Abstract

We find that a stacked pair of graphene ribbon arrays with a lateral displacement can excite plasmon waveguide mode in the gap between ribbons, as well as surface plasmon mode on graphene ribbon surface. When the resonance wavelengthes of plasmon waveguide mode and surface plasmon mode are close to each other, there is a strong electromagnetic interaction between the two modes, and then they contribute together to transmission dip. The plasmon waveguide mode resonance can be manipulated by the lateral displacement and longitudinal interval between arrays due to their influence on the manner and strength of electromagnetic coupling between two arrays. The findings expand our understanding of electromagnetic resonances in graphene-ribbon array structure and may affect further engineering of nanoplasmonic devices and metamaterials.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 324, 1530–1534 (2009).
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef] [PubMed]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391667–669 (1998).
    [CrossRef]
  5. J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  6. C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [CrossRef] [PubMed]
  7. M. Jablan, H. Buljan, M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
    [CrossRef]
  8. S. Thongrattanasiri, I. Silveiro, F. Javier García de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett. 100, 201105 (2012).
    [CrossRef]
  9. A. N. Grigorenko, M. Polini, K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
    [CrossRef]
  10. A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
    [CrossRef]
  11. S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
    [CrossRef] [PubMed]
  12. A. Yu. Nikitin, F. Guinea, L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101, 151119 (2012).
    [CrossRef]
  13. W. Zhu, I. D. Rukhlenko, L. M. Si, M. Premaratne, “Graphene-enabled tunability of optical fishnet metamaterial,” Appl. Phys. Lett. 102, 121911 (2013).
    [CrossRef]
  14. X. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102, 131101 (2013).
    [CrossRef]
  15. W. Gao, J. Shu, C. Qiu, Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
    [CrossRef] [PubMed]
  16. W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13, 3698–3702 (2013).
    [CrossRef] [PubMed]
  17. D. K. Efetov, P. Kim, “Controlling electron-phonon interactions in graphene at ultra high carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
    [CrossRef]
  18. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
    [CrossRef] [PubMed]
  19. J. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
    [CrossRef] [PubMed]
  20. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2012).
    [CrossRef]
  21. J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
    [CrossRef]
  22. V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, K. S. Novoselov, A. N. Grigorenko, “Surface hydrogenation and optics of a graphene sheet transferred onto a plasmonic nanoarray,” J. Phys. Chem. C 116, 3882–3887 (2012).
    [CrossRef]
  23. A. Ishikawa, T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102, 253110 (2013).
    [CrossRef]
  24. A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405(R) (2007).
    [CrossRef]
  25. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
    [CrossRef] [PubMed]
  26. B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. J. Wong, X. Yin, X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
    [CrossRef] [PubMed]
  27. C. H. Gan, H. S. Chu, E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
    [CrossRef]
  28. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
    [CrossRef] [PubMed]
  29. B. Wang, X. Zhang, X. Yuan, J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
    [CrossRef]
  30. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotech. 6, 630–634 (2011).
    [CrossRef]

2013 (4)

W. Zhu, I. D. Rukhlenko, L. M. Si, M. Premaratne, “Graphene-enabled tunability of optical fishnet metamaterial,” Appl. Phys. Lett. 102, 121911 (2013).
[CrossRef]

X. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102, 131101 (2013).
[CrossRef]

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13, 3698–3702 (2013).
[CrossRef] [PubMed]

A. Ishikawa, T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102, 253110 (2013).
[CrossRef]

2012 (13)

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. J. Wong, X. Yin, X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[CrossRef] [PubMed]

C. H. Gan, H. S. Chu, E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
[CrossRef]

B. Wang, X. Zhang, X. Yuan, J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[CrossRef]

W. Gao, J. Shu, C. Qiu, Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[CrossRef] [PubMed]

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2012).
[CrossRef]

J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
[CrossRef]

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, K. S. Novoselov, A. N. Grigorenko, “Surface hydrogenation and optics of a graphene sheet transferred onto a plasmonic nanoarray,” J. Phys. Chem. C 116, 3882–3887 (2012).
[CrossRef]

S. Thongrattanasiri, I. Silveiro, F. Javier García de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett. 100, 201105 (2012).
[CrossRef]

A. N. Grigorenko, M. Polini, K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[CrossRef]

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[CrossRef]

S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[CrossRef] [PubMed]

A. Yu. Nikitin, F. Guinea, L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101, 151119 (2012).
[CrossRef]

2011 (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotech. 6, 630–634 (2011).
[CrossRef]

2010 (2)

J. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

D. K. Efetov, P. Kim, “Controlling electron-phonon interactions in graphene at ultra high carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[CrossRef]

2009 (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 324, 1530–1534 (2009).

M. Jablan, H. Buljan, M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[CrossRef]

2008 (1)

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
[CrossRef] [PubMed]

2007 (2)

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405(R) (2007).
[CrossRef]

C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

2006 (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

2001 (1)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
[CrossRef] [PubMed]

1999 (1)

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391667–669 (1998).
[CrossRef]

Ahn, J. H.

J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
[CrossRef]

Ajayan, P. M.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13, 3698–3702 (2013).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 324, 1530–1534 (2009).

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotech. 6, 630–634 (2011).
[CrossRef]

Britnell, L.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, K. S. Novoselov, A. N. Grigorenko, “Surface hydrogenation and optics of a graphene sheet transferred onto a plasmonic nanoarray,” J. Phys. Chem. C 116, 3882–3887 (2012).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 324, 1530–1534 (2009).

Buljan, H.

M. Jablan, H. Buljan, M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 324, 1530–1534 (2009).

Cho, D. J.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef] [PubMed]

Christ, A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
[CrossRef] [PubMed]

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405(R) (2007).
[CrossRef]

Christensen, J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2012).
[CrossRef]

Chu, H. S.

C. H. Gan, H. S. Chu, E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
[CrossRef]

Ebbesen, T. W.

C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391667–669 (1998).
[CrossRef]

Efetov, D. K.

D. K. Efetov, P. Kim, “Controlling electron-phonon interactions in graphene at ultra high carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[CrossRef]

Ekinci, Y.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
[CrossRef] [PubMed]

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405(R) (2007).
[CrossRef]

Ferrari, A. C.

J. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

Gan, C. H.

C. H. Gan, H. S. Chu, E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
[CrossRef]

Gao, W.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13, 3698–3702 (2013).
[CrossRef] [PubMed]

W. Gao, J. Shu, C. Qiu, Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[CrossRef] [PubMed]

García-Vidal, F. J.

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[CrossRef]

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Geim, A. K.

J. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

Genet, C.

C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Geng, B.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotech. 6, 630–634 (2011).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391667–669 (1998).
[CrossRef]

Gippius, N. A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
[CrossRef] [PubMed]

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405(R) (2007).
[CrossRef]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotech. 6, 630–634 (2011).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, K. S. Novoselov, A. N. Grigorenko, “Surface hydrogenation and optics of a graphene sheet transferred onto a plasmonic nanoarray,” J. Phys. Chem. C 116, 3882–3887 (2012).
[CrossRef]

A. N. Grigorenko, M. Polini, K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[CrossRef]

J. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

Guinea, F.

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[CrossRef]

A. Yu. Nikitin, F. Guinea, L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101, 151119 (2012).
[CrossRef]

Hansen, O.

X. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102, 131101 (2013).
[CrossRef]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotech. 6, 630–634 (2011).
[CrossRef]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotech. 6, 630–634 (2011).
[CrossRef]

Ishikawa, A.

A. Ishikawa, T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102, 253110 (2013).
[CrossRef]

Jablan, M.

M. Jablan, H. Buljan, M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[CrossRef]

Jalil, R.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, K. S. Novoselov, A. N. Grigorenko, “Surface hydrogenation and optics of a graphene sheet transferred onto a plasmonic nanoarray,” J. Phys. Chem. C 116, 3882–3887 (2012).
[CrossRef]

Javier García de Abajo, F.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2012).
[CrossRef]

S. Thongrattanasiri, I. Silveiro, F. Javier García de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett. 100, 201105 (2012).
[CrossRef]

S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[CrossRef] [PubMed]

Jepsen, P. U.

X. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102, 131101 (2013).
[CrossRef]

Jin, Z.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13, 3698–3702 (2013).
[CrossRef] [PubMed]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotech. 6, 630–634 (2011).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 324, 1530–1534 (2009).

Kanté, B.

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. J. Wong, X. Yin, X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[CrossRef] [PubMed]

Kim, J.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef] [PubMed]

Kim, K.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef] [PubMed]

Kim, P.

D. K. Efetov, P. Kim, “Controlling electron-phonon interactions in graphene at ultra high carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[CrossRef]

Kono, J.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13, 3698–3702 (2013).
[CrossRef] [PubMed]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[CrossRef] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2012).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, K. S. Novoselov, A. N. Grigorenko, “Surface hydrogenation and optics of a graphene sheet transferred onto a plasmonic nanoarray,” J. Phys. Chem. C 116, 3882–3887 (2012).
[CrossRef]

J. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

Lanzillotti-Kimura, N. D.

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. J. Wong, X. Yin, X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[CrossRef] [PubMed]

Lee, Y.

J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391667–669 (1998).
[CrossRef]

Li, E. P.

C. H. Gan, H. S. Chu, E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
[CrossRef]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotech. 6, 630–634 (2011).
[CrossRef]

Lidorikis, E.

J. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

Lombardo, A.

J. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

Manjavacas, A.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2012).
[CrossRef]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotech. 6, 630–634 (2011).
[CrossRef]

Martin, O. J. F.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
[CrossRef] [PubMed]

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405(R) (2007).
[CrossRef]

Martin-Moreno, L.

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[CrossRef]

A. Yu. Nikitin, F. Guinea, L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101, 151119 (2012).
[CrossRef]

Mortensen, N. A.

X. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102, 131101 (2013).
[CrossRef]

Niu, J.

J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
[CrossRef]

Novoselov, K. S.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, K. S. Novoselov, A. N. Grigorenko, “Surface hydrogenation and optics of a graphene sheet transferred onto a plasmonic nanoarray,” J. Phys. Chem. C 116, 3882–3887 (2012).
[CrossRef]

A. N. Grigorenko, M. Polini, K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[CrossRef]

J. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

O’Brien, K.

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. J. Wong, X. Yin, X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Park, Y. S.

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. J. Wong, X. Yin, X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[CrossRef] [PubMed]

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Polini, M.

A. N. Grigorenko, M. Polini, K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Premaratne, M.

W. Zhu, I. D. Rukhlenko, L. M. Si, M. Premaratne, “Graphene-enabled tunability of optical fishnet metamaterial,” Appl. Phys. Lett. 102, 121911 (2013).
[CrossRef]

Qiu, C.

W. Gao, J. Shu, C. Qiu, Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[CrossRef] [PubMed]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Regan, W.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef] [PubMed]

Rukhlenko, I. D.

W. Zhu, I. D. Rukhlenko, L. M. Si, M. Premaratne, “Graphene-enabled tunability of optical fishnet metamaterial,” Appl. Phys. Lett. 102, 121911 (2013).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, K. S. Novoselov, A. N. Grigorenko, “Surface hydrogenation and optics of a graphene sheet transferred onto a plasmonic nanoarray,” J. Phys. Chem. C 116, 3882–3887 (2012).
[CrossRef]

Schedin, J.

J. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 324, 1530–1534 (2009).

Shen, Y. R.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotech. 6, 630–634 (2011).
[CrossRef]

Shi, G.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13, 3698–3702 (2013).
[CrossRef] [PubMed]

Shi, S.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef] [PubMed]

Shin, Y. J.

J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
[CrossRef]

Shu, J.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13, 3698–3702 (2013).
[CrossRef] [PubMed]

W. Gao, J. Shu, C. Qiu, Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[CrossRef] [PubMed]

Shuldman, D.

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. J. Wong, X. Yin, X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[CrossRef] [PubMed]

Si, L. M.

W. Zhu, I. D. Rukhlenko, L. M. Si, M. Premaratne, “Graphene-enabled tunability of optical fishnet metamaterial,” Appl. Phys. Lett. 102, 121911 (2013).
[CrossRef]

Silveiro, I.

S. Thongrattanasiri, I. Silveiro, F. Javier García de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett. 100, 201105 (2012).
[CrossRef]

Solak, H. H.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405(R) (2007).
[CrossRef]

Soljacic, M.

M. Jablan, H. Buljan, M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[CrossRef]

Son, H.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef] [PubMed]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
[CrossRef] [PubMed]

Tanaka, T.

A. Ishikawa, T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102, 253110 (2013).
[CrossRef]

Teng, J.

B. Wang, X. Zhang, X. Yuan, J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391667–669 (1998).
[CrossRef]

Thongrattanasiri, S.

S. Thongrattanasiri, I. Silveiro, F. Javier García de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett. 100, 201105 (2012).
[CrossRef]

S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[CrossRef] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2012).
[CrossRef]

Tikhodeev, S. G.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
[CrossRef] [PubMed]

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405(R) (2007).
[CrossRef]

Vajtai, R.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13, 3698–3702 (2013).
[CrossRef] [PubMed]

Wang, B.

B. Wang, X. Zhang, X. Yuan, J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[CrossRef]

Wang, F.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotech. 6, 630–634 (2011).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 324, 1530–1534 (2009).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391667–669 (1998).
[CrossRef]

Wong, Z. J.

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. J. Wong, X. Yin, X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[CrossRef] [PubMed]

Xiao, S.

X. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102, 131101 (2013).
[CrossRef]

Xu, Q.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13, 3698–3702 (2013).
[CrossRef] [PubMed]

W. Gao, J. Shu, C. Qiu, Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[CrossRef] [PubMed]

Yan, W.

X. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102, 131101 (2013).
[CrossRef]

Yang, H.

J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
[CrossRef]

Yin, X.

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. J. Wong, X. Yin, X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[CrossRef] [PubMed]

Yu. Nikitin, A.

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[CrossRef]

A. Yu. Nikitin, F. Guinea, L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101, 151119 (2012).
[CrossRef]

Yuan, X.

B. Wang, X. Zhang, X. Yuan, J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[CrossRef]

Zettl, A.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotech. 6, 630–634 (2011).
[CrossRef]

Zhang, Q.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13, 3698–3702 (2013).
[CrossRef] [PubMed]

Zhang, X.

B. Wang, X. Zhang, X. Yuan, J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[CrossRef]

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. J. Wong, X. Yin, X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[CrossRef] [PubMed]

Zhu, W.

W. Zhu, I. D. Rukhlenko, L. M. Si, M. Premaratne, “Graphene-enabled tunability of optical fishnet metamaterial,” Appl. Phys. Lett. 102, 121911 (2013).
[CrossRef]

Zhu, X.

X. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102, 131101 (2013).
[CrossRef]

ACS Nano (3)

W. Gao, J. Shu, C. Qiu, Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[CrossRef] [PubMed]

J. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2012).
[CrossRef]

Appl. Phys. Lett. (7)

J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
[CrossRef]

A. Ishikawa, T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102, 253110 (2013).
[CrossRef]

B. Wang, X. Zhang, X. Yuan, J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[CrossRef]

A. Yu. Nikitin, F. Guinea, L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101, 151119 (2012).
[CrossRef]

W. Zhu, I. D. Rukhlenko, L. M. Si, M. Premaratne, “Graphene-enabled tunability of optical fishnet metamaterial,” Appl. Phys. Lett. 102, 121911 (2013).
[CrossRef]

X. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102, 131101 (2013).
[CrossRef]

S. Thongrattanasiri, I. Silveiro, F. Javier García de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett. 100, 201105 (2012).
[CrossRef]

J. Phys. Chem. C (1)

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, K. S. Novoselov, A. N. Grigorenko, “Surface hydrogenation and optics of a graphene sheet transferred onto a plasmonic nanoarray,” J. Phys. Chem. C 116, 3882–3887 (2012).
[CrossRef]

Nano Lett. (3)

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
[CrossRef] [PubMed]

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13, 3698–3702 (2013).
[CrossRef] [PubMed]

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef] [PubMed]

Nat. Commun. (1)

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. J. Wong, X. Yin, X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 324, 1530–1534 (2009).

Nat. Nanotech. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotech. 6, 630–634 (2011).
[CrossRef]

Nat. Photonics (1)

A. N. Grigorenko, M. Polini, K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391667–669 (1998).
[CrossRef]

C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Phys. Rev. B (4)

M. Jablan, H. Buljan, M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[CrossRef]

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[CrossRef]

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405(R) (2007).
[CrossRef]

C. H. Gan, H. S. Chu, E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
[CrossRef]

Phys. Rev. Lett. (4)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
[CrossRef] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

D. K. Efetov, P. Kim, “Controlling electron-phonon interactions in graphene at ultra high carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[CrossRef]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of a stacked pair of graphene ribbon arrays.

Fig. 2
Fig. 2

Transmission spectra of structures of a single graphene ribbon array and a stacked pair of graphene ribbon arrays at different values of L, with p = 200, w = 160 and G = 10 nm.

Fig. 3
Fig. 3

Distributions of the extremum of electric field Ez over two periods. (a)–(e) correspond to the dips at 7.249 (L = 0 nm), 7.268 (L = 10 nm), 6.935 (L = 30 nm), 5.860 (L = 60 nm) and 4.153 (L = 100 nm) μm in Fig. 2, respectively. The incident plane wave with a unitary electric field is incident normally from the bottom, and the black areas denote graphene ribbon. Note that the color bars in subgraphs are different from each other.

Fig. 4
Fig. 4

Distributions of the extremum of electric field Ez over two periods. (a)–(d) correspond to the LW dips at 8.573 (L = 10 nm), 9.917 (L = 30 nm), 14.196 (L = 60 nm) and 16.122 (L = 100 nm) μm in Fig. 2, respectively. The incident plane wave with a unitary electric field is incident normally from the bottom, and the black areas denote graphene ribbon. Note that the color bars in subgraphs are different from each other.

Fig. 5
Fig. 5

Transmission spectra of structures of a single graphene ribbon array and a stacked pair of graphene ribbon arrays at different values of G, with P = 200 and w = 160. L in (a) and (b) are taken as 10 and 60 nm, respectively. The inset in (a) shows the fitted curves obtained by wavelengths of the SW/LW dips and G.

Fig. 6
Fig. 6

Distributions of the extremum of electric field Ez over two periods. (a)–(e) correspond to the SW dips at 7.286 (G = 10 nm), 6.953 (G = 15 nm), 6.504 (G = 20 nm), 5.209 (G = 60 nm) and 4.071 (G = 100 nm) μm in Fig. 5(a), respectively. The incident plane wave with a unitary electric field is incident normally from the bottom, and the black areas denote graphene ribbon. Note that the color bars in subgraphs are different from each other.

Fig. 7
Fig. 7

Distributions of the extremum of electric field Ez over two periods. (a)–(e) correspond to the LW dips at 8.573 (G = 10 nm), 7.947 (G = 15 nm), 7.971 (G = 20 nm), 8.739 (G = 60 nm) and 9.059 (G = 100 nm) μm in Fig. 5(a), respectively. The incident plane wave with a unitary electric field is incident normally from the bottom, and the black areas denote graphene ribbon. Note that the color bars in subgraphs are different from each other.

Metrics