Abstract

Ultrafast femtosecond timescale dynamics in Vertical External Cavity Surface Emitting Lasers (VECSELs) have recently been employed to achieve record average power and duration mode-locked pulses by employing different types of saturable absorbers and Kerr Lens elements. Microscopic many-body dynamics are expected to dominate when attempting to push pulse durations below 100 fs. We present a preliminary microscopic simulation of ultrafast mode-locking in order to expose the role of hot carrier distributions in establishing ultrafast mode-locking.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516 (2012).
    [CrossRef]
  2. A. Laurain, C. Mart, J. Hader, J.V. Moloney, B. Kunert, W. Stolz, “15W Single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Tech. Lett. 26, 131–133 (2014).
  3. M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett. 48(10), 588–589 (2012).
    [CrossRef]
  4. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013).
    [CrossRef] [PubMed]
  5. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19(9), 8108–8116 (2011).
    [CrossRef] [PubMed]
  6. C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21(25), 31548–31559 (2013).
    [CrossRef] [PubMed]
  7. S. Husaini and R. A. Bedford, “Antiresonant Graphene Saturable Absorber mirror for mode-locking VECSELs,” (private communication) (2013)
  8. K. Seger, N. Meiser, S. Y. Choi, B. H. Jung, D. I. Yeom, F. Rotermund, O. Okhotnikov, F. Laurell, V. Pasiskevicius, “Carbon nanotube mode-locked optically-pumped semiconductor disk laser,” Opt. Express 21(15), 17806–17813 (2013).
    [CrossRef] [PubMed]
  9. P. Klopp, U. Griebner, M. Zorn, M. Weyers, “Pulse repetition rate of 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,”Appl. Phys. Lett. 98, 071103 (2011).
  10. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
    [CrossRef]
  11. O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
    [CrossRef]
  12. A. R. Albrecht, Y. Wang, M. Ghasemkhani, D. V. Seletskiy, J. G. Cederberg, M. Sheik-Bahae, “Exploring ultrafast negative Kerr effect for mode-locking vertical external-cavity surface-emitting lasers,” Opt. Express 21(23), 28801–28808 (2013).
    [CrossRef] [PubMed]
  13. H. Haug, S. Stephan, and W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009).
  14. A. Bäumner, S. W. Koch, J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248(4), 843–846 (2011).
    [CrossRef]

2014 (1)

A. Laurain, C. Mart, J. Hader, J.V. Moloney, B. Kunert, W. Stolz, “15W Single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Tech. Lett. 26, 131–133 (2014).

2013 (5)

2012 (2)

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516 (2012).
[CrossRef]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett. 48(10), 588–589 (2012).
[CrossRef]

2011 (3)

P. Klopp, U. Griebner, M. Zorn, M. Weyers, “Pulse repetition rate of 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,”Appl. Phys. Lett. 98, 071103 (2011).

A. Bäumner, S. W. Koch, J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248(4), 843–846 (2011).
[CrossRef]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19(9), 8108–8116 (2011).
[CrossRef] [PubMed]

2009 (1)

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

Ahn, J. H.

Albrecht, A. R.

Apostolopoulos, V.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

Barbarin, Y.

Bäumner, A.

A. Bäumner, S. W. Koch, J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248(4), 843–846 (2011).
[CrossRef]

Beere, H. E.

Cederberg, J. G.

Choi, S. Y.

Elsmere, S. P.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

Farrer, I.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

Ferrari, A. C.

Ghasemkhani, M.

Golling, M.

Griebner, U.

P. Klopp, U. Griebner, M. Zorn, M. Weyers, “Pulse repetition rate of 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,”Appl. Phys. Lett. 98, 071103 (2011).

Hader, J.

A. Laurain, C. Mart, J. Hader, J.V. Moloney, B. Kunert, W. Stolz, “15W Single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Tech. Lett. 26, 131–133 (2014).

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516 (2012).
[CrossRef]

Heinen, B.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013).
[CrossRef] [PubMed]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516 (2012).
[CrossRef]

Hoffmann, M.

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[CrossRef]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19(9), 8108–8116 (2011).
[CrossRef] [PubMed]

Jung, B. H.

Keller, U.

Klopp, P.

P. Klopp, U. Griebner, M. Zorn, M. Weyers, “Pulse repetition rate of 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,”Appl. Phys. Lett. 98, 071103 (2011).

Koch, M.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516 (2012).
[CrossRef]

Koch, S. W.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516 (2012).
[CrossRef]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett. 48(10), 588–589 (2012).
[CrossRef]

A. Bäumner, S. W. Koch, J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248(4), 843–846 (2011).
[CrossRef]

Krestnikov, I. L.

Kulmala, T. S.

Kunert, B.

A. Laurain, C. Mart, J. Hader, J.V. Moloney, B. Kunert, W. Stolz, “15W Single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Tech. Lett. 26, 131–133 (2014).

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013).
[CrossRef] [PubMed]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett. 48(10), 588–589 (2012).
[CrossRef]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516 (2012).
[CrossRef]

Laurain, A.

A. Laurain, C. Mart, J. Hader, J.V. Moloney, B. Kunert, W. Stolz, “15W Single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Tech. Lett. 26, 131–133 (2014).

Laurell, F.

Lee, Y.

Livshits, D. A.

Mangold, M.

Mart, C.

A. Laurain, C. Mart, J. Hader, J.V. Moloney, B. Kunert, W. Stolz, “15W Single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Tech. Lett. 26, 131–133 (2014).

Meiser, N.

Mihoubi, Z.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

Milana, S.

Moloney, J. V.

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett. 48(10), 588–589 (2012).
[CrossRef]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516 (2012).
[CrossRef]

A. Bäumner, S. W. Koch, J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248(4), 843–846 (2011).
[CrossRef]

Moloney, J.V.

A. Laurain, C. Mart, J. Hader, J.V. Moloney, B. Kunert, W. Stolz, “15W Single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Tech. Lett. 26, 131–133 (2014).

Okhotnikov, O.

Pasiskevicius, V.

Popa, D.

Quarterman, A. H.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

Ritchie, D. A.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013).
[CrossRef] [PubMed]

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

Rotermund, F.

Scheller, M.

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett. 48(10), 588–589 (2012).
[CrossRef]

Seger, K.

Seletskiy, D. V.

Sheik-Bahae, M.

Sieber, O. D.

Sparenberg, M.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516 (2012).
[CrossRef]

Stolz, W.

A. Laurain, C. Mart, J. Hader, J.V. Moloney, B. Kunert, W. Stolz, “15W Single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Tech. Lett. 26, 131–133 (2014).

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013).
[CrossRef] [PubMed]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516 (2012).
[CrossRef]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett. 48(10), 588–589 (2012).
[CrossRef]

Südmeyer, T.

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[CrossRef]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19(9), 8108–8116 (2011).
[CrossRef] [PubMed]

Sun, Z.

Sundaram, R. S.

Tilma, B. W.

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[CrossRef]

Tropper, A.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

Tropper, A. C.

Wang, T.-L.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516 (2012).
[CrossRef]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett. 48(10), 588–589 (2012).
[CrossRef]

Wang, Y.

Weber, A.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516 (2012).
[CrossRef]

Weyers, M.

P. Klopp, U. Griebner, M. Zorn, M. Weyers, “Pulse repetition rate of 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,”Appl. Phys. Lett. 98, 071103 (2011).

Wilcox, K. G.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013).
[CrossRef] [PubMed]

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

Wittwer, V. J.

Yeom, D. I.

Zaugg, C. A.

Zorn, M.

P. Klopp, U. Griebner, M. Zorn, M. Weyers, “Pulse repetition rate of 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,”Appl. Phys. Lett. 98, 071103 (2011).

Appl. Phys. B (1)

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[CrossRef]

Appl. Phys. Lett. (1)

P. Klopp, U. Griebner, M. Zorn, M. Weyers, “Pulse repetition rate of 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,”Appl. Phys. Lett. 98, 071103 (2011).

Electron. Lett. (2)

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516 (2012).
[CrossRef]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett. 48(10), 588–589 (2012).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

A. Laurain, C. Mart, J. Hader, J.V. Moloney, B. Kunert, W. Stolz, “15W Single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Tech. Lett. 26, 131–133 (2014).

Nat. Photonics (1)

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

Opt. Express (5)

Phys. Status Solidi B (1)

A. Bäumner, S. W. Koch, J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248(4), 843–846 (2011).
[CrossRef]

Other (2)

H. Haug, S. Stephan, and W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009).

S. Husaini and R. A. Bedford, “Antiresonant Graphene Saturable Absorber mirror for mode-locking VECSELs,” (private communication) (2013)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Example for the results obtains by numerical solution of the MSBE for mode-locking operation. The upper left panel shows the momentum resolved reference carrier distributions fke(h) in the gain QWs together with the nonequilibrium distribution nke(h) induced by the intra-cavity circulating pulse. The corresponding nonequilibrium gain spectrum is shown in the upper right panel (dotted line) together with the reference gain spectrum of the background distributions (solid line). The SESAM carrier distribution and the converged stable pulse are plotted in the lower left and right panels, respectively. The insets show the temporal stabilization of the pulse amplitude and the FWHM.

Fig. 2
Fig. 2

(a) Schematics of the laser cavity which is formed by a highly reflective (HR) curved mirror, a flat output coupler (OC) with 1% transmission, a flat HR end mirror, the VECSEL chip as well as two dispersion compensation mirrors (DM). As Kerr-medium (KM) a YVO4 crystal is used. (b) The YVO4 crystal also provides polarization control: The ordinary laser beam passes the crystal directly while the orthogonal polarization is transversal displaced and is blocked by the aperture (A).

Fig. 3
Fig. 3

RF signal for the emitted laser light for different time windows (10ns, 2µs, 10µs). Measured autocorrelation signal recorded with a background free SHG autocorrelator. A short spike is observed towering above a significant background pedestal.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ 2 z 2 n 2 c 0 2 2 t 2 ]E(z,t)= μ 0 2 t 2 P(z,t)
t p λ,ν,k = i λ 1 , ν 1 ( e λ, λ 1 ,k e δ ν, ν 1 + e ν, ν 1 ,k h δ λ, λ 1 ) p λ 1 , ν 1 ,k i( n λ,k e + n ν,k h 1) Ω λ,ν,k + Γ λ,ν;deph t n λ(ν),k e(h) =2Im ( Ω λ,ν,k ( p λ,ν,k ) )+ Γ λ(ν);scatt e(h) .
e λ, λ 1 ,k e = ε λ,k e δ λ, λ 1 λ 2 ,q V kq λ, λ 2 , λ 1 , λ 2 n λ 2 ,q e e ν, ν 1 ,k h = ε ν,k h δ ν, ν 1 ν 2 ,q V kq ν, ν 2 , ν 1 , ν 2 n ν 2 ,q h
Ω λ,ν,k = ω R + 1 λ 1 , ν 1 ,qk V kq λ, ν 1 ,ν, λ 1 p λ 1 , ν 1 ,q .

Metrics