Abstract

A new scheme for distributed Brillouin sensing of strain and temperature in optical fibers is proposed, analyzed and demonstrated experimentally. The technique combines between time-domain and correlation-domain analysis. Both Brillouin pump and signal waves are repeatedly co-modulated by a relatively short, high-rate phase sequence, which introduces Brillouin interactions in a large number of discrete correlation peaks. In addition, the pump wave is also modulated by a single amplitude pulse, which leads to a temporal separation between the generation of different peaks. The Brillouin amplification of the signal wave at individual peak locations is resolved in the time domain. The technique provides the high spatial resolution and long range of unambiguous measurement offered by correlation-domain Brillouin analysis, together with reduced acquisition time through the simultaneous interrogation of a large number of resolution points. In addition, perfect Golomb codes are used in the phase modulation of the two waves instead of random sequences, in order to reduce noise due to residual, off-peak Brillouin interactions. The principle of the method is supported by extensive numerical simulations. Using the proposed scheme, the Brillouin gain spectrum is mapped experimentally along a 400 m-long fiber under test with a spatial resolution of 2 cm, or 20,000 resolution points, with only 127 scans per choice of frequency offset between pump and signal. Compared with corresponding phase-coded, Brillouin correlation domain analysis schemes with equal range and resolution, the acquisition time is reduced by a factor of over 150. A 5 cm-long hot spot, located towards the output end of the pump wave, is properly identified in the measurements. The method represents a significant advance towards practical high-resolution and long range Brillouin sensing systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  2. A. Zadok, A. Eyal, M. Tur, “Stimulated Brillouin scattering slow light in optical fibers [Invited],” Appl. Opt. 50(25), E38–E49 (2011).
    [CrossRef]
  3. T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
    [CrossRef] [PubMed]
  4. T. Horiguchi, T. Kurashima, M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2(5), 352–354 (1990).
    [CrossRef]
  5. M. Niklès, L. Thévenaz, P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996).
    [CrossRef] [PubMed]
  6. X. Bao, L. A. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
    [CrossRef] [PubMed]
  7. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
    [CrossRef] [PubMed]
  8. M. A. Soto, G. Bolognini, F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
    [CrossRef] [PubMed]
  9. M. A. Soto, G. Bolognini, F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
    [CrossRef] [PubMed]
  10. Y. Dong, L. Chen, X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
    [CrossRef] [PubMed]
  11. Y. Peled, A. Motil, L. Yaron, M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [CrossRef] [PubMed]
  12. Y. Peled, A. Motil, M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
    [CrossRef] [PubMed]
  13. Y. Peled, A. Motil, I. Kressel, M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013).
    [CrossRef] [PubMed]
  14. A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.
  15. J. C. Beugnot, M. Tur, S. F. Mafang, L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express 19(8), 7381–7397 (2011).
    [CrossRef] [PubMed]
  16. V. Lecoeuche, D. J. Webb, C. N. Pannell, D. A. Jackson, “Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” Opt. Lett. 25(3), 156–158 (2000).
    [CrossRef] [PubMed]
  17. F. Wang, X. Bao, L. Chen, Y. Li, J. Snoddy, X. Zhang, “Using pulse with a dark base to achieve high spatial and frequency resolution for the distributed Brillouin sensor,” Opt. Lett. 33(22), 2707–2709 (2008).
    [CrossRef] [PubMed]
  18. A. W. Brown, B. G. Colpitts, K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photonics Technol. Lett. 17(7), 1501–1503 (2005).
    [CrossRef]
  19. L. Thévenaz, S. F. Mafang, “Distributed fiber sensing using Brillouin echoes,” Proc. SPIE 7004, 70043N (2008).
  20. S. Foaleng Mafang, M. Tur, J. C. Beugnot, L. Thevenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol. 28(20), 2993–3003 (2010).
    [CrossRef]
  21. W. Li, X. Bao, Y. Li, L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [CrossRef] [PubMed]
  22. T. Sperber, A. Eyal, M. Tur, L. Thévenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express 18(8), 8671–8679 (2010).
    [CrossRef] [PubMed]
  23. Y. Dong, H. Zhang, L. Chen, X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
    [CrossRef] [PubMed]
  24. Y. Antman, N. Levanon, A. Zadok, “Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves,” Opt. Lett. 37(24), 5259–5261 (2012).
    [CrossRef] [PubMed]
  25. K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).
  26. K. Y. Song, Z. He, K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [CrossRef] [PubMed]
  27. W. Zou, Z. He, K. Hotate, “Range elongation of distributed discrimination of strain and temperature in Brillouin optical correlation-domain analysis based on dual frequency modulations,” IEEE Sens. J. 14(1), 244–248 (2014).
    [CrossRef]
  28. J. H. Jeong, K. Lee, K. Y. Song, J. M. Jeong, S. B. Lee, “Differential measurement scheme for Brillouin Optical Correlation Domain Analysis,” Opt. Express 20(24), 27094–27101 (2012).
    [CrossRef] [PubMed]
  29. A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
  30. Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
    [CrossRef] [PubMed]
  31. Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, A. Zadok, “Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes,” Opt. Lett. 38(22), 4701–4704 (2013).
    [CrossRef] [PubMed]
  32. A. Denisov, M. A. Soto, L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, 87943I (2013).
  33. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
    [CrossRef] [PubMed]

2014 (1)

W. Zou, Z. He, K. Hotate, “Range elongation of distributed discrimination of strain and temperature in Brillouin optical correlation-domain analysis based on dual frequency modulations,” IEEE Sens. J. 14(1), 244–248 (2014).
[CrossRef]

2013 (3)

2012 (6)

2011 (7)

2010 (3)

2008 (4)

2006 (1)

2005 (1)

A. W. Brown, B. G. Colpitts, K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photonics Technol. Lett. 17(7), 1501–1503 (2005).
[CrossRef]

2000 (2)

V. Lecoeuche, D. J. Webb, C. N. Pannell, D. A. Jackson, “Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” Opt. Lett. 25(3), 156–158 (2000).
[CrossRef] [PubMed]

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

1996 (1)

1990 (2)

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[CrossRef] [PubMed]

T. Horiguchi, T. Kurashima, M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

Alcon-Camas, M.

Ania-Castañon, J. D.

Antman, Y.

Bao, X.

Beugnot, J. C.

Bolognini, G.

Brown, A. W.

A. W. Brown, B. G. Colpitts, K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photonics Technol. Lett. 17(7), 1501–1503 (2005).
[CrossRef]

Brown, K.

A. W. Brown, B. G. Colpitts, K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photonics Technol. Lett. 17(7), 1501–1503 (2005).
[CrossRef]

Chen, L.

Chen, L. A.

X. Bao, L. A. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[CrossRef] [PubMed]

Colpitts, B. G.

A. W. Brown, B. G. Colpitts, K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photonics Technol. Lett. 17(7), 1501–1503 (2005).
[CrossRef]

Corredera, P.

Denisov, A.

A. Denisov, M. A. Soto, L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, 87943I (2013).

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).

Di Pasquale, F.

Dong, Y.

Eyal, A.

Foaleng Mafang, S.

Gonzalez-Herraez, M.

Hasegawa, T.

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

He, Z.

W. Zou, Z. He, K. Hotate, “Range elongation of distributed discrimination of strain and temperature in Brillouin optical correlation-domain analysis based on dual frequency modulations,” IEEE Sens. J. 14(1), 244–248 (2014).
[CrossRef]

K. Y. Song, Z. He, K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

Horiguchi, T.

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[CrossRef] [PubMed]

T. Horiguchi, T. Kurashima, M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

Hotate, K.

W. Zou, Z. He, K. Hotate, “Range elongation of distributed discrimination of strain and temperature in Brillouin optical correlation-domain analysis based on dual frequency modulations,” IEEE Sens. J. 14(1), 244–248 (2014).
[CrossRef]

K. Y. Song, Z. He, K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

Jackson, D. A.

Jeong, J. H.

Jeong, J. M.

Kressel, I.

Kurashima, T.

T. Horiguchi, T. Kurashima, M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[CrossRef] [PubMed]

Langer, T.

Lecoeuche, V.

Lee, K.

Lee, S. B.

Levanon, N.

Li, W.

Li, Y.

Mafang, S. F.

Martin-Lopez, S.

Motil, A.

Niklès, M.

Pannell, C. N.

Peled, Y.

Primerov, N.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[CrossRef] [PubMed]

Robert, P. A.

Rodriguez, F.

Sancho, J.

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[CrossRef] [PubMed]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).

Snoddy, J.

Song, K. Y.

Soto, M. A.

Sperber, T.

Tateda, M.

T. Horiguchi, T. Kurashima, M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[CrossRef] [PubMed]

Thevenaz, L.

Thévenaz, L.

Tur, M.

Y. Peled, A. Motil, I. Kressel, M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013).
[CrossRef] [PubMed]

Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, A. Zadok, “Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes,” Opt. Lett. 38(22), 4701–4704 (2013).
[CrossRef] [PubMed]

Y. Peled, A. Motil, M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
[CrossRef] [PubMed]

Y. Peled, A. Motil, L. Yaron, M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[CrossRef] [PubMed]

A. Zadok, A. Eyal, M. Tur, “Stimulated Brillouin scattering slow light in optical fibers [Invited],” Appl. Opt. 50(25), E38–E49 (2011).
[CrossRef]

J. C. Beugnot, M. Tur, S. F. Mafang, L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express 19(8), 7381–7397 (2011).
[CrossRef] [PubMed]

S. Foaleng Mafang, M. Tur, J. C. Beugnot, L. Thevenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol. 28(20), 2993–3003 (2010).
[CrossRef]

T. Sperber, A. Eyal, M. Tur, L. Thévenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express 18(8), 8671–8679 (2010).
[CrossRef] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[CrossRef] [PubMed]

Wang, F.

Webb, D. J.

Yaron, L.

Zadok, A.

Zhang, H.

Zhang, X.

Zilka, E.

Zou, W.

W. Zou, Z. He, K. Hotate, “Range elongation of distributed discrimination of strain and temperature in Brillouin optical correlation-domain analysis based on dual frequency modulations,” IEEE Sens. J. 14(1), 244–248 (2014).
[CrossRef]

Appl. Opt. (2)

IEEE Photonics Technol. Lett. (2)

T. Horiguchi, T. Kurashima, M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

A. W. Brown, B. G. Colpitts, K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photonics Technol. Lett. 17(7), 1501–1503 (2005).
[CrossRef]

IEEE Sens. J. (1)

W. Zou, Z. He, K. Hotate, “Range elongation of distributed discrimination of strain and temperature in Brillouin optical correlation-domain analysis based on dual frequency modulations,” IEEE Sens. J. 14(1), 244–248 (2014).
[CrossRef]

IEICE Trans. Electron. (1)

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).

Opt. Express (11)

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[CrossRef] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[CrossRef] [PubMed]

W. Li, X. Bao, Y. Li, L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
[CrossRef] [PubMed]

T. Sperber, A. Eyal, M. Tur, L. Thévenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express 18(8), 8671–8679 (2010).
[CrossRef] [PubMed]

J. H. Jeong, K. Lee, K. Y. Song, J. M. Jeong, S. B. Lee, “Differential measurement scheme for Brillouin Optical Correlation Domain Analysis,” Opt. Express 20(24), 27094–27101 (2012).
[CrossRef] [PubMed]

J. C. Beugnot, M. Tur, S. F. Mafang, L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express 19(8), 7381–7397 (2011).
[CrossRef] [PubMed]

Y. Peled, A. Motil, L. Yaron, M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[CrossRef] [PubMed]

Y. Peled, A. Motil, M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
[CrossRef] [PubMed]

Y. Peled, A. Motil, I. Kressel, M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013).
[CrossRef] [PubMed]

S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
[CrossRef] [PubMed]

Opt. Lett. (9)

Y. Dong, L. Chen, X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
[CrossRef] [PubMed]

M. Niklès, L. Thévenaz, P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996).
[CrossRef] [PubMed]

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[CrossRef] [PubMed]

V. Lecoeuche, D. J. Webb, C. N. Pannell, D. A. Jackson, “Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” Opt. Lett. 25(3), 156–158 (2000).
[CrossRef] [PubMed]

F. Wang, X. Bao, L. Chen, Y. Li, J. Snoddy, X. Zhang, “Using pulse with a dark base to achieve high spatial and frequency resolution for the distributed Brillouin sensor,” Opt. Lett. 33(22), 2707–2709 (2008).
[CrossRef] [PubMed]

K. Y. Song, Z. He, K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

Y. Antman, N. Levanon, A. Zadok, “Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves,” Opt. Lett. 37(24), 5259–5261 (2012).
[CrossRef] [PubMed]

Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, A. Zadok, “Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes,” Opt. Lett. 38(22), 4701–4704 (2013).
[CrossRef] [PubMed]

Proc. SPIE (2)

A. Denisov, M. A. Soto, L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, 87943I (2013).

L. Thévenaz, S. F. Mafang, “Distributed fiber sensing using Brillouin echoes,” Proc. SPIE 7004, 70043N (2008).

Sensors (Basel) (1)

X. Bao, L. A. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[CrossRef] [PubMed]

Other (2)

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Simulated magnitude of the acoustic wave density fluctuations (in normalized units), as a function of position and time along a 6 m-long fiber section. Both pump and signal waves are co-modulated by a perfect Golomb phase code that is 127 bits long (see Appendix), with symbol duration of 200 ps. The pump wave was further modulated by a single amplitude pulse of 26 ns duration (see Eq. (1) and Eq. (2)). The acoustic field, and hence the SBS interaction between pump and signal, is confined to discrete and periodic narrow correlation peaks. The peaks are built up sequentially one after another with no temporal overlap.

Fig. 2
Fig. 2

Simulated output signal power as a function of time. The trace consists of a series of amplification peaks, each of which can be unambiguously related to the SBS interaction at a specific correlation peak (see Fig. 1).

Fig. 3
Fig. 3

Simulated magnitude of the acoustic wave density fluctuations (in normalized units), as a function of position and time along a 6 m-long fiber section. Panel(a): both pump and signal waves are co-modulated by a perfect Golomb phase code that is 127 bits long, with symbol duration of 200 ps. The simultaneous generation of multiple, periodic correlation peaks would lead to ambiguous measurement of the SBS amplification in monitoring the output signal power. Panel (b): The pump wave was modulated by a single amplitude pulse of 10 ns duration, whereas the signal wave was continuous (B-OTDA). Resolution limitations are illustrated.

Fig. 4
Fig. 4

Experimental setup for combined B-OTDA / B-OCDA distributed sensing.

Fig. 5
Fig. 5

Measurements of the output signal power as a function or time, following propagation in a 400 m-long fiber under test that was consisted of two sections, each of ~200 m length. The Brillouin frequency shifts of the two segments at room temperature were 10.90 and 10.84 GHz, respectively. Multiple peaks are evident, each corresponding to the SBS amplification in a specific correlation peak of the Golomb code. A 5 cm-long hot spot was located towards the output end of the pump wave. In both panels, one of the correlation peaks is in spatial overlap with the hot spot. The frequency offset between the pump and signal was set to match the Brillouin shift of the second section at room temperature (panel (a), 10.84 GHz), and the Brillouin shift at the temperature of the hot spot (panel (b), 10.89 GHz).

Fig. 6
Fig. 6

Measured Brillouin gain map as a function of frequency offset between pump and signal, and position along a 400 m-long fiber under test. The fiber consisted of two sections, each approximately 200 m-long, with Brillouin shifts at room temperature of approximately 10.84 GHz and 10.90 GHz, respectively. A 5 cm-long hot spot was located towards the output end of the pump wave. The map was reconstructed using only 127 scans per frequency offset, according to the combined B-OTDA / B-OCDA method. The complete map is shown on panel (a), and a zoom-in on the hot spot region is shown on panel (b).

Fig. 7
Fig. 7

Brillouin frequency shift as a function of position, as extracted from the experimental Brillouin gain map of Fig. 6 above.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A s ( z=L,t )= A s0 n c n rect[ tnT T ] A s ( t )
A p ( z=0,t )= A p0 rect( t θ ) n c n rect[ tnT T ] A p ( t )
Q(t,z)=j g 1 0 t exp[ Γ A ( t t ' ) ] A p ( t ' z v g ) A s * ( t ' z v g Δ( z ) )d t '

Metrics