based on multi-mode optical fibers,” Appl. Phys. B 70(S1), S13–S23 (2000).
[CrossRef]

Fujimoto, J. G.

Gallmann, L.

Galvanauskas, A.

M. E. Fermann, A. Galvanauskas, M. Hofer, “Ultrafast pulse sources based on multi-mode optical fibers,” Appl. Phys. B 70(S1), S13–S23 (2000).
[CrossRef]

Gopinath, J. T.

Griebner, U.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, Y. G. Zhang, S. Y. Choi, F. Rotermund, G. Reali, F. Pirzio, “Sub-50 fs mode-locking of a Cr:YAG laser using an SWCNT-SA,” Laser Phys. Lett. 10(8), 085801 (2013).
[CrossRef]

Günter, P.

Haus, H. A.

Hnatovsky, K.

A. J. Alcock, P. Scorah, K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215(1–3), 153–157 (2003).
[CrossRef]

Hofer, M.

M. E. Fermann, A. Galvanauskas, M. Hofer, “Ultrafast pulse sources based on multi-mode optical fibers,” Appl. Phys. B 70(S1), S13–S23 (2000).
[CrossRef]

Ippen, E. P.

Ishibashi, S.

S. Ishibashi, K. Naganuma, I. Yokohama, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” J. Cryst. Growth 183(4), 614–621 (1998).
[CrossRef]

Ishida, Y.

Jazbinsek, M.

Kãârtner, F. X.

Kanamori, S.

Kärtner, F. X.

Kasai, S.

Kawase, K.

Keller, U.

Kocabas, C.

Kopf, D.

Kwon, O.-P.

Kwon, S.-J.

Lederer, M. J.

Luther-Davies, B.

Magel, G. A.

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[CrossRef]

Matuschek, N.

Miller, B. I.

J. Stone, C. A. Burrus, A. G. Dentai, B. I. Miller, “Nd:YAG single-crystal fiber laser: Room-temperature cw operation using a single LED as an end pump,” Appl. Phys. Lett. 29(1), 37–39 (1976).
[CrossRef]

Morgner, U.

Morier-Genoud, F.

Moser, M.

Naganuma, K.

Nathel, H.

Naumov, S.

E. Sorokin, S. Naumov, I. T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 690–712 (2005).
[CrossRef]

S. Naumov, E. Sorokin, I. T. Sorokina, “Directly diode-pumped Kerr-lens mode-locked Cr4+:YAG laser,” Opt. Lett. 29(11), 1276–1278 (2004).
[CrossRef] [PubMed]

Nightingale, J. L.

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[CrossRef]

Nishizawa, N.

Ohtake, H.

Okhrimchuk, A. G.

A. G. Okhrimchuk, A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. 3(1), 1–13 (1994).
[CrossRef]

Ouchi, T.

Ozharar, S.

Petrov, V.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, Y. G. Zhang, S. Y. Choi, F. Rotermund, G. Reali, F. Pirzio, “Sub-50 fs mode-locking of a Cr:YAG laser using an SWCNT-SA,” Laser Phys. Lett. 10(8), 085801 (2013).
[CrossRef]

Pince, E.

Pirzio, F.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, Y. G. Zhang, S. Y. Choi, F. Rotermund, G. Reali, F. Pirzio, “Sub-50 fs mode-locking of a Cr:YAG laser using an SWCNT-SA,” Laser Phys. Lett. 10(8), 085801 (2013).
[CrossRef]

Pollock, C. R.

Reali, G.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, Y. G. Zhang, S. Y. Choi, F. Rotermund, G. Reali, F. Pirzio, “Sub-50 fs mode-locking of a Cr:YAG laser using an SWCNT-SA,” Laser Phys. Lett. 10(8), 085801 (2013).
[CrossRef]

Ripin, D. J.

Rotermund, F.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, Y. G. Zhang, S. Y. Choi, F. Rotermund, G. Reali, F. Pirzio, “Sub-50 fs mode-locking of a Cr:YAG laser using an SWCNT-SA,” Laser Phys. Lett. 10(8), 085801 (2013).
[CrossRef]

Scheuer, V.

Schmidt, A.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, Y. G. Zhang, S. Y. Choi, F. Rotermund, G. Reali, F. Pirzio, “Sub-50 fs mode-locking of a Cr:YAG laser using an SWCNT-SA,” Laser Phys. Lett. 10(8), 085801 (2013).
[CrossRef]

Schneider, A.

Scorah, P.

A. J. Alcock, P. Scorah, K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215(1–3), 153–157 (2003).
[CrossRef]

Sennaroglu, A.

Shestakov, A. V.

A. G. Okhrimchuk, A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. 3(1), 1–13 (1994).
[CrossRef]

Sorokin, E.

E. Sorokin, S. Naumov, I. T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 690–712 (2005).
[CrossRef]

S. Naumov, E. Sorokin, I. T. Sorokina, “Directly diode-pumped Kerr-lens mode-locked Cr4+:YAG laser,” Opt. Lett. 29(11), 1276–1278 (2004).
[CrossRef] [PubMed]

Sorokina, I. T.

E. Sorokin, S. Naumov, I. T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 690–712 (2005).
[CrossRef]

S. Naumov, E. Sorokin, I. T. Sorokina, “Directly diode-pumped Kerr-lens mode-locked Cr4+:YAG laser,” Opt. Lett. 29(11), 1276–1278 (2004).
[CrossRef] [PubMed]

Steinmeyer, G.

Stone, J.

J. Stone, C. A. Burrus, “Self-contained LED-pumped single-crystal Nd:YAG fiber laser,” Fiber Integrated Opt. 2(1), 19–46 (1979).
[CrossRef]

J. Stone, C. A. Burrus, A. G. Dentai, B. I. Miller, “Nd:YAG single-crystal fiber laser: Room-temperature cw operation using a single LED as an end pump,” Appl. Phys. Lett. 29(1), 37–39 (1976).
[CrossRef]

Suizu, K.

Sutter, D. H.

Takayanagi, J.

Tschudi, T.

Uchida, H.

Ugolotti, E.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, Y. G. Zhang, S. Y. Choi, F. Rotermund, G. Reali, F. Pirzio, “Sub-50 fs mode-locking of a Cr:YAG laser using an SWCNT-SA,” Laser Phys. Lett. 10(8), 085801 (2013).
[CrossRef]

Yamashita, M.

Yokohama, I.

S. Ishibashi, K. Naganuma, I. Yokohama, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” J. Cryst. Growth 183(4), 614–621 (1998).
[CrossRef]

Zhang, Y. G.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, Y. G. Zhang, S. Y. Choi, F. Rotermund, G. Reali, F. Pirzio, “Sub-50 fs mode-locking of a Cr:YAG laser using an SWCNT-SA,” Laser Phys. Lett. 10(8), 085801 (2013).
[CrossRef]

Appl. Phys. B (1)

M. E. Fermann, A. Galvanauskas, M. Hofer, “Ultrafast pulse sources based on multi-mode optical fibers,” Appl. Phys. B 70(S1), S13–S23 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

J. Stone, C. A. Burrus, A. G. Dentai, B. I. Miller, “Nd:YAG single-crystal fiber laser: Room-temperature cw operation using a single LED as an end pump,” Appl. Phys. Lett. 29(1), 37–39 (1976).
[CrossRef]

Fiber Integrated Opt. (1)

J. Stone, C. A. Burrus, “Self-contained LED-pumped single-crystal Nd:YAG fiber laser,” Fiber Integrated Opt. 2(1), 19–46 (1979).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

E. Sorokin, S. Naumov, I. T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 690–712 (2005).
[CrossRef]

F. X. Kärtner, J. Aus der Au, U. Keller, “Modelocking with slow and fast saturable absorbers - What's the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

J. Cryst. Growth (1)

S. Ishibashi, K. Naganuma, I. Yokohama, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” J. Cryst. Growth 183(4), 614–621 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, Y. G. Zhang, S. Y. Choi, F. Rotermund, G. Reali, F. Pirzio, “Sub-50 fs mode-locking of a Cr:YAG laser using an SWCNT-SA,” Laser Phys. Lett. 10(8), 085801 (2013).
[CrossRef]

Opt. Commun. (1)

A. J. Alcock, P. Scorah, K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215(1–3), 153–157 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (8)

Y. Ishida, K. Naganuma, “Characteristics of femtosecond pulses near 1.5 µm in a self-mode-locked Cr4+:YAG laser,” Opt. Lett. 19(23), 2003–2005 (1994).
[CrossRef] [PubMed]

J. A. Au, D. Kopf, F. Morier-Genoud, M. Moser, U. Keller, “60-fs pulses from a diode-pumped Nd:glass laser,” Opt. Lett. 22(5), 307–309 (1997).
[CrossRef] [PubMed]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi, “Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24(9), 631–633 (1999).
[CrossRef] [PubMed]

Y. Ishida, K. Naganuma, “Compact diode-pumped all-solid-state femtosecond Cr4+:YAG laser,” Opt. Lett. 21(1), 51–53 (1996).
[CrossRef] [PubMed]

C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, T. Tschudi, “All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 μm,” Opt. Lett. 26(5), 292–294 (2001).
[CrossRef] [PubMed]

R. Ell, U. Morgner, F. X. Kãârtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26(6), 373–375 (2001).
[CrossRef] [PubMed]

D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, T. Tschudi, “Generation of 20-fs pulses by a prismless Cr4+:YAG laser,” Opt. Lett. 27(1), 61–63 (2002).
[CrossRef] [PubMed]

S. Naumov, E. Sorokin, I. T. Sorokina, “Directly diode-pumped Kerr-lens mode-locked Cr4+:YAG laser,” Opt. Lett. 29(11), 1276–1278 (2004).
[CrossRef] [PubMed]

Opt. Mater. (1)

A. G. Okhrimchuk, A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. 3(1), 1–13 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[CrossRef]

Other (2)

S. Ishibashi and K. Naganuma, “Diode-pumped Cr4+:YAG single crystal fiber laser,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper MD4.

S. Naumov, E. Sorokin, and I. Sorokina, “Directly diode-pumped femtosecond Cr4+:YAG laser,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 163.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a directly LD-pumped single-crystal fiber multi-mode waveguide laser with an external cavity.

Fig. 2
Fig. 2

Photographs of Cr4+:YAG single-crystal fiber. (a) End view. White light enters the fiber from the back end. The fiber is surrounded by {100} facets. (b) Side view.

Fig. 3
Fig. 3

Growth orientation and a cross-sectional shape of the Cr4+:YAG single-crystal fiber.

Fig. 4
Fig. 4

Photograph of the Cr4+:YAG single-crystal fiber, with both ends polished at the angle of 85.5°.

Fig. 5
Fig. 5

Schematic of the single-crystal-fiber holding blocks used for polarization control.

Fig. 6
Fig. 6

Schematic of two-mirror cavity with a birefringent filter for the evaluation of the tunability of the Cr4+:YAG single-crystal fiber laser.

Fig. 7
Fig. 7

(a) Oscillation-wavelength dependence of output power of Cr4+:YAG single-crystal fiber laser. (b) Output power from Cr4+:YAG single-crystal fiber laser with a birefringent filter (solid line). The broken line indicates the oscillation wavelength.

Fig. 8
Fig. 8

(a) Schematic of Cr4+:YAG single-crystal fiber laser with an external cavity. (b) Near field beam profiles of the output from the single-crystal fiber laser.

Fig. 9
Fig. 9

(a) Intensity autocorrelation of the mode-locked Cr4+:YAG single-crystal fiber laser. Dots indicate measured values. The solid line is a calculation for a hyperbolic secant squared intensity pulse shape. (b) Oscillation spectrum of the mode-locked Cr4+:YAG single-crystal fiber laser. The solid line indicates measured values. The broken line is a calculation of a hyperbolic secant squared intensity profile on frequencies.

Metrics