Abstract

Hyperentanglement is a promising resource in quantum information processing, especially for increasing the channel capacity of long-distance quantum communication. Here we present a general hyper-entanglement concentration protocol (hyper-ECP) for nonlocal partially hyperentangled Bell states that decay with the interrelationship between the polarization and the spatial-mode degrees of freedom of two-photon systems, which is not taken into account in other hyper-ECPs, resorting to the optical property of the quantum-dot spins inside one-side optical microcavities. We show that the success probability of our hyper-ECP is largely increased by iteration of the hyper-ECP process. Our hyper-ECP can be straightforwardly generalized to distill nonlocal maximally hyperentangled N-photon Greenberger-Horne-Zeilinger (GHZ) states from arbitrary partially hyperentangled GHZ-class states.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [CrossRef]
  2. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [CrossRef] [PubMed]
  3. C. H. Bennett, G. Brassard, N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
    [CrossRef] [PubMed]
  4. X. H. Li, F. G. Deng, H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008).
    [CrossRef]
  5. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef] [PubMed]
  6. C. H. Bennett, S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [CrossRef] [PubMed]
  7. X. S. Liu, G. L. Long, D. M. Tong, F. Li, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
    [CrossRef]
  8. M. Hillery, V. Bužek, A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
    [CrossRef]
  9. L. Xiao, G. L. Long, F. G. Deng, J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
    [CrossRef]
  10. G. L. Long, X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
    [CrossRef]
  11. F. G. Deng, G. L. Long, X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
    [CrossRef]
  12. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense codi,” Phys. Rev. A 71, 044305 (2005).
    [CrossRef]
  13. J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
    [CrossRef]
  14. M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
    [CrossRef]
  15. G. Vallone, R. Ceccarelli, F. De Martini, P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
    [CrossRef]
  16. J. T. Barreiro, T. C. Wei, P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nature Phys. 4, 282–286 (2008).
    [CrossRef]
  17. Y. B. Sheng, F. G. Deng, G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
    [CrossRef]
  18. B. C. Ren, H. R. Wei, M. Hua, T. Li, F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
    [CrossRef] [PubMed]
  19. T. C. Wei, J. T. Barreiro, P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305 (2007).
    [CrossRef]
  20. N. Pisenti, C. P. E. Gaebler, T. W. Lynn, “Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement,” Phys. Rev. A 84, 022340 (2011).
    [CrossRef]
  21. T. J. Wang, Y. Lu, G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
    [CrossRef]
  22. B. C. Ren, H. R. Wei, F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser phys. Lett. 10, 095202 (2013).
    [CrossRef]
  23. P. G. Kwiat, H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998).
    [CrossRef]
  24. S. P. Walborn, S. Pádua, C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
    [CrossRef]
  25. C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
    [CrossRef] [PubMed]
  26. M. Barbieri, G. Vallone, P. Mataloni, F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
    [CrossRef]
  27. T. J. Wang, S. Y. Song, G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
    [CrossRef]
  28. Y. B. Sheng, F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
    [CrossRef]
  29. Y. B. Sheng, F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010).
    [CrossRef]
  30. X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010).
    [CrossRef]
  31. F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011).
    [CrossRef]
  32. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
    [CrossRef] [PubMed]
  33. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
    [CrossRef] [PubMed]
  34. J. W. Pan, C. Simon, Č. Brukner, A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
    [CrossRef] [PubMed]
  35. J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
    [CrossRef] [PubMed]
  36. C. Simon, J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002).
    [CrossRef] [PubMed]
  37. Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).
    [CrossRef]
  38. C. Wang, Y. Zhang, R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express 19, 25685–25695 (2011).
    [CrossRef]
  39. C. Wang, Y. Zhang, G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).
    [CrossRef]
  40. B. C. Ren, F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser phys. Lett. 10, 115201 (2013).
    [CrossRef]
  41. C. H. Bennett, H. J. Bernstein, S. Popescu, B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
    [CrossRef] [PubMed]
  42. S. Bose, V. Vedral, P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).
    [CrossRef]
  43. Y. B. Sheng, L. Zhou, S. M. Zhao, B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012).
    [CrossRef]
  44. F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012).
    [CrossRef]
  45. L. Chen, “Comblike entangled spectrum for composite spin-orbit modes from hyperconcentration,” Phys. Rev. A 85, 012311 (2012).
    [CrossRef]
  46. B. C. Ren, F. F. Du, F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
    [CrossRef]
  47. T. Yamamoto, M. Koashi, N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
    [CrossRef]
  48. Z. Zhao, J. W. Pan, M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
    [CrossRef]
  49. Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008).
    [CrossRef]
  50. R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
    [CrossRef]
  51. C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
    [CrossRef]
  52. D. F. Walls, G. J. Milburn, Quantum optics (Springer-Verlag, Berlin, 1994).
    [CrossRef]
  53. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
    [CrossRef]
  54. G. Bester, S. Nair, A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−x Gax As/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
    [CrossRef]
  55. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
    [CrossRef]
  56. J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G. Monte, M. Hopkinson, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
    [CrossRef]
  57. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
    [CrossRef] [PubMed]
  58. D. Birkedal, K. Leosson, J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
    [CrossRef] [PubMed]
  59. H. R. Wei, F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
    [CrossRef] [PubMed]
  60. H. R. Wei, F. G. Deng, “Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities,” Opt. Express 22, 593–607 (2014).
    [CrossRef] [PubMed]
  61. W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
    [CrossRef]
  62. D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
    [CrossRef]
  63. B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
    [CrossRef]
  64. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
    [CrossRef] [PubMed]
  65. C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
    [CrossRef]
  66. H. J. Kimble, Cavity Quantum Electrodynamics (Academic, San Diego, 1994).
  67. C. Y. Hu, W. J. Munro, J. L. OBrien, J. G. Rarity, Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity, Phys. Rev. B 80, 205326 (2009).
    [CrossRef]
  68. C. Y. Hu, W. J. Munro, J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
    [CrossRef]
  69. A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
    [CrossRef]
  70. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
    [CrossRef]
  71. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
    [CrossRef]
  72. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
    [CrossRef]

2014 (1)

2013 (4)

H. R. Wei, F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[CrossRef] [PubMed]

B. C. Ren, F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser phys. Lett. 10, 115201 (2013).
[CrossRef]

B. C. Ren, F. F. Du, F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
[CrossRef]

B. C. Ren, H. R. Wei, F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser phys. Lett. 10, 095202 (2013).
[CrossRef]

2012 (6)

T. J. Wang, Y. Lu, G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[CrossRef]

T. J. Wang, S. Y. Song, G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[CrossRef]

Y. B. Sheng, L. Zhou, S. M. Zhao, B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012).
[CrossRef]

F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012).
[CrossRef]

L. Chen, “Comblike entangled spectrum for composite spin-orbit modes from hyperconcentration,” Phys. Rev. A 85, 012311 (2012).
[CrossRef]

B. C. Ren, H. R. Wei, M. Hua, T. Li, F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[CrossRef] [PubMed]

2011 (6)

C. Wang, Y. Zhang, R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express 19, 25685–25695 (2011).
[CrossRef]

C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

C. Wang, Y. Zhang, G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).
[CrossRef]

N. Pisenti, C. P. E. Gaebler, T. W. Lynn, “Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement,” Phys. Rev. A 84, 022340 (2011).
[CrossRef]

F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011).
[CrossRef]

2010 (4)

Y. B. Sheng, F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[CrossRef]

Y. B. Sheng, F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010).
[CrossRef]

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010).
[CrossRef]

Y. B. Sheng, F. G. Deng, G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
[CrossRef]

2009 (3)

G. Vallone, R. Ceccarelli, F. De Martini, P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. OBrien, J. G. Rarity, Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity, Phys. Rev. B 80, 205326 (2009).
[CrossRef]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

2008 (7)

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[CrossRef]

C. Y. Hu, W. J. Munro, J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).
[CrossRef]

Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

J. T. Barreiro, T. C. Wei, P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nature Phys. 4, 282–286 (2008).
[CrossRef]

X. H. Li, F. G. Deng, H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008).
[CrossRef]

2007 (4)

T. C. Wei, J. T. Barreiro, P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305 (2007).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

2006 (1)

C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef] [PubMed]

2005 (3)

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense codi,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

2004 (4)

L. Xiao, G. L. Long, F. G. Deng, J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

2003 (4)

G. Bester, S. Nair, A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−x Gax As/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
[CrossRef]

F. G. Deng, G. L. Long, X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[CrossRef]

S. P. Walborn, S. Pádua, C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

2002 (6)

C. Simon, J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002).
[CrossRef] [PubMed]

G. L. Long, X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[CrossRef]

X. S. Liu, G. L. Long, D. M. Tong, F. Li, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G. Monte, M. Hopkinson, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[CrossRef]

2001 (5)

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

D. Birkedal, K. Leosson, J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef] [PubMed]

T. Yamamoto, M. Koashi, N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
[CrossRef]

Z. Zhao, J. W. Pan, M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
[CrossRef]

J. W. Pan, C. Simon, Č. Brukner, A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

1999 (2)

M. Hillery, V. Bužek, A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

S. Bose, V. Vedral, P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).
[CrossRef]

1998 (2)

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[CrossRef]

P. G. Kwiat, H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998).
[CrossRef]

1997 (1)

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[CrossRef]

1996 (3)

C. H. Bennett, H. J. Bernstein, S. Popescu, B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

1993 (1)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

1992 (2)

C. H. Bennett, S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

Abstreiter, G.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

Ashmore, A. D.

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G. Monte, M. Hopkinson, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[CrossRef]

Baker, C.

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G. Monte, M. Hopkinson, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[CrossRef]

Barbieri, M.

M. Barbieri, G. Vallone, P. Mataloni, F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

Barreiro, J. T.

J. T. Barreiro, T. C. Wei, P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nature Phys. 4, 282–286 (2008).
[CrossRef]

T. C. Wei, J. T. Barreiro, P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305 (2007).
[CrossRef]

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Bayer, M.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett, S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

Bernstein, H. J.

C. H. Bennett, H. J. Bernstein, S. Popescu, B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[CrossRef] [PubMed]

Berthiaume, A.

M. Hillery, V. Bužek, A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Bester, G.

G. Bester, S. Nair, A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−x Gax As/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
[CrossRef]

Bichler, M.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

Bimberg, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Birkedal, D.

D. Birkedal, K. Leosson, J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef] [PubMed]

Borri, P.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Bose, S.

S. Bose, V. Vedral, P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

Brukner, C.

J. W. Pan, C. Simon, Č. Brukner, A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

Brunner, D.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[CrossRef]

Bulaev, D. V.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

Bužek, V.

M. Hillery, V. Bužek, A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Ceccarelli, R.

G. Vallone, R. Ceccarelli, F. De Martini, P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[CrossRef]

Chen, L.

L. Chen, “Comblike entangled spectrum for composite spin-orbit modes from hyperconcentration,” Phys. Rev. A 85, 012311 (2012).
[CrossRef]

Cinelli, C.

M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Dalgarno, P. A.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[CrossRef]

De Martini, F.

G. Vallone, R. Ceccarelli, F. De Martini, P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

Deng, F. G.

H. R. Wei, F. G. Deng, “Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities,” Opt. Express 22, 593–607 (2014).
[CrossRef] [PubMed]

B. C. Ren, H. R. Wei, F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser phys. Lett. 10, 095202 (2013).
[CrossRef]

B. C. Ren, F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser phys. Lett. 10, 115201 (2013).
[CrossRef]

B. C. Ren, F. F. Du, F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
[CrossRef]

H. R. Wei, F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[CrossRef] [PubMed]

B. C. Ren, H. R. Wei, M. Hua, T. Li, F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[CrossRef] [PubMed]

F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012).
[CrossRef]

F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011).
[CrossRef]

Y. B. Sheng, F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[CrossRef]

Y. B. Sheng, F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010).
[CrossRef]

Y. B. Sheng, F. G. Deng, G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
[CrossRef]

X. H. Li, F. G. Deng, H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008).
[CrossRef]

Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).
[CrossRef]

Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008).
[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense codi,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

F. G. Deng, G. L. Long, X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Deutsch, D.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Du, F. F.

B. C. Ren, F. F. Du, F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
[CrossRef]

Dürr, C. S.

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[CrossRef]

Ekert, A.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Fafard, S.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Finley, J. J.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G. Monte, M. Hopkinson, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[CrossRef]

Forchel, A.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Gaebler, C. P. E.

N. Pisenti, C. P. E. Gaebler, T. W. Lynn, “Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement,” Phys. Rev. A 84, 022340 (2011).
[CrossRef]

Gasparoni, S.

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

Gerardot, B. D.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Gorbunov, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Gorbunov, A. A.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Hawrylak, P.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Heiss, D.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Hillery, M.

M. Hillery, V. Bužek, A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Hinzer, K.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Höfling, S.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Hofmann, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Hopkinson, M.

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G. Monte, M. Hopkinson, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[CrossRef]

Hu, C. Y.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. OBrien, J. G. Rarity, Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity, Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

C. Y. Hu, W. J. Munro, J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[CrossRef]

Hua, M.

Huber, G.

C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef] [PubMed]

Huebl, H.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

Hvam, J. M.

D. Birkedal, K. Leosson, J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef] [PubMed]

Imoto, N.

T. Yamamoto, M. Koashi, N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
[CrossRef]

Jin, G. S.

C. Wang, Y. Zhang, G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).
[CrossRef]

Jozsa, R.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Kamp, M.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Karczewski, G.

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[CrossRef]

Karrai, K.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[CrossRef]

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[CrossRef]

Keldysh, L. V.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Kimble, H. J.

H. J. Kimble, Cavity Quantum Electrodynamics (Academic, San Diego, 1994).

Klopf, F.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Knight, P. L.

S. Bose, V. Vedral, P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).
[CrossRef]

Koashi, M.

T. Yamamoto, M. Koashi, N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
[CrossRef]

Kossut, J.

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[CrossRef]

Kotthaus, J. P.

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[CrossRef]

Kroner, M.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Kurtsiefer, C.

C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef] [PubMed]

Kuther, A.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Kwiat, P. G.

J. T. Barreiro, T. C. Wei, P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nature Phys. 4, 282–286 (2008).
[CrossRef]

T. C. Wei, J. T. Barreiro, P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305 (2007).
[CrossRef]

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

P. G. Kwiat, H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998).
[CrossRef]

Kwon, S. H.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Landwehr, G.

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[CrossRef]

Langbein, W.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Leosson, K.

D. Birkedal, K. Leosson, J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef] [PubMed]

Li, F.

X. S. Liu, G. L. Long, D. M. Tong, F. Li, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

Li, T.

Li, X. H.

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010).
[CrossRef]

X. H. Li, F. G. Deng, H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008).
[CrossRef]

Li, Y. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense codi,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

Liu, X. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense codi,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

F. G. Deng, G. L. Long, X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[CrossRef]

X. S. Liu, G. L. Long, D. M. Tong, F. Li, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

G. L. Long, X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[CrossRef]

Löffler, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Long, G. L.

T. J. Wang, Y. Lu, G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[CrossRef]

T. J. Wang, S. Y. Song, G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[CrossRef]

Y. B. Sheng, F. G. Deng, G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense codi,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

F. G. Deng, G. L. Long, X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[CrossRef]

X. S. Liu, G. L. Long, D. M. Tong, F. Li, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

G. L. Long, X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[CrossRef]

Loss, D.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

Lu, Y.

T. J. Wang, Y. Lu, G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[CrossRef]

Lynn, T. W.

N. Pisenti, C. P. E. Gaebler, T. W. Lynn, “Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement,” Phys. Rev. A 84, 022340 (2011).
[CrossRef]

Macchiavello, C.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Mataloni, P.

G. Vallone, R. Ceccarelli, F. De Martini, P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

Medeiros-Ribeiro, G.

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[CrossRef]

Mermin, N. D.

C. H. Bennett, G. Brassard, N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

Milburn, G. J.

D. F. Walls, G. J. Milburn, Quantum optics (Springer-Verlag, Berlin, 1994).
[CrossRef]

Monken, C. H.

S. P. Walborn, S. Pádua, C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

Monte, A. F. G.

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G. Monte, M. Hopkinson, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[CrossRef]

Mowbray, D. J.

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G. Monte, M. Hopkinson, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[CrossRef]

Munro, W. J.

C. Y. Hu, W. J. Munro, J. L. OBrien, J. G. Rarity, Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity, Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

C. Y. Hu, W. J. Munro, J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

Nair, S.

G. Bester, S. Nair, A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−x Gax As/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
[CrossRef]

O’Brien, J. L.

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

OBrien, J. L.

C. Y. Hu, W. J. Munro, J. L. OBrien, J. G. Rarity, Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity, Phys. Rev. B 80, 205326 (2009).
[CrossRef]

Öhberg, P.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[CrossRef]

Ortner, G.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Ossau, W.

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[CrossRef]

Oulton, R.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Pádua, S.

S. P. Walborn, S. Pádua, C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

Pan, J. W.

L. Xiao, G. L. Long, F. G. Deng, J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

C. Simon, J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002).
[CrossRef] [PubMed]

Z. Zhao, J. W. Pan, M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
[CrossRef]

J. W. Pan, C. Simon, Č. Brukner, A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Petroff, P. M.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[CrossRef]

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[CrossRef]

Pisenti, N.

N. Pisenti, C. P. E. Gaebler, T. W. Lynn, “Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement,” Phys. Rev. A 84, 022340 (2011).
[CrossRef]

Popescu, S.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[CrossRef] [PubMed]

Rarity, J. G.

C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. OBrien, J. G. Rarity, Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity, Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

C. Y. Hu, W. J. Munro, J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Reithmaier, J. P.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Reitzenstein, S.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Ren, B. C.

B. C. Ren, F. F. Du, F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
[CrossRef]

B. C. Ren, F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser phys. Lett. 10, 115201 (2013).
[CrossRef]

B. C. Ren, H. R. Wei, F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser phys. Lett. 10, 095202 (2013).
[CrossRef]

B. C. Ren, H. R. Wei, M. Hua, T. Li, F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[CrossRef] [PubMed]

Reuter, D.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Sanpera, A.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Schaeck, S.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

Schäfer, F.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Schneider, C.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Schuck, C.

C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef] [PubMed]

Schumacher, B.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[CrossRef] [PubMed]

Seidl, S.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[CrossRef]

Sek, G.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Sheng, Y. B.

Y. B. Sheng, L. Zhou, S. M. Zhao, B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012).
[CrossRef]

Y. B. Sheng, F. G. Deng, G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
[CrossRef]

Y. B. Sheng, F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010).
[CrossRef]

Y. B. Sheng, F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[CrossRef]

Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).
[CrossRef]

Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008).
[CrossRef]

Simon, C.

C. Simon, J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002).
[CrossRef] [PubMed]

J. W. Pan, C. Simon, Č. Brukner, A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

Skolnick, M. S.

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G. Monte, M. Hopkinson, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[CrossRef]

Smolin, J. A.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

Song, S. Y.

T. J. Wang, S. Y. Song, G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[CrossRef]

Stavarache, V.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

Stern, O.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Stoltz, N. G.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[CrossRef]

Strauß, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Thijssen, A. C. T.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Tong, D. M.

X. S. Liu, G. L. Long, D. M. Tong, F. Li, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

Ursin, R.

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

Vallone, G.

G. Vallone, R. Ceccarelli, F. De Martini, P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

Vedral, V.

S. Bose, V. Vedral, P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).
[CrossRef]

Walborn, S. P.

S. P. Walborn, S. Pádua, C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

Walck, S. N.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Walls, D. F.

D. F. Walls, G. J. Milburn, Quantum optics (Springer-Verlag, Berlin, 1994).
[CrossRef]

Wang, C.

C. Wang, Y. Zhang, G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).
[CrossRef]

C. Wang, Y. Zhang, R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express 19, 25685–25695 (2011).
[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense codi,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

Wang, T. J.

T. J. Wang, S. Y. Song, G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[CrossRef]

T. J. Wang, Y. Lu, G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[CrossRef]

Warburton, R. J.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[CrossRef]

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[CrossRef]

Wei, H. R.

Wei, T. C.

J. T. Barreiro, T. C. Wei, P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nature Phys. 4, 282–286 (2008).
[CrossRef]

T. C. Wei, J. T. Barreiro, P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305 (2007).
[CrossRef]

Weihs, G.

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

Weinfurter, H.

C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef] [PubMed]

P. G. Kwiat, H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998).
[CrossRef]

Wieck, A. D.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

Wiesner, S. J.

C. H. Bennett, S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

Woggon, U.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Wojtowicz, T.

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Worschech, L.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

Wüst, G.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

Xiao, L.

L. Xiao, G. L. Long, F. G. Deng, J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

Yakovlev, D. R.

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[CrossRef]

Yamamoto, T.

T. Yamamoto, M. Koashi, N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Young, A.

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

Young, A. B.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Zeilinger, A.

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

J. W. Pan, C. Simon, Č. Brukner, A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

Zhan, M. S.

Z. Zhao, J. W. Pan, M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
[CrossRef]

Zhang, R.

Zhang, Y.

C. Wang, Y. Zhang, R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express 19, 25685–25695 (2011).
[CrossRef]

C. Wang, Y. Zhang, G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).
[CrossRef]

Zhao, S. M.

Y. B. Sheng, L. Zhou, S. M. Zhao, B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012).
[CrossRef]

Zhao, Z.

Z. Zhao, J. W. Pan, M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
[CrossRef]

Zheng, B. Y.

Y. B. Sheng, L. Zhou, S. M. Zhao, B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012).
[CrossRef]

Zhou, H. Y.

X. H. Li, F. G. Deng, H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008).
[CrossRef]

Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008).
[CrossRef]

Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).
[CrossRef]

Zhou, L.

Y. B. Sheng, L. Zhou, S. M. Zhao, B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012).
[CrossRef]

Zunger, A.

G. Bester, S. Nair, A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−x Gax As/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Laser phys. Lett. (2)

B. C. Ren, H. R. Wei, F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser phys. Lett. 10, 095202 (2013).
[CrossRef]

B. C. Ren, F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser phys. Lett. 10, 115201 (2013).
[CrossRef]

Nature (2)

J. W. Pan, C. Simon, Č. Brukner, A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

Nature (London) (3)

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008).
[CrossRef]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Nature Phys. (1)

J. T. Barreiro, T. C. Wei, P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nature Phys. 4, 282–286 (2008).
[CrossRef]

Opt. Express (4)

Phys. Rev. A (33)

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

G. Vallone, R. Ceccarelli, F. De Martini, P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[CrossRef]

Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).
[CrossRef]

C. Wang, Y. Zhang, G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).
[CrossRef]

Y. B. Sheng, F. G. Deng, G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
[CrossRef]

T. C. Wei, J. T. Barreiro, P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305 (2007).
[CrossRef]

N. Pisenti, C. P. E. Gaebler, T. W. Lynn, “Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement,” Phys. Rev. A 84, 022340 (2011).
[CrossRef]

T. J. Wang, Y. Lu, G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[CrossRef]

P. G. Kwiat, H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998).
[CrossRef]

S. P. Walborn, S. Pádua, C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

X. H. Li, F. G. Deng, H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008).
[CrossRef]

X. S. Liu, G. L. Long, D. M. Tong, F. Li, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

M. Hillery, V. Bužek, A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

G. L. Long, X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[CrossRef]

F. G. Deng, G. L. Long, X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense codi,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

C. H. Bennett, H. J. Bernstein, S. Popescu, B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[CrossRef] [PubMed]

S. Bose, V. Vedral, P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).
[CrossRef]

Y. B. Sheng, L. Zhou, S. M. Zhao, B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012).
[CrossRef]

F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012).
[CrossRef]

L. Chen, “Comblike entangled spectrum for composite spin-orbit modes from hyperconcentration,” Phys. Rev. A 85, 012311 (2012).
[CrossRef]

B. C. Ren, F. F. Du, F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
[CrossRef]

T. Yamamoto, M. Koashi, N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
[CrossRef]

Z. Zhao, J. W. Pan, M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
[CrossRef]

Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

T. J. Wang, S. Y. Song, G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[CrossRef]

Y. B. Sheng, F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[CrossRef]

Y. B. Sheng, F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010).
[CrossRef]

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010).
[CrossRef]

F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011).
[CrossRef]

Phys. Rev. B (10)

C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998).
[CrossRef]

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

G. Bester, S. Nair, A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−x Gax As/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003).
[CrossRef]

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G. Monte, M. Hopkinson, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002).
[CrossRef]

C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. OBrien, J. G. Rarity, Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity, Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, W. J. Munro, J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

Phys. Rev. Lett. (12)

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

D. Birkedal, K. Leosson, J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef] [PubMed]

C. Simon, J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997).
[CrossRef]

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett, S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Science (1)

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

Other (2)

D. F. Walls, G. J. Milburn, Quantum optics (Springer-Verlag, Berlin, 1994).
[CrossRef]

H. J. Kimble, Cavity Quantum Electrodynamics (Academic, San Diego, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The optical transitions for a negatively charged exciton X with circularly polarized photons. (a) A charged QD embedded in a one-side micropillar microcavity with a circular cross section. (b) The spin-dependent transition rules of a negatively charged exciton Xaccording to Pauli’s exclusion principle. L and R represent the left and the right circularly polarized photons, respectively. ↑↓⇑ (↓↑⇓) represents the negatively charged exciton X in the spin state | + 3 2 ( | 3 2 ). ↑ and ↓ represent the excess electron spin states | + 1 2 and | 1 2 , respectively.

Fig. 2
Fig. 2

Schematic diagram of the general hyper-ECP for two-photon systems in an arbitrary partially hyperentangled Bell state. The optical elements in the blue dashed box are used to perform the polarization parity-check QND on a two-photon system, and the optical elements in the pink dashed box are used to perform the spatial-mode parity-check QND on a two-photon system. The small mirror is used to reflect the photon, which makes the photon interact with the cavity twice. Zi (i = 1, 2, 3, 4) represents a half-wave plate which is used to perform a polarization phase-flip operation σ z p = | R R | | L L |. Xj (j = 1, 2, 3, 4) represents a half-wave plate which is used to perform a polarization bit-flip operation σ x p = | R L | + | L R |. R45 represents a half-wave plate which is used to perform the polarization Hadamard operation. CPBS represents a polarizing beam splitter in the circular basis, which transmits the photon in the right-circular polarization |R〉 and reflects the photon in the left-circular polarization |L〉, respectively. BS represents a 50:50 beam splitter which is used to perform the spatial-mode Hadamard operation. DL represents a time-delay device which makes the two wave packets reach the last CPBS in each Mach-Zehnder interferometer simultaneously. Dk (k = L1, R1, R2, L2) represents a single-photon detector. D represents the same operations as the ones performed by Alice in the green dotted box.

Fig. 3
Fig. 3

The success probability P of our hyper-ECP for two-photon systems in an arbitrary partially hyperentangled Bell state with n round iteration of the hyper-ECP process. Here we use the examples n = 1 and n = 5 to show the success probabilities of our hyper-ECP P1 and P5, respectively. The parameters of the arbitrary partially hyperentangled Bell states are chosen as |β| = |δ|.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

| ψ A B = 1 2 ( | R R + | L L ) A B ( | a 1 b 1 + | a 2 b 2 ) , | ϕ 0 A B = ( α 0 | R R + β 0 | L L ) A B ( γ 0 | a 1 b 1 + δ 0 | a 2 b 2 ) , | ϕ A B = ( α | R R | a 1 b 1 + β | L L | a 1 b 1 + γ | R R | a 2 b 2 + δ | L L | a 2 b 2 ) A B .
d a ^ d t = [ i ( ω c ω ) + κ 2 + κ s 2 ] a ^ g σ ^ κ a ^ in , d σ ^ d t = [ i ( ω X ω ) + γ 2 ] σ ^ g σ ^ z a ^ , a ^ out = a ^ in + κ a ^ ,
r ( ω ) = a ^ in a ^ = 1 κ [ i ( ω X ω ) + γ 2 ] [ i ( ω X ω ) + γ 2 ] [ i ( ω c ω ) + κ 2 + κ s 2 ] + g 2 .
| L , | L , , | L , | L , , | R , | R , , | R , | R , .
| + 1 | χ A [ | 1 ( α 0 | R + β 0 | L ) A + | 1 ( α 0 | R + β 0 | L ) A ] ( γ 0 | a 1 + δ 0 | a 2 ) .
| + 1 | ϕ ± A C | + 1 | ϕ ± A C , | + 1 | ϕ 1 ± A C | 1 | ϕ 1 ± A C .
| + 2 | χ B [ | 2 ( γ 0 | b 1 + δ 0 | b 2 ) + | 2 ( γ 0 | b 1 δ 0 | b 2 ) ] ( α 0 | R + β 0 | L ) B .
| + 2 | ϕ ± B D | + 2 | ϕ ± B D , | + 2 | ϕ 1 ± B D | 2 | ϕ 1 ± B D .
| ϕ A B = ( α | R R | a 1 b 1 + β | L L | a 1 b 1 + γ | R R | a 2 b 2 + δ | L L | a 2 b 2 ) A B , | ϕ C D = ( α | R R | c 1 d 1 + β | L L | c 1 d 1 + γ | R R | c 2 d 2 + δ | L L | c 2 d 2 ) C D , | ϕ A B = ( α | R R | a 1 b 1 + β | L L | a 1 b 1 + γ | R R | a 2 b 2 + δ | L L | a 2 b 2 ) A B , | ϕ C D = ( α | R R | c 1 d 1 + β | L L | c 1 d 1 + γ | R R | c 2 d 2 + δ | L L | c 2 d 2 ) C D .
| Φ 1 A B C D 1 = 1 p ( 1 ) 1 ( α γ | R R R R + β δ | L L L L ) A B C D ( | a 1 b 1 c 2 d 2 + | a 2 b 2 c 1 d 1 ) .
| Φ 1 A B C D 1 = 1 4 p ( 1 ) 1 [ ( α γ | R R + β δ | L L ) ( | R R + | L L ) + ( α γ | R R β δ | L L ) ( | R L + | L R ) ] A B C D [ ( | a 1 b 1 + | a 2 b 2 ) ( | c 1 d 1 + | c 2 d 2 ) + ( | a 1 b 1 + | a 2 b 2 ) ( | c 1 d 2 + | c 2 d 1 ) ] .
| Φ 2 A B C D 1 = 1 p ( 1 ) 2 ( | R R L L + | L L R R ) A B C D ( α β | a 1 b 1 c 1 d 1 + γ δ | a 2 b 2 c 2 d 2 ) .
| Φ 3 A B C D 1 = 1 p ( 1 ) 3 [ ( α δ | R R L L + β γ | L L R R ) A B C D | a 1 b 1 c 2 d 2 + ( α δ | L L R R + β γ | R R L L ) A B C D | a 2 b 2 c 1 d 1 ) ] .
| Φ 3 A B C D 1 = 1 p ( 1 ) 3 [ ( α δ | R R L L + β γ | L L R R ) A B C D ( | a 1 b 1 c 2 d 2 + | a 2 b 2 c 1 d 1 ) .
| Φ 4 A B C D 1 = 1 p ( 1 ) 4 ( α 2 | R R R R | a 1 b 1 c 1 d 1 + β 2 | L L L L | a 1 b 1 c 1 d 1 + γ 2 | R R R R | a 2 b 2 c 2 d 2 + δ 2 | L L L L | a 2 b 2 c 2 d 2 ) A B C D .
| Φ 1 1 A B A B 1 = 1 2 ( | R R L L + | L L R R ) A B A B ( | a 1 b 1 a 1 b 1 + | a 2 b 2 a 2 b 2 ) , | Φ 1 2 A B A B 1 = 1 2 ( | R R L L + | L L R R ) A B A B ( | a 1 b 1 a 2 b 2 + | a 2 b 2 a 1 b 1 ) .
| Φ 1 3 A B A B 1 = 1 y 1 ( α 2 γ 2 | R R R R + β 2 δ 2 | L L L L ) A B A B ( | a 1 b 1 a 1 b 1 + | a 2 b 2 a 2 b 2 ) , | Φ 1 4 A B A B 1 = 1 y 1 ( α 2 γ 2 | R R R R + β 2 δ 2 | L L L L ) A B A B ( | a 1 b 1 a 2 b 2 + | a 2 b 2 a 1 b 1 ) ,
| Φ 2 1 A B A B 1 = 1 2 ( | R R R R + | L L L L ) A B A B ( | a 1 b 1 a 2 b 2 + | a 2 b 2 a 1 b 1 ) , | Φ 2 2 A B A B 1 = 1 2 ( | R R L L + | L L R R ) A B A B ( | a 1 b 1 a 2 b 2 + | a 2 b 2 a 1 b 1 ) .
| Φ 2 3 A B A B 1 = 1 y 2 ( | R R R R + | L L L L ) A B A B ( α 2 β 2 | a 1 b 1 a 1 b 1 + γ 2 δ 2 | a 2 b 2 a 2 b 2 ) , | Φ 2 4 A B A B 1 = 1 y 2 ( | R R L L + | L L R R ) A B A B ( α 2 β 2 | a 1 b 1 a 1 b 1 + γ 2 δ 2 | a 2 b 2 a 2 b 2 ) ,
P ( 1 ) = 8 | α β γ δ | 2 [ 1 p ( 1 ) 1 + 1 p ( 1 ) 2 + 1 p ( 1 ) 3 ] , P ( 2 ) = 16 | α 2 β 2 γ 2 δ 2 | 2 [ 1 y 1 2 p ( 1 ) 1 + 1 y 2 2 p ( 1 ) 2 + 1 y 3 2 p ( 1 ) 3 ] + 8 p ( 1 ) 4 | α 2 β 2 γ 2 δ 2 | 2 [ 1 y 1 2 + 1 y 2 2 + 1 y 3 2 ] , , P ( n ) = 2 n + 2 [ | α 2 ( n 1 ) β 2 ( n 1 ) γ 2 ( n 1 ) δ 2 ( n 1 ) | 2 2 ( | α 2 ( n 1 ) γ 2 ( n 1 ) | 2 + | β 2 ( n 1 ) δ 2 ( n 1 ) | 2 ) p ( 1 ) 1 + ] + 2 n + 1 p ( 1 ) 4 [ | α 2 ( n 1 ) β 2 ( n 1 ) γ 2 ( n 1 ) δ 2 ( n 1 ) | 2 2 ( | α 2 ( n 1 ) γ 2 ( n 1 ) | 2 + | β 2 ( n 1 ) δ 2 ( n 1 ) | 2 ) y 1 2 + ] + + 8 ( | α 2 ( n 1 ) | 2 + | β 2 ( n 1 ) | 2 + | γ 2 ( n 1 ) | 2 + | δ 2 ( n 1 ) | 2 ) p ( 1 ) 4 × [ | α 2 ( n 1 ) β 2 ( n 1 ) γ 2 ( n 1 ) δ 2 ( n 1 ) | 2 2 ( | α 2 ( n 1 ) γ 2 ( n 1 ) | 2 + | β 2 ( n 1 ) δ 2 ( n 1 ) | 2 ) + ] .
P n = i = 1 n P ( i ) .
| ϕ N = ( α | R R R | a 1 b 1 z 1 + β | L L L | a 1 b 1 z 1 + γ | R R R | a 2 b 2 z 2 + δ | L L L | a 2 b 2 z 2 ) A B Z .
F p = F s = | ψ f | ψ ideal | 2 = ( 2 | r | 4 + 2 | r 0 | 4 + 4 ) 2 ( | r | + | r 0 | 2 ) 16 ( 2 | r | 8 + 2 | r 0 | 8 + 4 ) ( | r | 2 + | r 0 | 2 ) , η p = η s = [ 1 2 + 1 4 ( | r | 4 + | r 0 | 4 ) ] 2 .

Metrics