Abstract

A novel self-Q-switched and orthogonally polarized dual-wavelength laser has been investigated with Yb3+-doped CGB disordered crystals. By slightly inclining output coupler to introduce the Fresnel loss, we realized simultaneously dual-wavelength laser operation at 1052.6 nm in E//b polarization and 1057.7 nm in E//c polarization with a frequency difference of 1.38 THz. Self-Q-switched pulse generation was observed in this free-running laser, originating from the nonlinear reabsorption effect of Yb:CGB as well as the strong storage of inversion population induced by the long excited-state lifetime (~1 ms). Pulse duration of 287 ns was obtained with an output average power of 416 mW and a repetition rate of 35 kHz. The self-Q-switching effect increased the peak power by 100 times the average power. This very simple laser, free from the complexity and high-cost of additional intracavity polarization modulator and Q-switcher, may be applied for constructing miniature, integrated and portable laser system.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang, Y. Tan, Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
    [CrossRef]
  2. S. N. Son, J. J. Song, J. U. Kang, C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(12), 6125–6130 (2011).
    [CrossRef] [PubMed]
  3. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
    [CrossRef] [PubMed]
  4. U. Sharma, C.-S. Kim, J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Photonics Technol. Lett. 16(5), 1277–1279 (2004).
    [CrossRef]
  5. H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
    [CrossRef]
  6. P. Zhao, S. Ragam, Y. J. Ding, I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
    [CrossRef] [PubMed]
  7. B. Wu, P. P. Jiang, D. Z. Yang, T. Chen, J. Kong, Y. H. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express 17(8), 6004–6009 (2009).
    [CrossRef] [PubMed]
  8. Y. P. Huang, C. Y. Cho, Y. J. Huang, Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012).
    [CrossRef] [PubMed]
  9. A. El Amili, G. Loas, S. De, S. Schwartz, G. Feugnet, J.-P. Pocholle, F. Bretenaker, M. Alouini, “Experimental demonstration of a dual-frequency laser free from antiphase noise,” Opt. Lett. 37(23), 4901–4903 (2012).
    [CrossRef] [PubMed]
  10. J. Zhang, H. Han, W. Tian, L. Lv, Q. Wang, Z. Wei, “Diode-pumped 88-fs Kerr-lens mode-locked Yb:Y3Ga5O12 crystal laser,” Opt. Express 21(24), 29867–29873 (2013).
    [CrossRef] [PubMed]
  11. W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
    [CrossRef]
  12. A. Brenier, C. Tu, Z. Zhu, J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with the Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98(2-3), 401–406 (2010).
    [CrossRef]
  13. A. Brenier, “Tunable THz frequency difference from a diode-pumped dual-wavelength Yb3+:KGd(WO4)2 laser with chirped volume Bragg gratings,” Laser Phys. Lett. 8(7), 520–524 (2011).
    [CrossRef]
  14. A. Brenier, C. Tu, Z. Zhu, J. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2-3), 323–328 (2007).
    [CrossRef]
  15. F. Auzel, “On the maximum splitting of the (2F7/2) ground state in Yb3+-doped solid state laser materials,” J. Lumin. 93(2), 129–135 (2001).
    [CrossRef]
  16. P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
    [CrossRef]
  17. P.-H. Haumesser, R. Gaumé, J.-M. Benitez, B. Viana, B. Ferrand, G. Aka, D. Vivien, “Czochralski growth of six Yb-doped double borate and silicate laser materials,” J. Cryst. Growth 233(1-2), 233–242 (2001).
    [CrossRef]
  18. C. Y. Tu, Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, B. C. Wu, “Growth and spectroscopic characteristics of Ca3Gd2(BO3)4:Yb3+ laser crystal,” J. Cryst. Growth 265(1-2), 154–158 (2004).
    [CrossRef]
  19. J. L. Xu, C. Y. Tu, Y. Wang, J. L. He, “Multi-wavelength continuous-wave laser operation of Yb:Ca3Gd2(BO3)4 disordered crystal,” Opt. Mater. 33(11), 1766–1769 (2011).
    [CrossRef]
  20. C. A. Bennett, Principles of Physical Optics (Wiley, 2008)
  21. T.-Y. Tsai, Y.-C. Fang, “A self-Q-switched all-fiber erbium laser at 1530 nm using an auxiliary 1570-nm erbium laser,” Opt. Express 17(24), 21628–21633 (2009).
    [CrossRef] [PubMed]

2013

2012

2011

S. N. Son, J. J. Song, J. U. Kang, C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(12), 6125–6130 (2011).
[CrossRef] [PubMed]

A. Brenier, “Tunable THz frequency difference from a diode-pumped dual-wavelength Yb3+:KGd(WO4)2 laser with chirped volume Bragg gratings,” Laser Phys. Lett. 8(7), 520–524 (2011).
[CrossRef]

J. L. Xu, C. Y. Tu, Y. Wang, J. L. He, “Multi-wavelength continuous-wave laser operation of Yb:Ca3Gd2(BO3)4 disordered crystal,” Opt. Mater. 33(11), 1766–1769 (2011).
[CrossRef]

P. Zhao, S. Ragam, Y. J. Ding, I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[CrossRef] [PubMed]

2010

S. Zhang, Y. Tan, Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[CrossRef]

A. Brenier, C. Tu, Z. Zhu, J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with the Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98(2-3), 401–406 (2010).
[CrossRef]

2009

2007

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
[CrossRef] [PubMed]

A. Brenier, C. Tu, Z. Zhu, J. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2-3), 323–328 (2007).
[CrossRef]

2004

U. Sharma, C.-S. Kim, J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Photonics Technol. Lett. 16(5), 1277–1279 (2004).
[CrossRef]

C. Y. Tu, Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, B. C. Wu, “Growth and spectroscopic characteristics of Ca3Gd2(BO3)4:Yb3+ laser crystal,” J. Cryst. Growth 265(1-2), 154–158 (2004).
[CrossRef]

2001

F. Auzel, “On the maximum splitting of the (2F7/2) ground state in Yb3+-doped solid state laser materials,” J. Lumin. 93(2), 129–135 (2001).
[CrossRef]

P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
[CrossRef]

P.-H. Haumesser, R. Gaumé, J.-M. Benitez, B. Viana, B. Ferrand, G. Aka, D. Vivien, “Czochralski growth of six Yb-doped double borate and silicate laser materials,” J. Cryst. Growth 233(1-2), 233–242 (2001).
[CrossRef]

2000

W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

Aka, G.

P.-H. Haumesser, R. Gaumé, J.-M. Benitez, B. Viana, B. Ferrand, G. Aka, D. Vivien, “Czochralski growth of six Yb-doped double borate and silicate laser materials,” J. Cryst. Growth 233(1-2), 233–242 (2001).
[CrossRef]

Alouini, M.

Antic-Fidancev, E.

P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
[CrossRef]

Auzel, F.

F. Auzel, “On the maximum splitting of the (2F7/2) ground state in Yb3+-doped solid state laser materials,” J. Lumin. 93(2), 129–135 (2001).
[CrossRef]

Benitez, J.-M.

P.-H. Haumesser, R. Gaumé, J.-M. Benitez, B. Viana, B. Ferrand, G. Aka, D. Vivien, “Czochralski growth of six Yb-doped double borate and silicate laser materials,” J. Cryst. Growth 233(1-2), 233–242 (2001).
[CrossRef]

Brenier, A.

A. Brenier, “Tunable THz frequency difference from a diode-pumped dual-wavelength Yb3+:KGd(WO4)2 laser with chirped volume Bragg gratings,” Laser Phys. Lett. 8(7), 520–524 (2011).
[CrossRef]

A. Brenier, C. Tu, Z. Zhu, J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with the Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98(2-3), 401–406 (2010).
[CrossRef]

A. Brenier, C. Tu, Z. Zhu, J. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2-3), 323–328 (2007).
[CrossRef]

Bretenaker, F.

Charrière, F.

Chen, T.

Chen, Y. F.

Chen, Z. N.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[CrossRef]

Cho, C. Y.

Chua, S. J.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[CrossRef]

Chum, C. C.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[CrossRef]

Colomb, T.

Cuche, E.

Danner, A. J.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[CrossRef]

De, S.

Depeursinge, C.

Ding, Y. J.

El Amili, A.

Emery, Y.

Fang, Y.-C.

Ferrand, B.

P.-H. Haumesser, R. Gaumé, J.-M. Benitez, B. Viana, B. Ferrand, G. Aka, D. Vivien, “Czochralski growth of six Yb-doped double borate and silicate laser materials,” J. Cryst. Growth 233(1-2), 233–242 (2001).
[CrossRef]

Feugnet, G.

Gaumé, R.

P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
[CrossRef]

P.-H. Haumesser, R. Gaumé, J.-M. Benitez, B. Viana, B. Ferrand, G. Aka, D. Vivien, “Czochralski growth of six Yb-doped double borate and silicate laser materials,” J. Cryst. Growth 233(1-2), 233–242 (2001).
[CrossRef]

Han, H.

Haumesser, P.-H.

P.-H. Haumesser, R. Gaumé, J.-M. Benitez, B. Viana, B. Ferrand, G. Aka, D. Vivien, “Czochralski growth of six Yb-doped double borate and silicate laser materials,” J. Cryst. Growth 233(1-2), 233–242 (2001).
[CrossRef]

P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
[CrossRef]

He, J. L.

J. L. Xu, C. Y. Tu, Y. Wang, J. L. He, “Multi-wavelength continuous-wave laser operation of Yb:Ca3Gd2(BO3)4 disordered crystal,” Opt. Mater. 33(11), 1766–1769 (2011).
[CrossRef]

Huang, Y. J.

Huang, Y. P.

Jiang, P. P.

Kang, J. U.

S. N. Son, J. J. Song, J. U. Kang, C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(12), 6125–6130 (2011).
[CrossRef] [PubMed]

U. Sharma, C.-S. Kim, J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Photonics Technol. Lett. 16(5), 1277–1279 (2004).
[CrossRef]

Kim, C. S.

S. N. Son, J. J. Song, J. U. Kang, C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(12), 6125–6130 (2011).
[CrossRef] [PubMed]

Kim, C.-S.

U. Sharma, C.-S. Kim, J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Photonics Technol. Lett. 16(5), 1277–1279 (2004).
[CrossRef]

Kong, J.

Krupke, W. F.

W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

Kühn, J.

Li, J.

A. Brenier, C. Tu, Z. Zhu, J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with the Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98(2-3), 401–406 (2010).
[CrossRef]

A. Brenier, C. Tu, Z. Zhu, J. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2-3), 323–328 (2007).
[CrossRef]

Li, J. F.

C. Y. Tu, Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, B. C. Wu, “Growth and spectroscopic characteristics of Ca3Gd2(BO3)4:Yb3+ laser crystal,” J. Cryst. Growth 265(1-2), 154–158 (2004).
[CrossRef]

Li, Y.

S. Zhang, Y. Tan, Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[CrossRef]

Loas, G.

Lv, L.

Maier, S. A.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[CrossRef]

Marquet, P.

Montfort, F.

Pocholle, J.-P.

Ragam, S.

Schwartz, S.

Sharma, U.

U. Sharma, C.-S. Kim, J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Photonics Technol. Lett. 16(5), 1277–1279 (2004).
[CrossRef]

Shen, Y. H.

Si, G. Y.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[CrossRef]

Son, S. N.

S. N. Son, J. J. Song, J. U. Kang, C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(12), 6125–6130 (2011).
[CrossRef] [PubMed]

Song, J. J.

S. N. Son, J. J. Song, J. U. Kang, C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(12), 6125–6130 (2011).
[CrossRef] [PubMed]

Sun, M.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[CrossRef]

Tan, Y.

S. Zhang, Y. Tan, Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[CrossRef]

Tanoto, H.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[CrossRef]

Teng, J. H.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[CrossRef]

Tian, W.

Tsai, T.-Y.

Tu, C.

A. Brenier, C. Tu, Z. Zhu, J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with the Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98(2-3), 401–406 (2010).
[CrossRef]

A. Brenier, C. Tu, Z. Zhu, J. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2-3), 323–328 (2007).
[CrossRef]

Tu, C. Y.

J. L. Xu, C. Y. Tu, Y. Wang, J. L. He, “Multi-wavelength continuous-wave laser operation of Yb:Ca3Gd2(BO3)4 disordered crystal,” Opt. Mater. 33(11), 1766–1769 (2011).
[CrossRef]

C. Y. Tu, Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, B. C. Wu, “Growth and spectroscopic characteristics of Ca3Gd2(BO3)4:Yb3+ laser crystal,” J. Cryst. Growth 265(1-2), 154–158 (2004).
[CrossRef]

Viana, B.

P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
[CrossRef]

P.-H. Haumesser, R. Gaumé, J.-M. Benitez, B. Viana, B. Ferrand, G. Aka, D. Vivien, “Czochralski growth of six Yb-doped double borate and silicate laser materials,” J. Cryst. Growth 233(1-2), 233–242 (2001).
[CrossRef]

Vivien, D.

P.-H. Haumesser, R. Gaumé, J.-M. Benitez, B. Viana, B. Ferrand, G. Aka, D. Vivien, “Czochralski growth of six Yb-doped double borate and silicate laser materials,” J. Cryst. Growth 233(1-2), 233–242 (2001).
[CrossRef]

P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
[CrossRef]

Wang, B.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[CrossRef]

Wang, Q.

Wang, Y.

J. L. Xu, C. Y. Tu, Y. Wang, J. L. He, “Multi-wavelength continuous-wave laser operation of Yb:Ca3Gd2(BO3)4 disordered crystal,” Opt. Mater. 33(11), 1766–1769 (2011).
[CrossRef]

C. Y. Tu, Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, B. C. Wu, “Growth and spectroscopic characteristics of Ca3Gd2(BO3)4:Yb3+ laser crystal,” J. Cryst. Growth 265(1-2), 154–158 (2004).
[CrossRef]

Wei, Z.

Wu, B.

Wu, B. C.

C. Y. Tu, Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, B. C. Wu, “Growth and spectroscopic characteristics of Ca3Gd2(BO3)4:Yb3+ laser crystal,” J. Cryst. Growth 265(1-2), 154–158 (2004).
[CrossRef]

Wu, Q. Y.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[CrossRef]

Xu, J. L.

J. L. Xu, C. Y. Tu, Y. Wang, J. L. He, “Multi-wavelength continuous-wave laser operation of Yb:Ca3Gd2(BO3)4 disordered crystal,” Opt. Mater. 33(11), 1766–1769 (2011).
[CrossRef]

Yang, D. Z.

You, Z. Y.

C. Y. Tu, Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, B. C. Wu, “Growth and spectroscopic characteristics of Ca3Gd2(BO3)4:Yb3+ laser crystal,” J. Cryst. Growth 265(1-2), 154–158 (2004).
[CrossRef]

Zhang, J.

Zhang, S.

S. Zhang, Y. Tan, Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[CrossRef]

Zhao, P.

Zhu, Z.

A. Brenier, C. Tu, Z. Zhu, J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with the Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98(2-3), 401–406 (2010).
[CrossRef]

A. Brenier, C. Tu, Z. Zhu, J. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2-3), 323–328 (2007).
[CrossRef]

Zhu, Z. J.

C. Y. Tu, Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, B. C. Wu, “Growth and spectroscopic characteristics of Ca3Gd2(BO3)4:Yb3+ laser crystal,” J. Cryst. Growth 265(1-2), 154–158 (2004).
[CrossRef]

Zotova, I. B.

Appl. Phys. B

A. Brenier, C. Tu, Z. Zhu, J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with the Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98(2-3), 401–406 (2010).
[CrossRef]

A. Brenier, C. Tu, Z. Zhu, J. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2-3), 323–328 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

J. Cryst. Growth

P.-H. Haumesser, R. Gaumé, J.-M. Benitez, B. Viana, B. Ferrand, G. Aka, D. Vivien, “Czochralski growth of six Yb-doped double borate and silicate laser materials,” J. Cryst. Growth 233(1-2), 233–242 (2001).
[CrossRef]

C. Y. Tu, Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, B. C. Wu, “Growth and spectroscopic characteristics of Ca3Gd2(BO3)4:Yb3+ laser crystal,” J. Cryst. Growth 265(1-2), 154–158 (2004).
[CrossRef]

J. Lumin.

F. Auzel, “On the maximum splitting of the (2F7/2) ground state in Yb3+-doped solid state laser materials,” J. Lumin. 93(2), 129–135 (2001).
[CrossRef]

J. Phys. Condens. Matter

P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
[CrossRef]

Laser Phys. Lett.

A. Brenier, “Tunable THz frequency difference from a diode-pumped dual-wavelength Yb3+:KGd(WO4)2 laser with chirped volume Bragg gratings,” Laser Phys. Lett. 8(7), 520–524 (2011).
[CrossRef]

Meas. Sci. Technol.

S. Zhang, Y. Tan, Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[CrossRef]

Nat. Photonics

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

J. L. Xu, C. Y. Tu, Y. Wang, J. L. He, “Multi-wavelength continuous-wave laser operation of Yb:Ca3Gd2(BO3)4 disordered crystal,” Opt. Mater. 33(11), 1766–1769 (2011).
[CrossRef]

Photonics Technol. Lett.

U. Sharma, C.-S. Kim, J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Photonics Technol. Lett. 16(5), 1277–1279 (2004).
[CrossRef]

Sensors (Basel)

S. N. Son, J. J. Song, J. U. Kang, C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(12), 6125–6130 (2011).
[CrossRef] [PubMed]

Other

C. A. Bennett, Principles of Physical Optics (Wiley, 2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Gain cross section-for E//b and E//c polarizations of 5%, 10%, and 15% Yb:CGB crystals.

Fig. 2
Fig. 2

Setup of the orthogonally polarized dual-wavelength Yb:CGB laser.

Fig. 3
Fig. 3

(a) Measured thermal focal lengths of Yb:CGB. (b) Fresnel losses for S and P waves versus inclined angle of OC. The squares refer to the six dual-wavelength gain-to-loss balance regions obtained in the experiment for the different combinations of the Yb:CGB and OCs.

Fig. 4
Fig. 4

(a) Output power versus incident pump power when the power ratio of E//b and E//c polarizations is 1:1. The two arrows in a curve indicate the region of self-Q-switching operation. (b) Dual-wavelength laser spectrum with the 10%Yb:CGB and 3% OC under an output power of 713 mW. Inset: Spectra in the two conditions of single-wavelength oscillation. Left spectrum is under an output power of 785 mW, and the right one is under 323 mW.

Fig. 5
Fig. 5

(a) Self-Q-switched pulse width and (b) repetition rate versus incident pump power.

Fig. 6
Fig. 6

Q-switched pulse train of 35 kHz repetition rate under the output power of 416 mW. Left inset: The corresponding 287-ns pulse profile. Right inset: Transverse beam profile with a distance of 1 m from the OC.

Fig. 7
Fig. 7

Power-dependent nonlinear reabsorption of Yb:CGB at 1.05 μm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L s = R s ( n,θ )+[ 1 R s ( n,θ ) ] R s ( 1/n,arcsin( sinθ/n ) ),
L p = R p ( n,θ )+[ 1 R p ( n,θ ) ] R p ( 1/n,arcsin( sinθ/n ) ),
R s ( n,θ )= | cosθ n 2 sin 2 θ cosθ+ n 2 sin 2 θ | 2 ,
R p ( n,θ )= | n 2 cosθ n 2 sin 2 θ n 2 cosθ+ n 2 sin 2 θ | 2 .

Metrics