Abstract

A dual-comb nonlinear asynchronous optical sampling method is proposed to simplify determination of the time interval and extend the non-ambiguity range in absolute length measurements. Type II second harmonic generation facilitates curve fitting in determining the time interval between adjacent pulses. Meanwhile, the non-ambiguity range is extended by adjusting the repetition rate of the signal laser. The performance of the proposed method is compared with a heterodyne interferometer. Results show that the system achieves a maximum residual of 100.6 nm and an uncertainty of 1.48 μm in a 0.5 ms acquisition time. With longer acquisition time, the uncertainty can be reduced to 166.6 nm for 50 ms and 82.9 nm for 500 ms. Moreover, the extension of the non-ambiguity range is demonstrated by measuring an absolute distance beyond the inherent range determined by the fixed repetition rate.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [CrossRef] [PubMed]
  2. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
    [CrossRef] [PubMed]
  3. S.-W. Kim, “Metrology: combs rule,” Nat. Photonics 3(6), 313–314 (2009).
    [CrossRef]
  4. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [CrossRef]
  5. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006).
    [CrossRef] [PubMed]
  6. Y. Salvadé, N. Schuhler, S. Lévêque, S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
    [CrossRef] [PubMed]
  7. S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
    [CrossRef]
  8. X. Wu, H. Wei, H. Zhang, L. Ren, Y. Li, J. Zhang, “Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb,” Appl. Opt. 52(10), 2042–2048 (2013).
    [CrossRef] [PubMed]
  9. K. Minoshima, H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [CrossRef] [PubMed]
  10. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
    [CrossRef] [PubMed]
  11. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, J. J. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009).
    [CrossRef] [PubMed]
  12. D. Wei, S. Takahashi, K. Takamasu, H. Matsumoto, “Experimental observation of pulse trains’ destructive interference with a femtosecond optical frequency-comb-based interferometer,” Opt. Lett. 34(18), 2775–2777 (2009).
    [CrossRef] [PubMed]
  13. D. Wei, S. Takahashi, K. Takamasu, H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011).
    [CrossRef] [PubMed]
  14. P. Balling, P. Křen, P. Mašika, S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
    [CrossRef] [PubMed]
  15. J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [CrossRef]
  16. J. Lee, K. Lee, S. Lee, S.-W. Kim, Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
    [CrossRef]
  17. I. Coddington, W. Swann, L. Nenadovic, N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [CrossRef]
  18. J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
    [CrossRef]
  19. K.-N. Joo, S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
    [CrossRef] [PubMed]
  20. J. Zhang, Z. H. Lu, L. J. Wang, “Precision measurement of the refractive index of air with frequency combs,” Opt. Lett. 30(24), 3314–3316 (2005).
    [CrossRef] [PubMed]
  21. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
    [CrossRef] [PubMed]
  22. S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
    [CrossRef] [PubMed]
  23. T.-A. Liu, N. R. Newbury, I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
    [CrossRef] [PubMed]
  24. J. D. Kafka, J. W. Pieterse, M. L. Watts, “Two-color subpicosecond optical sampling technique,” Opt. Lett. 17(18), 1286–1288 (1992).
    [CrossRef] [PubMed]
  25. C. Janke, M. Först, M. Nagel, H. Kurz, A. Bartels, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors,” Opt. Lett. 30(11), 1405–1407 (2005).
    [CrossRef] [PubMed]
  26. M. Maier, W. Kaiser, J. Giordmaine, “Intense light bursts in the stimulated Raman effect,” Phys. Rev. Lett. 17(26), 1275–1277 (1966).
    [CrossRef]
  27. L. Antonucci, X. Solinas, A. Bonvalet, M. Joffre, “Asynchronous optical sampling with arbitrary detuning between laser repetition rates,” Opt. Express 20(16), 17928–17937 (2012).
    [CrossRef] [PubMed]

2013 (2)

X. Wu, H. Wei, H. Zhang, L. Ren, Y. Li, J. Zhang, “Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb,” Appl. Opt. 52(10), 2042–2048 (2013).
[CrossRef] [PubMed]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

2012 (3)

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[CrossRef] [PubMed]

L. Antonucci, X. Solinas, A. Bonvalet, M. Joffre, “Asynchronous optical sampling with arbitrary detuning between laser repetition rates,” Opt. Express 20(16), 17928–17937 (2012).
[CrossRef] [PubMed]

J. Lee, K. Lee, S. Lee, S.-W. Kim, Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[CrossRef]

2011 (4)

2010 (1)

J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

2009 (6)

2008 (1)

2006 (2)

2005 (2)

2004 (1)

2000 (3)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

K. Minoshima, H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[CrossRef] [PubMed]

1992 (1)

1966 (1)

M. Maier, W. Kaiser, J. Giordmaine, “Intense light bursts in the stimulated Raman effect,” Phys. Rev. Lett. 17(26), 1275–1277 (1966).
[CrossRef]

Antonucci, L.

Bae, E.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

Balling, P.

Bartels, A.

Bhattacharya, N.

Bonvalet, A.

Braat, J. J.

Coddington, I.

T.-A. Liu, N. R. Newbury, I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[CrossRef] [PubMed]

I. Coddington, W. Swann, L. Nenadovic, N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Cui, M.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Dändliker, R.

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Först, M.

Giordmaine, J.

M. Maier, W. Kaiser, J. Giordmaine, “Intense light bursts in the stimulated Raman effect,” Phys. Rev. Lett. 17(26), 1275–1277 (1966).
[CrossRef]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Han, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

Hänsch, T. W.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Holzwarth, R.

N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Hyun, S.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[CrossRef]

Janke, C.

Jin, J.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[CrossRef]

Joffre, M.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Joo, K.-N.

Kafka, J. D.

Kaiser, W.

M. Maier, W. Kaiser, J. Giordmaine, “Intense light bursts in the stimulated Raman effect,” Phys. Rev. Lett. 17(26), 1275–1277 (1966).
[CrossRef]

Kim, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

Kim, S.-W.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

J. Lee, K. Lee, S. Lee, S.-W. Kim, Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[CrossRef]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[CrossRef]

S.-W. Kim, “Metrology: combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[CrossRef]

K.-N. Joo, S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[CrossRef] [PubMed]

Kim, Y.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[CrossRef]

Kim, Y.-J.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

J. Lee, K. Lee, S. Lee, S.-W. Kim, Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[CrossRef]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[CrossRef]

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Kok, G. J.

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[CrossRef] [PubMed]

Kren, P.

Kurz, H.

Le Floch, S.

Lee, J.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

J. Lee, K. Lee, S. Lee, S.-W. Kim, Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[CrossRef]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lee, K.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

J. Lee, K. Lee, S. Lee, S.-W. Kim, Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[CrossRef]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lee, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

J. Lee, K. Lee, S. Lee, S.-W. Kim, Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[CrossRef]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lévêque, S.

Li, Y.

Liu, T.-A.

Lu, Z. H.

Maier, M.

M. Maier, W. Kaiser, J. Giordmaine, “Intense light bursts in the stimulated Raman effect,” Phys. Rev. Lett. 17(26), 1275–1277 (1966).
[CrossRef]

Mašika, P.

Matsumoto, H.

Minoshima, K.

Nagel, M.

Nenadovic, L.

I. Coddington, W. Swann, L. Nenadovic, N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Newbury, N.

I. Coddington, W. Swann, L. Nenadovic, N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Newbury, N. R.

Persijn, S. T.

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[CrossRef] [PubMed]

Pieterse, J. W.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Ren, L.

Russell, P. S. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Salvadé, Y.

Schuhler, N.

Solinas, X.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Swann, W.

I. Coddington, W. Swann, L. Nenadovic, N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Takahashi, S.

Takamasu, K.

Udem, T.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Urbach, H. P.

van den Berg, S. A.

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Wang, L. J.

Watts, M. L.

Wei, D.

Wei, H.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Wu, X.

Ye, J.

Zeitouny, M. G.

Zhang, H.

Zhang, J.

Appl. Opt. (3)

Meas. Sci. Technol. (3)

J. Lee, K. Lee, S. Lee, S.-W. Kim, Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[CrossRef]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[CrossRef]

Nat. Photonics (4)

S.-W. Kim, “Metrology: combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[CrossRef]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[CrossRef]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

I. Coddington, W. Swann, L. Nenadovic, N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Opt. Express (6)

Opt. Lett. (7)

Phys. Rev. Lett. (3)

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[CrossRef] [PubMed]

M. Maier, W. Kaiser, J. Giordmaine, “Intense light bursts in the stimulated Raman effect,” Phys. Rev. Lett. 17(26), 1275–1277 (1966).
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of the nonlinear ASOPS for absolute length measurement. The time interval between pulses reflected from the target and the reference is τd. Pulses with different repetition rates from the signal laser and the local oscillator are incident on the SHG to plot pulse shape.

Fig. 2
Fig. 2

Extension of the NAR by changing the repetition rate of the SL. (a) The SL works with a repetition rate of fr + Δfr. (b) The SL works with a repetition rate of fr + Δfr’.

Fig. 3
Fig. 3

Experimental setup for dual-comb nonlinear asynchronous optical sampling. EDFA: erbium-doped optical fiber amplifier, HWP: half wave plate, QWP: quarter wave plate, PBS: polarization beam splitter, L: lens, PD: photodetector, CLK: Rb atomic clock.

Fig. 4
Fig. 4

Experimental evaluation of measurement stability and precision in comparison with a heterodyne interferometer. (a) Allan deviation variation with different averaging periods at a fixed target distance of ~39.2 mm. (b) Comparison between measured distance of the dual-comb (vertical axis) and that of the heterodyne interferometer (horizontal axis) around 39.2 mm with an averaging period of 500 ms.

Fig. 5
Fig. 5

Absolute distance measurements with the proposed NAR extension method. The horizontal axis represents the displacements recorded by the heterodyne interferometer while the vertical axis represents the absolute distances measured by the dual-comb system. (a) Absolute distance measurement with the NAR of 600 mm. (b) Absolute distance measurement with the NAR extension method. (c) Residuals and standard deviations of (b).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ T r = 1 f r 1 f r +Δ f r = Δ f r f r ( f r +Δ f r ) Δ f r f r 2
I 2ω (τ) I ω,SL (t) I ω,LO (t+τ)dt,
τ d =| t ref t tar | f r Δ T r ,
L= c 2 n g τ d ,
L abs =m Λ NAR +L
L abs = m ' Λ NAR ' + L ' ,
L= c 2 n g Δt Δ f r f r ,
U L =L [ ( U Δt Δt ) 2 +2 ( U f r Δ f r ) 2 + ( U f r f r ) 2 + ( U n g n g ) 2 ] 1 2 ,
U L = [ ( cΔ f r 2 n g f r ) 2 ( U Δt ) 2 +2 L 2 ( U f r Δ f r ) 2 ] 1 2 ,

Metrics