Abstract

The 2D optical trapping ability of larger-than average-particles is compared for three different beam types: a flat-top, a Gaussian beam, and a donut shaped beam. Optical force-displacement curves are calculated in four different size regimes of particle diameters (1.5-20 μm). We find that the trapping efficiency increases linearly with ratio of particle diameter to wavelength for all three beams. As the ratio reaches a specific threshold value, the flat-top focus exhibits the largest trapping efficiency compared to the other two beam types. We experimentally demonstrate that flat-top focusing provides the largest transverse trapping efficiency for particles as large as 20 μm in diameter for our given experimental conditions. The overall trend in our experimental results follows that observed in our simulation model. The results from this study could facilitate light manipulation of large particles.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
    [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  4. K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [CrossRef] [PubMed]
  5. W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation Trapping Forces on Microspheres with Optical Tweezers,” Appl. Phys. Lett. 63(6), 715–717 (1993).
    [CrossRef]
  6. S. Chu, “The manipulation of neutral particles,” Rev. Mod. Phys. 70(3), 685–706 (1998).
    [CrossRef]
  7. J. T. Finer, R. M. Simmons, J. A. Spudich, “Single Myosin Molecule Mechanics: Piconewton Forces and Nanometre Steps,” Nature 368(6467), 113–119 (1994).
    [CrossRef] [PubMed]
  8. K. C. Neuman, A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
    [CrossRef] [PubMed]
  9. M. Werner, F. Merenda, J. Piguet, R. P. Salathé, H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
    [CrossRef] [PubMed]
  10. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper, Z. J. Laczik, “3D manipulation of particles into crystal structures using holographic optical tweezers,” Opt. Express 12(1), 220–226 (2004).
    [CrossRef] [PubMed]
  11. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
    [CrossRef] [PubMed]
  12. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [CrossRef] [PubMed]
  13. L. Huang, H. L. Guo, J. F. Li, L. Ling, B. H. Feng, Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
    [CrossRef] [PubMed]
  14. M. G. Donato, S. Vasi, R. Sayed, P. H. Jones, F. Bonaccorso, A. C. Ferrari, P. G. Gucciardi, O. M. Maragò, “Optical trapping of nanotubes with cylindrical vector beams,” Opt. Lett. 37(16), 3381–3383 (2012).
    [CrossRef] [PubMed]
  15. L. Huang, H. L. Guo, J. F. Li, L. Ling, B. H. Feng, Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
    [CrossRef] [PubMed]
  16. M. Santarsiero, R. Borghi, “Correspondence between super-Gaussian and flattened Gaussian beams,” J. Opt. Soc. Am. A 16(1), 188–190 (1999).
    [CrossRef]
  17. H. Chen, S. Tripathi, K. C. Toussaint, “Demonstration of flat-top focusing under radial polarization illumination,” Opt. Lett. 39(4), 834–837 (2014).
    [CrossRef]
  18. C. Rockstuhl, H. P. Herzig, “Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders,” J. Opt. A, Pure Appl. Opt. 6(10), 921–931 (2004).
    [CrossRef]
  19. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  20. B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. 2. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. A 253, 358–379 (1959).
  21. K. S. Youngworth, T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [CrossRef] [PubMed]
  22. K. Kitamura, K. Sakai, S. Noda, “Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam,” Opt. Express 19(15), 13750–13756 (2011).
    [CrossRef] [PubMed]
  23. B. Agate, C. Brown, W. Sibbett, K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express 12(13), 3011–3017 (2004).
    [CrossRef] [PubMed]
  24. Q. W. Zhan, J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [CrossRef] [PubMed]
  25. M. E. O’Neill, “A sphere in contact with a plane wall in a slow linear shear flow,” Chem. Eng. Sci. 23(11), 1293–1298 (1968).
    [CrossRef]
  26. A. J. Goldman, R. G. Cox, H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall—II Couette flow,” Chem. Eng. Sci. 22(4), 653–660 (1967).
    [CrossRef]

2014 (1)

2013 (1)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

2012 (3)

2011 (2)

M. Werner, F. Merenda, J. Piguet, R. P. Salathé, H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
[CrossRef] [PubMed]

K. Kitamura, K. Sakai, S. Noda, “Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam,” Opt. Express 19(15), 13750–13756 (2011).
[CrossRef] [PubMed]

2008 (1)

K. C. Neuman, A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

2004 (4)

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2002 (2)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

Q. W. Zhan, J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

1998 (1)

S. Chu, “The manipulation of neutral particles,” Rev. Mod. Phys. 70(3), 685–706 (1998).
[CrossRef]

1994 (1)

J. T. Finer, R. M. Simmons, J. A. Spudich, “Single Myosin Molecule Mechanics: Piconewton Forces and Nanometre Steps,” Nature 368(6467), 113–119 (1994).
[CrossRef] [PubMed]

1993 (1)

W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation Trapping Forces on Microspheres with Optical Tweezers,” Appl. Phys. Lett. 63(6), 715–717 (1993).
[CrossRef]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

1986 (1)

1968 (1)

M. E. O’Neill, “A sphere in contact with a plane wall in a slow linear shear flow,” Chem. Eng. Sci. 23(11), 1293–1298 (1968).
[CrossRef]

1967 (1)

A. J. Goldman, R. G. Cox, H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall—II Couette flow,” Chem. Eng. Sci. 22(4), 653–660 (1967).
[CrossRef]

Agate, B.

Arlt, J.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

Berns, M. W.

W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation Trapping Forces on Microspheres with Optical Tweezers,” Appl. Phys. Lett. 63(6), 715–717 (1993).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Bonaccorso, F.

Borghi, R.

Brenner, H.

A. J. Goldman, R. G. Cox, H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall—II Couette flow,” Chem. Eng. Sci. 22(4), 653–660 (1967).
[CrossRef]

Brown, C.

Brown, T. G.

Chen, H.

Chu, S.

Cooper, J.

Courtial, J.

Cox, R. G.

A. J. Goldman, R. G. Cox, H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall—II Couette flow,” Chem. Eng. Sci. 22(4), 653–660 (1967).
[CrossRef]

Dholakia, K.

B. Agate, C. Brown, W. Sibbett, K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express 12(13), 3011–3017 (2004).
[CrossRef] [PubMed]

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

Donato, M. G.

Dziedzic, J. M.

Feng, B. H.

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

M. G. Donato, S. Vasi, R. Sayed, P. H. Jones, F. Bonaccorso, A. C. Ferrari, P. G. Gucciardi, O. M. Maragò, “Optical trapping of nanotubes with cylindrical vector beams,” Opt. Lett. 37(16), 3381–3383 (2012).
[CrossRef] [PubMed]

Finer, J. T.

J. T. Finer, R. M. Simmons, J. A. Spudich, “Single Myosin Molecule Mechanics: Piconewton Forces and Nanometre Steps,” Nature 368(6467), 113–119 (1994).
[CrossRef] [PubMed]

Goldman, A. J.

A. J. Goldman, R. G. Cox, H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall—II Couette flow,” Chem. Eng. Sci. 22(4), 653–660 (1967).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

M. G. Donato, S. Vasi, R. Sayed, P. H. Jones, F. Bonaccorso, A. C. Ferrari, P. G. Gucciardi, O. M. Maragò, “Optical trapping of nanotubes with cylindrical vector beams,” Opt. Lett. 37(16), 3381–3383 (2012).
[CrossRef] [PubMed]

Guo, H. L.

Herzig, H. P.

C. Rockstuhl, H. P. Herzig, “Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders,” J. Opt. A, Pure Appl. Opt. 6(10), 921–931 (2004).
[CrossRef]

Huang, L.

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

M. G. Donato, S. Vasi, R. Sayed, P. H. Jones, F. Bonaccorso, A. C. Ferrari, P. G. Gucciardi, O. M. Maragò, “Optical trapping of nanotubes with cylindrical vector beams,” Opt. Lett. 37(16), 3381–3383 (2012).
[CrossRef] [PubMed]

Jordan, P.

Kitamura, K.

Laczik, Z. J.

Leach, J.

Leger, J. R.

Li, J. F.

Li, Z. Y.

Ling, L.

MacDonald, M. P.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

M. G. Donato, S. Vasi, R. Sayed, P. H. Jones, F. Bonaccorso, A. C. Ferrari, P. G. Gucciardi, O. M. Maragò, “Optical trapping of nanotubes with cylindrical vector beams,” Opt. Lett. 37(16), 3381–3383 (2012).
[CrossRef] [PubMed]

Merenda, F.

M. Werner, F. Merenda, J. Piguet, R. P. Salathé, H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
[CrossRef] [PubMed]

Nagy, A.

K. C. Neuman, A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

Neuman, K. C.

K. C. Neuman, A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Noda, S.

O’Neill, M. E.

M. E. O’Neill, “A sphere in contact with a plane wall in a slow linear shear flow,” Chem. Eng. Sci. 23(11), 1293–1298 (1968).
[CrossRef]

Padgett, M. J.

Paterson, L.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

Piguet, J.

M. Werner, F. Merenda, J. Piguet, R. P. Salathé, H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Rockstuhl, H. P. Herzig, “Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders,” J. Opt. A, Pure Appl. Opt. 6(10), 921–931 (2004).
[CrossRef]

Sakai, K.

Salathé, R. P.

M. Werner, F. Merenda, J. Piguet, R. P. Salathé, H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
[CrossRef] [PubMed]

Santarsiero, M.

Sayed, R.

Sibbett, W.

B. Agate, C. Brown, W. Sibbett, K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express 12(13), 3011–3017 (2004).
[CrossRef] [PubMed]

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

Simmons, R. M.

J. T. Finer, R. M. Simmons, J. A. Spudich, “Single Myosin Molecule Mechanics: Piconewton Forces and Nanometre Steps,” Nature 368(6467), 113–119 (1994).
[CrossRef] [PubMed]

Sinclair, G.

Sonek, G. J.

W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation Trapping Forces on Microspheres with Optical Tweezers,” Appl. Phys. Lett. 63(6), 715–717 (1993).
[CrossRef]

Spudich, J. A.

J. T. Finer, R. M. Simmons, J. A. Spudich, “Single Myosin Molecule Mechanics: Piconewton Forces and Nanometre Steps,” Nature 368(6467), 113–119 (1994).
[CrossRef] [PubMed]

Toussaint, K. C.

Tripathi, S.

Vasi, S.

Vogel, H.

M. Werner, F. Merenda, J. Piguet, R. P. Salathé, H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
[CrossRef] [PubMed]

Volke-Sepulveda, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

Werner, M.

M. Werner, F. Merenda, J. Piguet, R. P. Salathé, H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
[CrossRef] [PubMed]

Wright, W. H.

W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation Trapping Forces on Microspheres with Optical Tweezers,” Appl. Phys. Lett. 63(6), 715–717 (1993).
[CrossRef]

Youngworth, K. S.

Zhan, Q. W.

Appl. Phys. Lett. (1)

W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation Trapping Forces on Microspheres with Optical Tweezers,” Appl. Phys. Lett. 63(6), 715–717 (1993).
[CrossRef]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

Chem. Eng. Sci. (2)

M. E. O’Neill, “A sphere in contact with a plane wall in a slow linear shear flow,” Chem. Eng. Sci. 23(11), 1293–1298 (1968).
[CrossRef]

A. J. Goldman, R. G. Cox, H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall—II Couette flow,” Chem. Eng. Sci. 22(4), 653–660 (1967).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

C. Rockstuhl, H. P. Herzig, “Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders,” J. Opt. A, Pure Appl. Opt. 6(10), 921–931 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Lab Chip (1)

M. Werner, F. Merenda, J. Piguet, R. P. Salathé, H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
[CrossRef] [PubMed]

Nat. Methods (1)

K. C. Neuman, A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

Nature (2)

J. T. Finer, R. M. Simmons, J. A. Spudich, “Single Myosin Molecule Mechanics: Piconewton Forces and Nanometre Steps,” Nature 368(6467), 113–119 (1994).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Rev. Mod. Phys. (1)

S. Chu, “The manipulation of neutral particles,” Rev. Mod. Phys. 70(3), 685–706 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Science (1)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

Other (2)

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. 2. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. A 253, 358–379 (1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of experimental setup. M: Mirror, OBJ: objective. BS: beamsplitter. P: polarizer. See text for details.

Fig. 2
Fig. 2

Simulation results showing the transverse component of optical force (along the x-coordinate) on polystyrene particles (shown as dashed overlaid circles) with diameters: (a) 1.5 μm, (b) 5 μm, (c) 10 μm, and (d) 20 μm. The particles are located at the focal plane and illuminated with 5 mW of 800-nm wavelength light for the flat-top, Gaussian, and donut shaped focus, shown in blue, red, and black, respectively. The insets are zoomed-in views of the peaks of the force curves, where the parameter β is the ratio of the maximum force for the flat-top compared to the Gaussian.

Fig. 3
Fig. 3

Comparison of trapping efficiency using beams with flat-top, Gaussian and donut shaped focus for particles with diameters: (a) 1.5 μm, (b) 5 μm, (c) 10 μm, and (d) 20 μm. The experimental results (in blue) are shown to be in agreement with simulation (in red). (e) Plot of the trapping efficiency as a function of α (ratio of particle diameter to wavelength) using beams with flat-top (blue), Gaussian (red), and donut shaped (black) focus. The dashed vertical line points to the critical value at which the trapping efficiency of the flat-top focus becomes the largest, which, for the experimental parameters used in this paper, corresponds to a particle diameter of ~13.5 μm.

Fig. 4
Fig. 4

Schematic optical trapping with (a,d) Gaussian profile, (b,e) flat-top profile and (c,f) donut shape. Small particle trapping are plotted in the first row (a-c) and large particle trapping (d-f) are plotted in the second row. Note that in (b) no transverse optical force is exerted on the small particle when the particle is located in the even intensity distribution region. Also, note that the slightly longer (green) arrow in (e) for the net trapping force is exaggerated in comparison to that in (d) for emphasis.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F = { ε 2 Re[ ( E n ) E * ] ε 4 ( E E * ) n + μ 2 Re[ ( H n ) H * ] μ 4 ( H H * ) n } dS
Q= F max c nP

Metrics