Abstract

The transient thermal lens in a high-average power double metal tungstate Raman laser has been investigated. An external cavity potassium gadolinium tungstate (KGW) laser designed for second-Stokes output was burst-pumped with up to 46 W of average power at a pulse repetition rate of 38 kHz. At low duty-cycle, the laser generated up to 18 W of on-time average Raman power with a conversion efficiency of 40%. At high duty cycle, efficiency is reduced and the near-field beam profile expands in the X1′ crystal direction over a period of tens of milliseconds. The evolution of the spatial beam properties occurs in response to the development of a highly astigmatic thermal lens with fast-axis susceptibility of approximately −1.7 m−1 per watt of Raman output power. We show that the likely cause for astigmatism is primarily photo-elastic in origin. Beam circularization was achieved by incorporating an intracavity convex cylindrical lens.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [CrossRef]
  2. H. M. Pask, S. Myers, J. A. Piper, J. Richards, T. McKay, “High average power, all-solid-state external resonator Raman laser,” Opt. Lett. 28(6), 435–437 (2003).
    [CrossRef] [PubMed]
  3. A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29(21), 2524–2526 (2004).
    [CrossRef] [PubMed]
  4. V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1–2), 127–134 (2010).
    [CrossRef]
  5. R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
    [CrossRef]
  6. T. T. Basiev, A. V. Gavrilov, V. V. Osiko, S. N. Smetanin, A. V. Fedin, “High-average-power SRS conversion of radiation in a BaWO4 crystal,” Quantum Electron. 34(7), 649–651 (2004).
    [CrossRef]
  7. X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
    [CrossRef]
  8. O. Kitzler, A. McKay, R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37(14), 2790–2792 (2012).
    [CrossRef] [PubMed]
  9. A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
    [CrossRef]
  10. J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express 19(2), 913–922 (2011).
    [CrossRef] [PubMed]
  11. V. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
    [CrossRef]
  12. R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper, T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express 12(5), 785–790 (2004).
    [CrossRef] [PubMed]
  13. R. P. Mildren, H. Ogilvy, J. A. Piper, “Solid-state Raman laser generating discretely tunable ultraviolet between 266 and 320 nm,” Opt. Lett. 32(7), 814–816 (2007).
    [CrossRef] [PubMed]
  14. I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
    [CrossRef]
  15. R. P. Mildren, D. W. Coutts, D. J. Spence, “All-solid-state parametric Raman anti-Stokes laser at 508 nm,” Opt. Express 17(2), 810–818 (2009).
    [CrossRef] [PubMed]
  16. R. P. Mildren, “Side-pumped crystalline Raman laser,” Opt. Lett. 36(2), 235–237 (2011).
    [CrossRef] [PubMed]
  17. V. V. Filippov, “Athermal directions in KGd(WO4)2 and KLu(WO4)2 crystals under uniform heating,” Appl. Opt. 52(18), 4377–4384 (2013).
    [CrossRef] [PubMed]
  18. J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, “Laser performance and thermal lensing in high-power diode-pumped Yb:KGW with athermal orientation,” Appl. Phys. B 83(1), 55–59 (2006).
    [CrossRef]
  19. A. McKay, O. Kitzler, R. P. Mildren, “High power tungstate-crystal Raman laser operating in the strong thermal lensing regime,” Opt. Express 22(1), 707–715 (2014).
    [CrossRef] [PubMed]
  20. S. Saghafi, C. Sheppard, J. A. Piper, “Characterising elegant and standard Hermite-Gaussian beam modes,” Opt. Commun. 191(3–6), 173–179 (2001).
    [CrossRef]
  21. K. L. Wlodarczyk, I. J. Thomson, H. J. Baker, D. R. Hall, “Generation of microstripe cylindrical and toroidal mirrors by localized laser evaporation of fused silica,” Appl. Opt. 51(26), 6352–6360 (2012).
    [CrossRef] [PubMed]
  22. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10(13), 550–555 (2002).
    [CrossRef] [PubMed]
  23. O. Silvestre, J. Grau, M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. T. Borowiec, A. Szewczyk, M. U. Gutowska, M. Massot, A. Salazar, V. Petrov, “Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host,” Opt. Express 16(7), 5022–5034 (2008).
    [CrossRef] [PubMed]
  24. A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
    [CrossRef]
  25. W. Koechner, “Thermal Lensing in a Nd:YAG Laser Rod,” Appl. Opt. 9(11), 2548–2553 (1970).
    [CrossRef] [PubMed]
  26. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
    [CrossRef]
  27. M. M. Mazur, D. Y. Velikovskii, F. A. Kuznetsov, L. I. Mazur, A. A. Pavlyuk, V. E. Pozhar, V. I. Pustovoit, “Elastic and photoelastic properties of KGd(WO4)2 single crystals,” Acoust. Phys. 58(6), 658–665 (2012).
    [CrossRef]
  28. J. D. Foster, L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970).
    [CrossRef]
  29. P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
    [CrossRef]
  30. G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express 20(9), 9810–9818 (2012).
    [CrossRef] [PubMed]
  31. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re=Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
    [CrossRef]

2014 (1)

2013 (2)

V. V. Filippov, “Athermal directions in KGd(WO4)2 and KLu(WO4)2 crystals under uniform heating,” Appl. Opt. 52(18), 4377–4384 (2013).
[CrossRef] [PubMed]

A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
[CrossRef]

2012 (6)

V. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[CrossRef]

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

O. Kitzler, A. McKay, R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37(14), 2790–2792 (2012).
[CrossRef] [PubMed]

K. L. Wlodarczyk, I. J. Thomson, H. J. Baker, D. R. Hall, “Generation of microstripe cylindrical and toroidal mirrors by localized laser evaporation of fused silica,” Appl. Opt. 51(26), 6352–6360 (2012).
[CrossRef] [PubMed]

M. M. Mazur, D. Y. Velikovskii, F. A. Kuznetsov, L. I. Mazur, A. A. Pavlyuk, V. E. Pozhar, V. I. Pustovoit, “Elastic and photoelastic properties of KGd(WO4)2 single crystals,” Acoust. Phys. 58(6), 658–665 (2012).
[CrossRef]

G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express 20(9), 9810–9818 (2012).
[CrossRef] [PubMed]

2011 (4)

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re=Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[CrossRef]

J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express 19(2), 913–922 (2011).
[CrossRef] [PubMed]

R. P. Mildren, “Side-pumped crystalline Raman laser,” Opt. Lett. 36(2), 235–237 (2011).
[CrossRef] [PubMed]

2010 (2)

V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1–2), 127–134 (2010).
[CrossRef]

P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
[CrossRef]

2009 (2)

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

R. P. Mildren, D. W. Coutts, D. J. Spence, “All-solid-state parametric Raman anti-Stokes laser at 508 nm,” Opt. Express 17(2), 810–818 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (2)

S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, “Laser performance and thermal lensing in high-power diode-pumped Yb:KGW with athermal orientation,” Appl. Phys. B 83(1), 55–59 (2006).
[CrossRef]

2004 (3)

2003 (1)

2002 (1)

2001 (1)

S. Saghafi, C. Sheppard, J. A. Piper, “Characterising elegant and standard Hermite-Gaussian beam modes,” Opt. Commun. 191(3–6), 173–179 (2001).
[CrossRef]

1997 (1)

I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
[CrossRef]

1992 (1)

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[CrossRef]

1970 (2)

W. Koechner, “Thermal Lensing in a Nd:YAG Laser Rod,” Appl. Opt. 9(11), 2548–2553 (1970).
[CrossRef] [PubMed]

J. D. Foster, L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970).
[CrossRef]

Aguiló, M.

Baker, H. J.

Balembois, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Basiev, T. T.

T. T. Basiev, A. V. Gavrilov, V. V. Osiko, S. N. Smetanin, A. V. Fedin, “High-average-power SRS conversion of radiation in a BaWO4 crystal,” Quantum Electron. 34(7), 649–651 (2004).
[CrossRef]

Bente, E.

Bjurshagen, S.

J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, “Laser performance and thermal lensing in high-power diode-pumped Yb:KGW with athermal orientation,” Appl. Phys. B 83(1), 55–59 (2006).
[CrossRef]

Bohn, M. J.

Bonner, G. M.

Borowiec, M. T.

Brasseur, J. K.

Burns, D.

V. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[CrossRef]

W. Lubeigt, G. Valentine, J. Girkin, E. Bente, D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10(13), 550–555 (2002).
[CrossRef] [PubMed]

Chen, X. H.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Chulkov, R.

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

Cong, Z. H.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Convery, M.

Cousins, A. K.

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[CrossRef]

Coutts, D. W.

Dawson, M. D.

V. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[CrossRef]

Denisov, I. A.

P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
[CrossRef]

Díaz, F.

Druon, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Eichler, H. J.

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1–2), 127–134 (2010).
[CrossRef]

Fan, S. Z.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Fedin, A. V.

T. T. Basiev, A. V. Gavrilov, V. V. Osiko, S. N. Smetanin, A. V. Fedin, “High-average-power SRS conversion of radiation in a BaWO4 crystal,” Quantum Electron. 34(7), 649–651 (2004).
[CrossRef]

Feve, J.-P. M.

Filippov, V. V.

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Foster, J. D.

J. D. Foster, L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970).
[CrossRef]

Friel, I.

V. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[CrossRef]

Gavrilov, A. V.

T. T. Basiev, A. V. Gavrilov, V. V. Osiko, S. N. Smetanin, A. V. Fedin, “High-average-power SRS conversion of radiation in a BaWO4 crystal,” Quantum Electron. 34(7), 649–651 (2004).
[CrossRef]

Georges, P.

S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Girkin, J.

Grabtchikov, A. S.

Grau, J.

Gutowska, M. U.

Hall, D. R.

Hastie, J. E.

V. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[CrossRef]

Hellström, J. E.

J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, “Laser performance and thermal lensing in high-power diode-pumped Yb:KGW with athermal orientation,” Appl. Phys. B 83(1), 55–59 (2006).
[CrossRef]

Kemp, A. J.

V. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[CrossRef]

G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express 20(9), 9810–9818 (2012).
[CrossRef] [PubMed]

Kiefer, W.

Kitzler, O.

Koechner, W.

Kuleshov, N. V.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re=Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[CrossRef]

P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
[CrossRef]

Kuznetsov, F. A.

M. M. Mazur, D. Y. Velikovskii, F. A. Kuznetsov, L. I. Mazur, A. A. Pavlyuk, V. E. Pozhar, V. I. Pustovoit, “Elastic and photoelastic properties of KGd(WO4)2 single crystals,” Acoust. Phys. 58(6), 658–665 (2012).
[CrossRef]

Lee, A. J.

Li, P.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Li, S. T.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Lisinetskii, V.

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

Lisinetskii, V. A.

V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1–2), 127–134 (2010).
[CrossRef]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29(21), 2524–2526 (2004).
[CrossRef] [PubMed]

Liu, H.

A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
[CrossRef]

Liu, Z. J.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Loiko, P. A.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re=Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[CrossRef]

P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
[CrossRef]

Lubeigt, W.

Lux, O.

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

Maksimenka, R.

Massons, J.

Massot, M.

Mazur, L. I.

M. M. Mazur, D. Y. Velikovskii, F. A. Kuznetsov, L. I. Mazur, A. A. Pavlyuk, V. E. Pozhar, V. I. Pustovoit, “Elastic and photoelastic properties of KGd(WO4)2 single crystals,” Acoust. Phys. 58(6), 658–665 (2012).
[CrossRef]

Mazur, M. M.

M. M. Mazur, D. Y. Velikovskii, F. A. Kuznetsov, L. I. Mazur, A. A. Pavlyuk, V. E. Pozhar, V. I. Pustovoit, “Elastic and photoelastic properties of KGd(WO4)2 single crystals,” Acoust. Phys. 58(6), 658–665 (2012).
[CrossRef]

McKay, A.

McKay, T.

Mildren, R. P.

Mochalov, I. V.

I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
[CrossRef]

Myers, S.

Ogilvy, H.

Omatsu, T.

Orlovich, V.

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

Orlovich, V. A.

V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1–2), 127–134 (2010).
[CrossRef]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29(21), 2524–2526 (2004).
[CrossRef] [PubMed]

Osiko, V. V.

T. T. Basiev, A. V. Gavrilov, V. V. Osiko, S. N. Smetanin, A. V. Fedin, “High-average-power SRS conversion of radiation in a BaWO4 crystal,” Quantum Electron. 34(7), 649–651 (2004).
[CrossRef]

Osterink, L. M.

J. D. Foster, L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970).
[CrossRef]

Pasiskevicius, V.

J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, “Laser performance and thermal lensing in high-power diode-pumped Yb:KGW with athermal orientation,” Appl. Phys. B 83(1), 55–59 (2006).
[CrossRef]

Pask, H. M.

Pavlyuk, A. A.

M. M. Mazur, D. Y. Velikovskii, F. A. Kuznetsov, L. I. Mazur, A. A. Pavlyuk, V. E. Pozhar, V. I. Pustovoit, “Elastic and photoelastic properties of KGd(WO4)2 single crystals,” Acoust. Phys. 58(6), 658–665 (2012).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re=Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[CrossRef]

P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
[CrossRef]

Petrov, V.

Piper, J. A.

Pozhar, V. E.

M. M. Mazur, D. Y. Velikovskii, F. A. Kuznetsov, L. I. Mazur, A. A. Pavlyuk, V. E. Pozhar, V. I. Pustovoit, “Elastic and photoelastic properties of KGd(WO4)2 single crystals,” Acoust. Phys. 58(6), 658–665 (2012).
[CrossRef]

Pujol, M. C.

Pustovoit, V. I.

M. M. Mazur, D. Y. Velikovskii, F. A. Kuznetsov, L. I. Mazur, A. A. Pavlyuk, V. E. Pozhar, V. I. Pustovoit, “Elastic and photoelastic properties of KGd(WO4)2 single crystals,” Acoust. Phys. 58(6), 658–665 (2012).
[CrossRef]

Rachkovskaya, G. E.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re=Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[CrossRef]

Rhee, H.

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1–2), 127–134 (2010).
[CrossRef]

Richards, J.

Riesbeck, T.

V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1–2), 127–134 (2010).
[CrossRef]

Saghafi, S.

S. Saghafi, C. Sheppard, J. A. Piper, “Characterising elegant and standard Hermite-Gaussian beam modes,” Opt. Commun. 191(3–6), 173–179 (2001).
[CrossRef]

Salazar, A.

Savitski, V.

V. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[CrossRef]

Schmitt, M.

Schrader, S.

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

Sheppard, C.

S. Saghafi, C. Sheppard, J. A. Piper, “Characterising elegant and standard Hermite-Gaussian beam modes,” Opt. Commun. 191(3–6), 173–179 (2001).
[CrossRef]

Shortoff, K. E.

Silvestre, O.

Smetanin, S. N.

T. T. Basiev, A. V. Gavrilov, V. V. Osiko, S. N. Smetanin, A. V. Fedin, “High-average-power SRS conversion of radiation in a BaWO4 crystal,” Quantum Electron. 34(7), 649–651 (2004).
[CrossRef]

Spence, D. J.

Szewczyk, A.

Thomson, I. J.

Valentine, G.

Velikovskii, D. Y.

M. M. Mazur, D. Y. Velikovskii, F. A. Kuznetsov, L. I. Mazur, A. A. Pavlyuk, V. E. Pozhar, V. I. Pustovoit, “Elastic and photoelastic properties of KGd(WO4)2 single crystals,” Acoust. Phys. 58(6), 658–665 (2012).
[CrossRef]

Wang, J.

Wang, Q. P.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Wlodarczyk, K. L.

Yumashev, K. V.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re=Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[CrossRef]

P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
[CrossRef]

Zhang, H.

Zhang, H. J.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Zhang, X. Y.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Acoust. Phys. (1)

M. M. Mazur, D. Y. Velikovskii, F. A. Kuznetsov, L. I. Mazur, A. A. Pavlyuk, V. E. Pozhar, V. I. Pustovoit, “Elastic and photoelastic properties of KGd(WO4)2 single crystals,” Acoust. Phys. 58(6), 658–665 (2012).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (4)

J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, “Laser performance and thermal lensing in high-power diode-pumped Yb:KGW with athermal orientation,” Appl. Phys. B 83(1), 55–59 (2006).
[CrossRef]

V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1–2), 127–134 (2010).
[CrossRef]

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[CrossRef]

V. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[CrossRef]

J. Appl. Phys. (1)

J. D. Foster, L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970).
[CrossRef]

Laser Phys. Lett. (2)

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
[CrossRef]

Opt. Commun. (1)

S. Saghafi, C. Sheppard, J. A. Piper, “Characterising elegant and standard Hermite-Gaussian beam modes,” Opt. Commun. 191(3–6), 173–179 (2001).
[CrossRef]

Opt. Eng. (1)

I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
[CrossRef]

Opt. Express (7)

Opt. Lett. (5)

Opt. Mater. (2)

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re=Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[CrossRef]

Prog. Quantum Electron. (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Quantum Electron. (1)

T. T. Basiev, A. V. Gavrilov, V. V. Osiko, S. N. Smetanin, A. V. Fedin, “High-average-power SRS conversion of radiation in a BaWO4 crystal,” Quantum Electron. 34(7), 649–651 (2004).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (2009 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) External cavity KGW Raman laser. (b) External cavity KGW Raman laser with a compensating intracavity cylindrical lens. IC is the input mirror; OC is the output coupler; L = 5 cm and L + ΔL = 9 cm are the resonator lengths. The abc axes refer to the crystallographic axes of KGW.

Fig. 2
Fig. 2

On-time output power as a function of duty cycle. Dashed lines for the 15% and 100% are shown to highlight the change in threshold as deduced from linear fits to the data.

Fig. 3
Fig. 3

Relative peak intensities of the Stokes output for duty cycles 15, 25, 33 and 50%. Time traces were electronically filtered using a 4 kHz low pass filter, and each displayed waveform was averaged 500 times. The dashed lines show the calculated transmitted pump intensity by the chopper for pump beam to highlight the approximate rise and fall rate of the pump experienced by the Raman laser. The pump beam was mechanically chopped at 95 Hz.

Fig. 4
Fig. 4

Relative Stokes intensity (red) with 50% duty cycle pumping at 2 Hz shows an exponential decay (black) with a time constant of 32 ms. The experimental data was electronically filtered using a 10-kHz low pass filter, and was averaged over 256 time traces. Inset images show 2 ms-gated near-field profiles at various times during the pump on-time illustrating the development of high order H-G modes (see also animation in Media 1).

Fig. 5
Fig. 5

Beam quality factor in the X1 direction of the output mode as a function of average Raman output power for the KGW Raman laser operating with three different end-mirror curvatures (triangles 100 cm; circles 50 cm; and squares 20 cm). Insets show the near-field profiles of the Raman output beam at the highest pump power (45 W) with output power and beam quality shown by points A, B and C.

Fig. 6
Fig. 6

Output power of the combined Stokes radiation from the KGW Raman laser with (black) and without (red) compensating cylindrical lens. Inset show typical near-field profiles of the Raman output beam at selected power levels.

Fig. 7
Fig. 7

(a) Calculated on-axis temperature (black solid) and maximum temperature gradient in the crystal a-direction (red) as a function of time from turn-on at t = 0 s. Temperatures are expressed in per watt of power deposited in the crystal. The quadratic coefficient (d2T/dr2) was determined by curve fits to data within the beam radius. (b) The temperature as a function of radius in the vertical (a-direction - solid) and horizontal (dotted) directions for t = 200 ms. The 2-D map inset provides a visual indication of the axial symmetry of the temperature profile (the pump waist circle of radius 105 μm is shown for scale).

Fig. 8
Fig. 8

Relative strengths of the thermal expansion and thermo-optic coefficients of KGW in plane transverse to the Np beam axis. The crystallography a and c (dotted), thermal expansion X1 and X3 (dashed), and thermo-optical Nm and Ng (solid lines) axes are overlaid.

Tables (2)

Tables Icon

Table 1 Optical, Mechanical and Thermal Properties for KGW used in this Study.

Tables Icon

Table 2 Photo-elastic Coefficients Derived from Acousto-optic Measurements of [27].

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f (1) 1 = n 0 l dn dT ( d 2 T d r 2 ),
f (2) 1 =2( n 0 1 ) α T r 0 ( d 2 T d r 2 ).
Δ B i = P ij ε j
Δ n i =0.5 n 0 3 P ij ε j .
| P ij |= M 2 r ν 3 n 0 6 .

Metrics