Abstract

We present the simultaneous measurement of first and second order dispersion in short length (< 1 m) few mode fibers (polarization and transverse) using virtual reference interferometry. This technique generates results equivalent to balanced spectral interferometry, without the complexity associated with physical balancing. This is achieved by simulating a virtual reference with a group delay equal to that of the physical interferometer. The amplitude modulation that results from mixing the interferograms, generated in both the unbalanced interferometer and the virtual reference, is equivalent to the first order interference that would be produced by physical balancing. The advantages of the technique include speed, simplicity, convenience and the capability for simultaneous measurement of multiple modes. The theoretical framework is first developed and then verified experimentally.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Yaman, N. Bai, B. Zhu, T. Wang, G. Li, “Long distance transmission in few-mode fibers,” Opt. Express 18(12), 13250–13257 (2010).
    [CrossRef] [PubMed]
  2. P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-Mode Fiber for Uncoupled Mode-Division Multiplexing Transmissions,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.5.LeCervin.7.
    [CrossRef]
  3. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [CrossRef] [PubMed]
  4. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express 19(17), 16593–16600 (2011).
    [CrossRef] [PubMed]
  5. F. Yaman, N. Bai, Y. K. Huang, M. F. Huang, B. Zhu, T. Wang, G. Li, “10 x 112Gb/s PDM-QPSK transmission over 5032 km in few-mode fibers,” Opt. Express 18(20), 21342–21349 (2010).
    [CrossRef] [PubMed]
  6. A. Galtarossa, L. Palmieri, M. Schiano, T. Tambosso, “Single-End Polarization Mode Dispersion Measurement Using Backreflected Spectra Through a Linear Polarizer,” J. Lightw. Tech. 17(10), 1835–1842 (1999).
    [CrossRef]
  7. B. L. Heffner, “Automated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis,” IEEE Photon. Technol. Lett. 4(9), 1066–1069 (1992).
    [CrossRef]
  8. B. L. Heffner, “Accurate, Automated Measurement of Differential Group Delay Dispersion and Principle State Variation Using Jones Matrix Eigenanlysis,” IEEE Photon. Technol. Lett. 5(7), 814–817 (1993).
    [CrossRef]
  9. F. Tang, X. Z. Wang, Y. Zhang, W. Jing, “Distributed measurement of birefringence dispersion in polarization-maintaining fibers,” Opt. Lett. 31(23), 3411–3413 (2006).
    [CrossRef] [PubMed]
  10. F. Tang, X. Z. Wang, Y. Zhang, W. Jing, “Characterization of birefringence dispersion in polarization-maintaining fibers by use of white-light interferometry,” Appl. Opt. 46(19), 4073–4080 (2007).
    [CrossRef] [PubMed]
  11. D. A. Flavin, R. McBride, J. D. Jones, “Dispersion of birefringence and differential group delay in polarization-maintaining fiber,” Opt. Lett. 27(12), 1010–1012 (2002).
    [CrossRef] [PubMed]
  12. M. G. Shlyagin, A. V. Khomenko, D. Tentori, “Birefringence dispersion measurement in optical fibers by wavelength scanning,” Opt. Lett. 20(8), 869–871 (1995).
    [CrossRef] [PubMed]
  13. R. Posey, L. Phillips, D. Diggs, A. Sharma, “LP01-LP02 interference using a spectrally extended light source: measurement of the non-step-refractive-index profile of optical fibers,” Opt. Lett. 21(17), 1357–1359 (1996).
    [CrossRef] [PubMed]
  14. P. Hlubina, “Measuring intermodal dispersion in optical fibres using white-light spectral interferometry with the compensated Michelson interferometer,” J. Mod. Opt. 48(14), 2087–2096 (2001).
    [CrossRef]
  15. P. Hlubina, T. Martynkien, W. Urbanczyk, “Measurements of intermodal dispersion in few-mode optical fibres using a spectral-domain white-light interferometric method,” Meas. Sci. Technol. 14(6), 784–789 (2003).
    [CrossRef]
  16. J. W. Nicholson, A. D. Yablon, S. Ramachandran, S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
    [CrossRef] [PubMed]
  17. K. Jespersen, Z. Li, L. Gruner-Nielson, B. Palsdottir, F. Poletti, and J. W. Nicholson, “Measuring Distributed Mode Scattering in Long, Few-Moded Fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3I.4.
    [CrossRef]
  18. J. Cheng, M. E. V. Pedersen, K. Wang, C. Xu, L. Grüner-Nielsen, D. Jakobsen, “Time-domain multimode dispersion measurement in a higher-order-mode fiber,” Opt. Lett. 37(3), 347–349 (2012).
    [CrossRef] [PubMed]
  19. Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, G. Leuchs, “Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
    [CrossRef]
  20. W. Mohammed, J. Meier, M. A. Galle, L. Qian, J. S. Aitchison, P. W. E. Smith, “Linear and quadratic dispersion characterization of millimeter-length fibers and waveguides using common-path interferometry,” Opt. Lett. 32(22), 3312–3314 (2007).
    [CrossRef] [PubMed]
  21. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [CrossRef]
  22. P. Merrit, R. P. Tatum, D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989).
    [CrossRef]
  23. P. Hlubina, D. Ciprian, M. Kadulova, T. Martynkien, P. Mergo, W. Urbanczyk, “Spectral interferometry-based dispersion characterization of microstructured and specialty optical fibers using a supercontinuum source,” Proc. SPIE8426, 84260N (2012).
  24. M. A. Galle, S. S. Saini, W. S. Mohammed, L. Qian, “Chromatic dispersion measurements using a virtually referenced interferometer,” Opt. Lett. 37(10), 1598–1600 (2012).
    [CrossRef] [PubMed]
  25. M. A. Galle, S. S. Saini, W. S. Mohammed, L. Qian, “Virtual reference interferometry: theory and experiment,” J. Opt. Soc. Am. B 29(11), 3201–3210 (2012).
    [CrossRef]

2012 (3)

2011 (2)

2010 (2)

2009 (1)

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, G. Leuchs, “Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (1)

2003 (1)

P. Hlubina, T. Martynkien, W. Urbanczyk, “Measurements of intermodal dispersion in few-mode optical fibres using a spectral-domain white-light interferometric method,” Meas. Sci. Technol. 14(6), 784–789 (2003).
[CrossRef]

2002 (1)

2001 (1)

P. Hlubina, “Measuring intermodal dispersion in optical fibres using white-light spectral interferometry with the compensated Michelson interferometer,” J. Mod. Opt. 48(14), 2087–2096 (2001).
[CrossRef]

1999 (1)

A. Galtarossa, L. Palmieri, M. Schiano, T. Tambosso, “Single-End Polarization Mode Dispersion Measurement Using Backreflected Spectra Through a Linear Polarizer,” J. Lightw. Tech. 17(10), 1835–1842 (1999).
[CrossRef]

1996 (1)

1995 (1)

1993 (1)

B. L. Heffner, “Accurate, Automated Measurement of Differential Group Delay Dispersion and Principle State Variation Using Jones Matrix Eigenanlysis,” IEEE Photon. Technol. Lett. 5(7), 814–817 (1993).
[CrossRef]

1992 (1)

B. L. Heffner, “Automated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis,” IEEE Photon. Technol. Lett. 4(9), 1066–1069 (1992).
[CrossRef]

1989 (1)

P. Merrit, R. P. Tatum, D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989).
[CrossRef]

1982 (1)

Aitchison, J. S.

Astruc, M.

Bai, N.

Bigo, S.

Bolle, C. A.

Boutin, A.

Brindel, P.

Cerou, F.

Charlet, G.

Cheng, J.

Ciprian, D.

P. Hlubina, D. Ciprian, M. Kadulova, T. Martynkien, P. Mergo, W. Urbanczyk, “Spectral interferometry-based dispersion characterization of microstructured and specialty optical fibers using a supercontinuum source,” Proc. SPIE8426, 84260N (2012).

Diggs, D.

Essiambre, R. J.

Flavin, D. A.

Galle, M. A.

Galtarossa, A.

A. Galtarossa, L. Palmieri, M. Schiano, T. Tambosso, “Single-End Polarization Mode Dispersion Measurement Using Backreflected Spectra Through a Linear Polarizer,” J. Lightw. Tech. 17(10), 1835–1842 (1999).
[CrossRef]

Ghalmi, S.

Gnauck, A. H.

Grüner-Nielsen, L.

Heffner, B. L.

B. L. Heffner, “Accurate, Automated Measurement of Differential Group Delay Dispersion and Principle State Variation Using Jones Matrix Eigenanlysis,” IEEE Photon. Technol. Lett. 5(7), 814–817 (1993).
[CrossRef]

B. L. Heffner, “Automated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis,” IEEE Photon. Technol. Lett. 4(9), 1066–1069 (1992).
[CrossRef]

Hlubina, P.

P. Hlubina, T. Martynkien, W. Urbanczyk, “Measurements of intermodal dispersion in few-mode optical fibres using a spectral-domain white-light interferometric method,” Meas. Sci. Technol. 14(6), 784–789 (2003).
[CrossRef]

P. Hlubina, “Measuring intermodal dispersion in optical fibres using white-light spectral interferometry with the compensated Michelson interferometer,” J. Mod. Opt. 48(14), 2087–2096 (2001).
[CrossRef]

P. Hlubina, D. Ciprian, M. Kadulova, T. Martynkien, P. Mergo, W. Urbanczyk, “Spectral interferometry-based dispersion characterization of microstructured and specialty optical fibers using a supercontinuum source,” Proc. SPIE8426, 84260N (2012).

Huang, M. F.

Huang, Y. K.

Ina, H.

Jackson, D. A.

P. Merrit, R. P. Tatum, D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989).
[CrossRef]

Jakobsen, D.

Jing, W.

Jones, J. D.

Kadulova, M.

P. Hlubina, D. Ciprian, M. Kadulova, T. Martynkien, P. Mergo, W. Urbanczyk, “Spectral interferometry-based dispersion characterization of microstructured and specialty optical fibers using a supercontinuum source,” Proc. SPIE8426, 84260N (2012).

Khomenko, A. V.

Kobayashi, S.

Koebele, C.

Leuchs, G.

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, G. Leuchs, “Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

Li, G.

Lingle, R.

Ma, Y. Z.

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, G. Leuchs, “Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

Mardoyan, H.

Martynkien, T.

P. Hlubina, T. Martynkien, W. Urbanczyk, “Measurements of intermodal dispersion in few-mode optical fibres using a spectral-domain white-light interferometric method,” Meas. Sci. Technol. 14(6), 784–789 (2003).
[CrossRef]

P. Hlubina, D. Ciprian, M. Kadulova, T. Martynkien, P. Mergo, W. Urbanczyk, “Spectral interferometry-based dispersion characterization of microstructured and specialty optical fibers using a supercontinuum source,” Proc. SPIE8426, 84260N (2012).

McBride, R.

McCurdy, A.

Meier, J.

Mergo, P.

P. Hlubina, D. Ciprian, M. Kadulova, T. Martynkien, P. Mergo, W. Urbanczyk, “Spectral interferometry-based dispersion characterization of microstructured and specialty optical fibers using a supercontinuum source,” Proc. SPIE8426, 84260N (2012).

Merrit, P.

P. Merrit, R. P. Tatum, D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989).
[CrossRef]

Mohammed, W.

Mohammed, W. S.

Nicholson, J. W.

Onishchukov, G.

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, G. Leuchs, “Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

Palmieri, L.

A. Galtarossa, L. Palmieri, M. Schiano, T. Tambosso, “Single-End Polarization Mode Dispersion Measurement Using Backreflected Spectra Through a Linear Polarizer,” J. Lightw. Tech. 17(10), 1835–1842 (1999).
[CrossRef]

Peckham, D. W.

Pedersen, M. E. V.

Peschel, U.

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, G. Leuchs, “Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

Phillips, L.

Posey, R.

Provost, L.

Qian, L.

Ramachandran, S.

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, G. Leuchs, “Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[CrossRef] [PubMed]

Randel, S.

Ryf, R.

Saini, S. S.

Salsi, M.

Schiano, M.

A. Galtarossa, L. Palmieri, M. Schiano, T. Tambosso, “Single-End Polarization Mode Dispersion Measurement Using Backreflected Spectra Through a Linear Polarizer,” J. Lightw. Tech. 17(10), 1835–1842 (1999).
[CrossRef]

Schmauss, B.

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, G. Leuchs, “Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

Sharma, A.

Shlyagin, M. G.

Sierra, A.

Sillard, P.

Smith, P. W. E.

Sperti, D.

Sych, Y.

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, G. Leuchs, “Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

Takeda, M.

Tambosso, T.

A. Galtarossa, L. Palmieri, M. Schiano, T. Tambosso, “Single-End Polarization Mode Dispersion Measurement Using Backreflected Spectra Through a Linear Polarizer,” J. Lightw. Tech. 17(10), 1835–1842 (1999).
[CrossRef]

Tang, F.

Tatum, R. P.

P. Merrit, R. P. Tatum, D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989).
[CrossRef]

Tentori, D.

Tran, P.

Urbanczyk, W.

P. Hlubina, T. Martynkien, W. Urbanczyk, “Measurements of intermodal dispersion in few-mode optical fibres using a spectral-domain white-light interferometric method,” Meas. Sci. Technol. 14(6), 784–789 (2003).
[CrossRef]

P. Hlubina, D. Ciprian, M. Kadulova, T. Martynkien, P. Mergo, W. Urbanczyk, “Spectral interferometry-based dispersion characterization of microstructured and specialty optical fibers using a supercontinuum source,” Proc. SPIE8426, 84260N (2012).

Verluise, F.

Wang, K.

Wang, T.

Wang, X. Z.

Winzer, P. J.

Xu, C.

Yablon, A. D.

Yaman, F.

Zhang, Y.

Zhu, B.

Appl. Opt. (1)

Appl. Phys. B (1)

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, G. Leuchs, “Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. L. Heffner, “Automated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis,” IEEE Photon. Technol. Lett. 4(9), 1066–1069 (1992).
[CrossRef]

B. L. Heffner, “Accurate, Automated Measurement of Differential Group Delay Dispersion and Principle State Variation Using Jones Matrix Eigenanlysis,” IEEE Photon. Technol. Lett. 5(7), 814–817 (1993).
[CrossRef]

J. Lightw. Tech. (1)

A. Galtarossa, L. Palmieri, M. Schiano, T. Tambosso, “Single-End Polarization Mode Dispersion Measurement Using Backreflected Spectra Through a Linear Polarizer,” J. Lightw. Tech. 17(10), 1835–1842 (1999).
[CrossRef]

J. Lightwave Technol. (1)

P. Merrit, R. P. Tatum, D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989).
[CrossRef]

J. Mod. Opt. (1)

P. Hlubina, “Measuring intermodal dispersion in optical fibres using white-light spectral interferometry with the compensated Michelson interferometer,” J. Mod. Opt. 48(14), 2087–2096 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

P. Hlubina, T. Martynkien, W. Urbanczyk, “Measurements of intermodal dispersion in few-mode optical fibres using a spectral-domain white-light interferometric method,” Meas. Sci. Technol. 14(6), 784–789 (2003).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

Other (3)

P. Hlubina, D. Ciprian, M. Kadulova, T. Martynkien, P. Mergo, W. Urbanczyk, “Spectral interferometry-based dispersion characterization of microstructured and specialty optical fibers using a supercontinuum source,” Proc. SPIE8426, 84260N (2012).

K. Jespersen, Z. Li, L. Gruner-Nielson, B. Palsdottir, F. Poletti, and J. W. Nicholson, “Measuring Distributed Mode Scattering in Long, Few-Moded Fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3I.4.
[CrossRef]

P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-Mode Fiber for Uncoupled Mode-Division Multiplexing Transmissions,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.5.LeCervin.7.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Model for the interference in a polarization maintaining fiber.

Fig. 2
Fig. 2

Simulated second order interference pattern (upper graph) and the result of low-pass filtering (lower graph) used to extract the balance wavelengths, from which absolute group delay and second order dispersion of the individual modes can be obtained. Inset above shows a magnified spectral region around a balance wavelength. Although both modes (the slow axis balanced at   λ ^ 1 and the fast axis balanced at   λ ^ 2 ) are illustrated in the figure, only one mode is typically within the scan range of the tunable laser for a given   L v , which is varied to extract group delay and second order dispersion of both modes as a function of wavelength.

Fig. 3
Fig. 3

Model for the interference in a few-mode fiber.

Fig. 4
Fig. 4

Experimental setup for measurement of (a) polarization modes in PM fiber using VRI, (b) transverse modes in an FMF using VRI, and (c) Transverse modes using BSI.

Fig. 5
Fig. 5

Simultaneous absolute (a) group delay and (b) dispersion × length measurements for both polarization modes of a 47.2 cm long Panda fiber

Fig. 6
Fig. 6

Absolute group delay measurements of a 69.9 cm long few-mode fiber measured using Balanced Spectral Interferometry and Virtual Reference Interferometry

Fig. 7
Fig. 7

Comparison of the dispersion × length measurements for the (a) LP01 mode, (b) LP11, (c) LP02 mode, and (d) LP21 mode of a 69.9 cm length of few-mode fiber measured via Balanced Spectral Interferometry and Virtual Reference Interferometry.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I Real ( λ )=  | U o +  U 1   | 2 =4K+2( K+Δ )cos( 2 β 1 L f )+2( KΔ )cos( 2 β 2 L f )
I Real ( λ )'=4K( cos( L f ( β 1 β 2 ) ) Low freq.  ( Diff ) cos( L f ( β 1 + β 2 ) ) )
I virtual ( λ,  λ ^ )=cos( 2 k 0 L v ( λ ^ w ) )
I SO ( λ,  λ ^ w )=K( cos( 2( β 1 L f k 0 L v ( λ ^ w )) ) Lowest freq.  ( Fast axis ) + cos( 2( β 2 L f k 0 L v ( λ ^ w )) ) Lowest freq.  ( Slow axis ) + 2cos( L f ( β 1 β 2 ) ) Low freq.  ( Diff ) cos( L f ( β 1 + β 2 )+2 k 0 L v ( λ ^ w ) ) Carrier )
λ ^ 2 λ ^ 1 1 2 w=1 2 6 ( c L f D( λ ^ w ) ) 1/2 λ ^ w
I Real ( λ )=  | U 0 ++  U p | 2 = | U 0 | 2 ( ( 1+ l=1 p | q l | 4 ) DC Term + ( l=1 p 2 | q l | 2 cos( 2( β l L f + φ l ) ) ) High frequency ( Absolute measurement ) + ( l=1 p1 m=l+1 p 2 | q l | 2 | q m | 2 cos( 2( ( β l β m ) L f +( φ l φ m ) ) ) ) Low Frequency ( Differential measurement ) )

Metrics