Abstract

In this study, we propose a two-dimensional (2D) dielectric structure tailored by a systematic design approach on the exit side of a metallic aperture to enhance the off-axis electromagnetic (EM) wave. We adopted a phase field method based topology optimization scheme and designed an arbitrary 2D dielectric structure in order to steer outward beaming through an aperture to a specific direction. Beyond previous one-dimensional structure, we proposed an arbitrary 2D dielectric structure through the introduced design process defining not only x- but also y-directional dielectric structural boundaries simultaneously and experimentally confirmed enhanced EM wave transmission to a desired direction.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  3. F. J. Garcia-Vidal, L. Martín-Moreno, J. B. Pendry, “Surfaces swith holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
    [CrossRef]
  4. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [CrossRef] [PubMed]
  5. W. Xu, S. Sokusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
    [CrossRef]
  6. D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14(8), 3503–3511 (2006).
    [CrossRef] [PubMed]
  7. S. Kim, H. Kim, Y. Lim, B. Lee, “Off axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
    [CrossRef]
  8. H. Caglayan, I. Bulu, E. Ozbay, “Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,” Opt. Express 13(5), 1666–1671 (2005).
    [CrossRef] [PubMed]
  9. H. Caglayan, I. Bulu, E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D Appl. Phys. 42(4), 045105 (2009).
    [CrossRef]
  10. M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods and Applications, (Springer, 2003).
  11. J. Andkær, N. A. Mortensen, O. Sigmund, “Towards all-dielectric, polarization-independent optical cloaks,” Appl. Phys. Lett. 100(10), 101106 (2012).
    [CrossRef]
  12. Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett. 38(10), 1606–1608 (2013).
    [CrossRef] [PubMed]
  13. COMSOL Multiphysics 3.5a, COMSOL AB, Stockholm.
  14. T. Yamada, K. Izui, S. Nishiwaki, A. Takezawa, “A topology optimization method based on the level set method incorporating a fictitious interface energy,” Comput. Methods Appl. Mech. Eng. 199(45-48), 2876–2891 (2010).
    [CrossRef]
  15. http://www.kayelaby.npl.co.uk/general_physics/2_6/2_6_5.html .
  16. A. Takezawa, S. Nishiwaki, M. Kitamura, “Shape and topology optimization based on the phase field method and sensitivity analysis,” J. Comput. Phys. 229(7), 2697–2718 (2010).
    [CrossRef]
  17. J. S. Jensen, O. Sigmund, “Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22(6), 1191–1198 (2005).
    [CrossRef]
  18. D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat Commun 3, 1213–1220 (2012).
    [CrossRef] [PubMed]

2013 (2)

W. Xu, S. Sokusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[CrossRef]

Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett. 38(10), 1606–1608 (2013).
[CrossRef] [PubMed]

2012 (2)

J. Andkær, N. A. Mortensen, O. Sigmund, “Towards all-dielectric, polarization-independent optical cloaks,” Appl. Phys. Lett. 100(10), 101106 (2012).
[CrossRef]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat Commun 3, 1213–1220 (2012).
[CrossRef] [PubMed]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[CrossRef] [PubMed]

2010 (2)

T. Yamada, K. Izui, S. Nishiwaki, A. Takezawa, “A topology optimization method based on the level set method incorporating a fictitious interface energy,” Comput. Methods Appl. Mech. Eng. 199(45-48), 2876–2891 (2010).
[CrossRef]

A. Takezawa, S. Nishiwaki, M. Kitamura, “Shape and topology optimization based on the phase field method and sensitivity analysis,” J. Comput. Phys. 229(7), 2697–2718 (2010).
[CrossRef]

2009 (1)

H. Caglayan, I. Bulu, E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D Appl. Phys. 42(4), 045105 (2009).
[CrossRef]

2007 (1)

S. Kim, H. Kim, Y. Lim, B. Lee, “Off axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[CrossRef]

2006 (1)

2005 (3)

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

1998 (1)

W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Andkær, J.

J. Andkær, N. A. Mortensen, O. Sigmund, “Towards all-dielectric, polarization-independent optical cloaks,” Appl. Phys. Lett. 100(10), 101106 (2012).
[CrossRef]

Baek, S.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat Commun 3, 1213–1220 (2012).
[CrossRef] [PubMed]

Basov, D.

Bulu, I.

H. Caglayan, I. Bulu, E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D Appl. Phys. 42(4), 045105 (2009).
[CrossRef]

H. Caglayan, I. Bulu, E. Ozbay, “Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,” Opt. Express 13(5), 1666–1671 (2005).
[CrossRef] [PubMed]

Caglayan, H.

H. Caglayan, I. Bulu, E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D Appl. Phys. 42(4), 045105 (2009).
[CrossRef]

H. Caglayan, I. Bulu, E. Ozbay, “Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,” Opt. Express 13(5), 1666–1671 (2005).
[CrossRef] [PubMed]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Chang, C. K.

Chen, Y. C.

Choi, M.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat Commun 3, 1213–1220 (2012).
[CrossRef] [PubMed]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Driscoll, T.

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Ebbessen, W.

W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martín-Moreno, J. B. Pendry, “Surfaces swith holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Ghaemi, H. F.

W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Izui, K.

T. Yamada, K. Izui, S. Nishiwaki, A. Takezawa, “A topology optimization method based on the level set method incorporating a fictitious interface energy,” Comput. Methods Appl. Mech. Eng. 199(45-48), 2876–2891 (2010).
[CrossRef]

Jensen, J. S.

Jung, Y.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat Commun 3, 1213–1220 (2012).
[CrossRef] [PubMed]

Kang, G.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat Commun 3, 1213–1220 (2012).
[CrossRef] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Kim, H.

S. Kim, H. Kim, Y. Lim, B. Lee, “Off axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[CrossRef]

Kim, K.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat Commun 3, 1213–1220 (2012).
[CrossRef] [PubMed]

Kim, S.

S. Kim, H. Kim, Y. Lim, B. Lee, “Off axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[CrossRef]

Kitamura, M.

A. Takezawa, S. Nishiwaki, M. Kitamura, “Shape and topology optimization based on the phase field method and sensitivity analysis,” J. Comput. Phys. 229(7), 2697–2718 (2010).
[CrossRef]

Kuan, C. H.

Landy, N.

Lee, B.

S. Kim, H. Kim, Y. Lim, B. Lee, “Off axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[CrossRef]

Lee, C. K.

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Lim, Y.

S. Kim, H. Kim, Y. Lim, B. Lee, “Off axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[CrossRef]

Lin, D. Z.

Lin, M. W.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Liu, J. M.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Martín-Moreno, L.

F. J. Garcia-Vidal, L. Martín-Moreno, J. B. Pendry, “Surfaces swith holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

Mortensen, N. A.

J. Andkær, N. A. Mortensen, O. Sigmund, “Towards all-dielectric, polarization-independent optical cloaks,” Appl. Phys. Lett. 100(10), 101106 (2012).
[CrossRef]

Nishiwaki, S.

T. Yamada, K. Izui, S. Nishiwaki, A. Takezawa, “A topology optimization method based on the level set method incorporating a fictitious interface energy,” Comput. Methods Appl. Mech. Eng. 199(45-48), 2876–2891 (2010).
[CrossRef]

A. Takezawa, S. Nishiwaki, M. Kitamura, “Shape and topology optimization based on the phase field method and sensitivity analysis,” J. Comput. Phys. 229(7), 2697–2718 (2010).
[CrossRef]

Ozbay, E.

H. Caglayan, I. Bulu, E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D Appl. Phys. 42(4), 045105 (2009).
[CrossRef]

H. Caglayan, I. Bulu, E. Ozbay, “Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,” Opt. Express 13(5), 1666–1671 (2005).
[CrossRef] [PubMed]

Park, H.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat Commun 3, 1213–1220 (2012).
[CrossRef] [PubMed]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martín-Moreno, J. B. Pendry, “Surfaces swith holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

Shin, D.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat Commun 3, 1213–1220 (2012).
[CrossRef] [PubMed]

Sigmund, O.

J. Andkær, N. A. Mortensen, O. Sigmund, “Towards all-dielectric, polarization-independent optical cloaks,” Appl. Phys. Lett. 100(10), 101106 (2012).
[CrossRef]

J. S. Jensen, O. Sigmund, “Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22(6), 1191–1198 (2005).
[CrossRef]

Smith, D. R.

Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett. 38(10), 1606–1608 (2013).
[CrossRef] [PubMed]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat Commun 3, 1213–1220 (2012).
[CrossRef] [PubMed]

Sokusale, S.

W. Xu, S. Sokusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[CrossRef]

Takezawa, A.

T. Yamada, K. Izui, S. Nishiwaki, A. Takezawa, “A topology optimization method based on the level set method incorporating a fictitious interface energy,” Comput. Methods Appl. Mech. Eng. 199(45-48), 2876–2891 (2010).
[CrossRef]

A. Takezawa, S. Nishiwaki, M. Kitamura, “Shape and topology optimization based on the phase field method and sensitivity analysis,” J. Comput. Phys. 229(7), 2697–2718 (2010).
[CrossRef]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Thio, T.

W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Urzhumov, Y.

Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett. 38(10), 1606–1608 (2013).
[CrossRef] [PubMed]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat Commun 3, 1213–1220 (2012).
[CrossRef] [PubMed]

Wolff, P. A.

W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Xu, W.

W. Xu, S. Sokusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[CrossRef]

Yamada, T.

T. Yamada, K. Izui, S. Nishiwaki, A. Takezawa, “A topology optimization method based on the level set method incorporating a fictitious interface energy,” Comput. Methods Appl. Mech. Eng. 199(45-48), 2876–2891 (2010).
[CrossRef]

Yang, D. L.

Yeh, C. S.

Yeh, J. T.

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

W. Xu, S. Sokusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[CrossRef]

S. Kim, H. Kim, Y. Lim, B. Lee, “Off axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[CrossRef]

J. Andkær, N. A. Mortensen, O. Sigmund, “Towards all-dielectric, polarization-independent optical cloaks,” Appl. Phys. Lett. 100(10), 101106 (2012).
[CrossRef]

Comput. Methods Appl. Mech. Eng. (1)

T. Yamada, K. Izui, S. Nishiwaki, A. Takezawa, “A topology optimization method based on the level set method incorporating a fictitious interface energy,” Comput. Methods Appl. Mech. Eng. 199(45-48), 2876–2891 (2010).
[CrossRef]

J. Comput. Phys. (1)

A. Takezawa, S. Nishiwaki, M. Kitamura, “Shape and topology optimization based on the phase field method and sensitivity analysis,” J. Comput. Phys. 229(7), 2697–2718 (2010).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martín-Moreno, J. B. Pendry, “Surfaces swith holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

H. Caglayan, I. Bulu, E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D Appl. Phys. 42(4), 045105 (2009).
[CrossRef]

Nat Commun (1)

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat Commun 3, 1213–1220 (2012).
[CrossRef] [PubMed]

Nature (1)

W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Other (3)

COMSOL Multiphysics 3.5a, COMSOL AB, Stockholm.

M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods and Applications, (Springer, 2003).

http://www.kayelaby.npl.co.uk/general_physics/2_6/2_6_5.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic concept of the study. (a) regular dielectric grating and (b) arbitrary 2D dielectric structure surrounding an aperture.

Fig. 2
Fig. 2

Model for analysis and design.

Fig. 3
Fig. 3

Convergence history graph of the objective function and the dielectric shape changes during the topology optimization process. The function value is normalized to the initial structure value having a regular grating period.

Fig. 4
Fig. 4

E-field pattern obtained at 10GHz by simulation for (a) the regular gating structure and (b) the proposed 2D structure. Integrated field intensities along an x-directional line (designated as a dotted line) at the measuring area location (designated as a dotted square) are also plotted.

Fig. 5
Fig. 5

Parameter study of the proposed structure. (a) 2D dielectric structure proposed from the design process and (b) field intensity evaluations of the measuring area normalized to the intensity value of the regular grating structure by changing t1 and t2. Dotted lines designate values from the derived optimal structure through the design process.

Fig. 6
Fig. 6

Photographs of samples of (a) the regular grating structure and (b) the proposed 2D structure.

Fig. 7
Fig. 7

Experiment set-up for TE field distribution measurement.

Fig. 8
Fig. 8

Field pattern comparison experimentally measured for (a) the regular grating structure and (b) the proposed dielectric shape from the design process. Integrated field intensities along an x-directional dotted line at the measuring area location are plotted below each plot.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

x { 1 ε r x E z }+ y { 1 ε r y E z }= ω 2 c 2 E z
maximize ϕ Γ( ϕ, u )= P| at the measuring area subjecttoG(ϕ)= Ω ϕdx V req Ω dx =0, 0ϕ1
{ ϕ(t) t =β 2 ϕ(t) F(ϕ) ϕ in Ω T :=Ω×(0,T) ϕ(t) n =0in Ω T :=Ω×(0,T),0ϕ(t)1
F(ϕ)=ap(ϕ)+μ Γ(ϕ, E z ) ϕ | t= t 1 q(ϕ)+λG(ϕ)+ γ 2 G (ϕ) 2 ( t 1 t t 2 )

Metrics