Abstract

Laser Speckle Rheology (LSR) is an optical technique to evaluate the viscoelastic properties by analyzing the temporal fluctuations of backscattered speckle patterns. Variations of optical absorption and reduced scattering coefficients further modulate speckle fluctuations, posing a critical challenge for quantitative evaluation of viscoelasticity. We compare and contrast two different approaches applicable for correcting and isolating the collective influence of absorption and scattering, to accurately measure mechanical properties. Our results indicate that the numerical approach of Monte-Carlo ray tracing (MCRT) reliably compensates for any arbitrary optical variations. When scattering dominates absorption, yet absorption is non-negligible, diffusing wave spectroscopy (DWS) formalisms perform similar to MCRT, superseding other analytical compensation approaches such as Telegrapher equation. The computational convenience of DWS greatly simplifies the extraction of viscoelastic properties from LSR measurements in a number of chemical, industrial, and biomedical applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Weitz and D. J. Pine, “Diffusing-Wave Spectroscopy,” in Dynamic Light Scattering: The Methods and Some Applications, W. Brown, ed. (Oxford University, 1993) (49).
  2. M. M. Robins, A. D. Watson, P. J. Wilde, “Emulsions-creaming and rheology,” Curr. Opin. Colloid Interface Sci. 7(5-6), 419–425 (2002).
    [CrossRef]
  3. M. Alexander, D. G. Dalgleish, “Application of transmission diffusing wave spectroscopy to the study of gelation of milk by acidification and rennet,” Colloids Surf. B Biointerfaces 38(1-2), 83–90 (2004).
    [CrossRef] [PubMed]
  4. A. J. Breugem, F. Bouchama, G. J. M. Koper, “Diffusing wave spectroscopy: A novel rheological method for drying paint films,” Surf. Coat. Int. B 88(2), 135–138 (2005).
    [CrossRef]
  5. A. Brun, H. Dihang, L. Brunel, “Film formation of coatings studied by diffusing-wave spectroscopy,” Prog. Org. Coat. 61(2-4), 181–191 (2008).
    [CrossRef]
  6. S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
    [CrossRef] [PubMed]
  7. S. K. Nadkarni, A. Bilenca, B. E. Bouma, G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
    [CrossRef] [PubMed]
  8. S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
    [CrossRef] [PubMed]
  9. Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
    [CrossRef] [PubMed]
  10. Z. Hajjarian, S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012).
    [CrossRef] [PubMed]
  11. Z. Hajjarian, S. K. Nadkarni, “Evaluation and Correction for Optical Scattering Variations in Laser Speckle Rheology of Biological Fluids,” PLoS ONE 8(5), e65014 (2013).
    [CrossRef] [PubMed]
  12. L. Cipelletti, D. A. Weitz, “Ultralow angle dynamic light scattering with a charge coupled device camera based multispeckle multitau correlator,” Rev. Sci. Instrum. 70(8), 3214–3221 (1999).
    [CrossRef]
  13. D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France 51, 2101–2127 (1990).
  14. T. G. Mason, D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
    [CrossRef] [PubMed]
  15. T. G. Mason, H. Gang, D. A. Weitz, “Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids,” J. Opt. Soc. Am. A 14(1), 139–149 (1997).
    [CrossRef]
  16. T. G. Mason, “Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta 39(4), 371–378 (2000).
    [CrossRef]
  17. B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051505 (2002).
    [CrossRef] [PubMed]
  18. B. R. Dasgupta, D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 021504 (2005).
    [CrossRef] [PubMed]
  19. M. Jonas, H. Huang, R. D. Kamm, P. T. So, “Fast fluorescence laser tracking microrheometry. I: instrument development,” Biophys. J. 94(4), 1459–1469 (2008).
    [CrossRef] [PubMed]
  20. D. A. Boas, A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192–215 (1997).
    [CrossRef]
  21. D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. Opt. Express 2(7), 1969–1985 (2011).
    [CrossRef] [PubMed]
  22. A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express 2(6), 1553–1563 (2011).
    [CrossRef] [PubMed]
  23. L. V. Wang and H. Wu, Biomedical optics: principles and imaging (Wiley-Interscience, 2007).
  24. F. Cardinaux, L. Cipelletti, F. Scheffold, P. Schurtenberger, “Micreorheology of giant-micelle solutions,” Europhys. Lett. 57(5), 738–744 (2002).
    [CrossRef]
  25. S. Sakadzić, L. V. Wang, “Correlation transfer equation for multiply scattered light modulated by an ultrasonic pulse,” J. Opt. Soc. Am. A 24(9), 2797–2806 (2007).
    [CrossRef] [PubMed]
  26. T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A 28(10), 2108–2114 (2011).
    [CrossRef] [PubMed]
  27. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
    [CrossRef] [PubMed]
  28. W. R. Calhoun, H. Maeta, S. Roy, L. M. Bali, S. Bali, “Sensitive real-time measurement of the refractive index and attenuation coefficient of milk and milk-cream mixtures,” J. Dairy Sci. 93(8), 3497–3504 (2010).
    [CrossRef] [PubMed]
  29. G. Latour, M. Elias, J.-M. Frigerio, “Determination of the Absorption and Scattering Coefficients of Pigments: Application to the Identification of the Components of Pigment Mixtures,” Appl. Spectrosc. 63(6), 604–610 (2009).
    [CrossRef] [PubMed]
  30. D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(4), 3350–3358 (1995).
    [CrossRef] [PubMed]
  31. V. V. Tuchin, Handbook of optical biomedical diagnostics (SPIE Press, 2002).
  32. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [CrossRef] [PubMed]
  33. M. Giacomelli, Y. Zhu, J. Lee, A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express 18(14), 14616–14626 (2010).
    [CrossRef] [PubMed]
  34. A. H. Hielscher, J. R. Mourant, I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36(1), 125–135 (1997).
    [CrossRef] [PubMed]
  35. P. A. Lemieux, M. U. Vera, D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit:The role of ballistic transport and anisotropic scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(4), 4498–4515 (1998).
    [CrossRef]
  36. S. L. Jacques, B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
    [CrossRef] [PubMed]
  37. D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of biomedical optics (CRC Press, 2011).

2013

Z. Hajjarian, S. K. Nadkarni, “Evaluation and Correction for Optical Scattering Variations in Laser Speckle Rheology of Biological Fluids,” PLoS ONE 8(5), e65014 (2013).
[CrossRef] [PubMed]

2012

Z. Hajjarian, S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012).
[CrossRef] [PubMed]

2011

2010

M. Giacomelli, Y. Zhu, J. Lee, A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express 18(14), 14616–14626 (2010).
[CrossRef] [PubMed]

W. R. Calhoun, H. Maeta, S. Roy, L. M. Bali, S. Bali, “Sensitive real-time measurement of the refractive index and attenuation coefficient of milk and milk-cream mixtures,” J. Dairy Sci. 93(8), 3497–3504 (2010).
[CrossRef] [PubMed]

2009

2008

M. Jonas, H. Huang, R. D. Kamm, P. T. So, “Fast fluorescence laser tracking microrheometry. I: instrument development,” Biophys. J. 94(4), 1459–1469 (2008).
[CrossRef] [PubMed]

S. L. Jacques, B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

A. Brun, H. Dihang, L. Brunel, “Film formation of coatings studied by diffusing-wave spectroscopy,” Prog. Org. Coat. 61(2-4), 181–191 (2008).
[CrossRef]

2007

2006

S. K. Nadkarni, A. Bilenca, B. E. Bouma, G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[CrossRef] [PubMed]

2005

A. J. Breugem, F. Bouchama, G. J. M. Koper, “Diffusing wave spectroscopy: A novel rheological method for drying paint films,” Surf. Coat. Int. B 88(2), 135–138 (2005).
[CrossRef]

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

B. R. Dasgupta, D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 021504 (2005).
[CrossRef] [PubMed]

2004

M. Alexander, D. G. Dalgleish, “Application of transmission diffusing wave spectroscopy to the study of gelation of milk by acidification and rennet,” Colloids Surf. B Biointerfaces 38(1-2), 83–90 (2004).
[CrossRef] [PubMed]

2002

M. M. Robins, A. D. Watson, P. J. Wilde, “Emulsions-creaming and rheology,” Curr. Opin. Colloid Interface Sci. 7(5-6), 419–425 (2002).
[CrossRef]

B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051505 (2002).
[CrossRef] [PubMed]

F. Cardinaux, L. Cipelletti, F. Scheffold, P. Schurtenberger, “Micreorheology of giant-micelle solutions,” Europhys. Lett. 57(5), 738–744 (2002).
[CrossRef]

2000

T. G. Mason, “Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta 39(4), 371–378 (2000).
[CrossRef]

1999

L. Cipelletti, D. A. Weitz, “Ultralow angle dynamic light scattering with a charge coupled device camera based multispeckle multitau correlator,” Rev. Sci. Instrum. 70(8), 3214–3221 (1999).
[CrossRef]

1998

P. A. Lemieux, M. U. Vera, D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit:The role of ballistic transport and anisotropic scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(4), 4498–4515 (1998).
[CrossRef]

1997

1995

T. G. Mason, D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[CrossRef] [PubMed]

D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(4), 3350–3358 (1995).
[CrossRef] [PubMed]

1992

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[CrossRef] [PubMed]

1990

D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France 51, 2101–2127 (1990).

Alexander, M.

M. Alexander, D. G. Dalgleish, “Application of transmission diffusing wave spectroscopy to the study of gelation of milk by acidification and rennet,” Colloids Surf. B Biointerfaces 38(1-2), 83–90 (2004).
[CrossRef] [PubMed]

Bali, L. M.

W. R. Calhoun, H. Maeta, S. Roy, L. M. Bali, S. Bali, “Sensitive real-time measurement of the refractive index and attenuation coefficient of milk and milk-cream mixtures,” J. Dairy Sci. 93(8), 3497–3504 (2010).
[CrossRef] [PubMed]

Bali, S.

W. R. Calhoun, H. Maeta, S. Roy, L. M. Bali, S. Bali, “Sensitive real-time measurement of the refractive index and attenuation coefficient of milk and milk-cream mixtures,” J. Dairy Sci. 93(8), 3497–3504 (2010).
[CrossRef] [PubMed]

Bigio, I. J.

Bilenca, A.

S. K. Nadkarni, A. Bilenca, B. E. Bouma, G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[CrossRef] [PubMed]

Boas, D. A.

Bouchama, F.

A. J. Breugem, F. Bouchama, G. J. M. Koper, “Diffusing wave spectroscopy: A novel rheological method for drying paint films,” Surf. Coat. Int. B 88(2), 135–138 (2005).
[CrossRef]

Bouma, B. E.

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

S. K. Nadkarni, A. Bilenca, B. E. Bouma, G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Breugem, A. J.

A. J. Breugem, F. Bouchama, G. J. M. Koper, “Diffusing wave spectroscopy: A novel rheological method for drying paint films,” Surf. Coat. Int. B 88(2), 135–138 (2005).
[CrossRef]

Brun, A.

A. Brun, H. Dihang, L. Brunel, “Film formation of coatings studied by diffusing-wave spectroscopy,” Prog. Org. Coat. 61(2-4), 181–191 (2008).
[CrossRef]

Brunel, L.

A. Brun, H. Dihang, L. Brunel, “Film formation of coatings studied by diffusing-wave spectroscopy,” Prog. Org. Coat. 61(2-4), 181–191 (2008).
[CrossRef]

Calhoun, W. R.

W. R. Calhoun, H. Maeta, S. Roy, L. M. Bali, S. Bali, “Sensitive real-time measurement of the refractive index and attenuation coefficient of milk and milk-cream mixtures,” J. Dairy Sci. 93(8), 3497–3504 (2010).
[CrossRef] [PubMed]

Cardinaux, F.

F. Cardinaux, L. Cipelletti, F. Scheffold, P. Schurtenberger, “Micreorheology of giant-micelle solutions,” Europhys. Lett. 57(5), 738–744 (2002).
[CrossRef]

Carp, S. A.

Chan, R.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Chau, A.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Cheng, R.

Choi, B.

Cipelletti, L.

F. Cardinaux, L. Cipelletti, F. Scheffold, P. Schurtenberger, “Micreorheology of giant-micelle solutions,” Europhys. Lett. 57(5), 738–744 (2002).
[CrossRef]

L. Cipelletti, D. A. Weitz, “Ultralow angle dynamic light scattering with a charge coupled device camera based multispeckle multitau correlator,” Rev. Sci. Instrum. 70(8), 3214–3221 (1999).
[CrossRef]

Crocker, J. C.

B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051505 (2002).
[CrossRef] [PubMed]

Cuccia, D. J.

Dalgleish, D. G.

M. Alexander, D. G. Dalgleish, “Application of transmission diffusing wave spectroscopy to the study of gelation of milk by acidification and rennet,” Colloids Surf. B Biointerfaces 38(1-2), 83–90 (2004).
[CrossRef] [PubMed]

Dasgupta, B. R.

B. R. Dasgupta, D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 021504 (2005).
[CrossRef] [PubMed]

B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051505 (2002).
[CrossRef] [PubMed]

Dihang, H.

A. Brun, H. Dihang, L. Brunel, “Film formation of coatings studied by diffusing-wave spectroscopy,” Prog. Org. Coat. 61(2-4), 181–191 (2008).
[CrossRef]

Dong, L.

Durian, D. J.

P. A. Lemieux, M. U. Vera, D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit:The role of ballistic transport and anisotropic scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(4), 4498–4515 (1998).
[CrossRef]

D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(4), 3350–3358 (1995).
[CrossRef] [PubMed]

Durkin, A. J.

Elias, M.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[CrossRef] [PubMed]

Frigerio, J.-M.

Frisken, B. J.

B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051505 (2002).
[CrossRef] [PubMed]

Gang, H.

Giacomelli, M.

Gulati, A.

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

Hajjarian, Z.

Z. Hajjarian, S. K. Nadkarni, “Evaluation and Correction for Optical Scattering Variations in Laser Speckle Rheology of Biological Fluids,” PLoS ONE 8(5), e65014 (2013).
[CrossRef] [PubMed]

Z. Hajjarian, S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012).
[CrossRef] [PubMed]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

Halpern, E.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Helg, T.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France 51, 2101–2127 (1990).

Hielscher, A. H.

Houser, S. L.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Huang, H.

M. Jonas, H. Huang, R. D. Kamm, P. T. So, “Fast fluorescence laser tracking microrheometry. I: instrument development,” Biophys. J. 94(4), 1459–1469 (2008).
[CrossRef] [PubMed]

Irwin, D.

Jacques, S. L.

S. L. Jacques, B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[CrossRef] [PubMed]

Jaffer, F. A.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

Jonas, M.

M. Jonas, H. Huang, R. D. Kamm, P. T. So, “Fast fluorescence laser tracking microrheometry. I: instrument development,” Biophys. J. 94(4), 1459–1469 (2008).
[CrossRef] [PubMed]

Kamm, R. D.

M. Jonas, H. Huang, R. D. Kamm, P. T. So, “Fast fluorescence laser tracking microrheometry. I: instrument development,” Biophys. J. 94(4), 1459–1469 (2008).
[CrossRef] [PubMed]

Konecky, S. D.

Koper, G. J. M.

A. J. Breugem, F. Bouchama, G. J. M. Koper, “Diffusing wave spectroscopy: A novel rheological method for drying paint films,” Surf. Coat. Int. B 88(2), 135–138 (2005).
[CrossRef]

Kudrimoti, M.

Latour, G.

Lee, J.

Lemieux, P. A.

P. A. Lemieux, M. U. Vera, D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit:The role of ballistic transport and anisotropic scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(4), 4498–4515 (1998).
[CrossRef]

Maeta, H.

W. R. Calhoun, H. Maeta, S. Roy, L. M. Bali, S. Bali, “Sensitive real-time measurement of the refractive index and attenuation coefficient of milk and milk-cream mixtures,” J. Dairy Sci. 93(8), 3497–3504 (2010).
[CrossRef] [PubMed]

Mason, T. G.

T. G. Mason, “Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta 39(4), 371–378 (2000).
[CrossRef]

T. G. Mason, H. Gang, D. A. Weitz, “Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids,” J. Opt. Soc. Am. A 14(1), 139–149 (1997).
[CrossRef]

T. G. Mason, D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[CrossRef] [PubMed]

Mazhar, A.

Minsky, M. S.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Motz, J. T.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Mourant, J. R.

Nadkarni, S. K.

Z. Hajjarian, S. K. Nadkarni, “Evaluation and Correction for Optical Scattering Variations in Laser Speckle Rheology of Biological Fluids,” PLoS ONE 8(5), e65014 (2013).
[CrossRef] [PubMed]

Z. Hajjarian, S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012).
[CrossRef] [PubMed]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

S. K. Nadkarni, A. Bilenca, B. E. Bouma, G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Pine, D. J.

D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France 51, 2101–2127 (1990).

Pogue, B. W.

S. L. Jacques, B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[CrossRef] [PubMed]

Rice, T. B.

Robins, M. M.

M. M. Robins, A. D. Watson, P. J. Wilde, “Emulsions-creaming and rheology,” Curr. Opin. Colloid Interface Sci. 7(5-6), 419–425 (2002).
[CrossRef]

Roy, S.

W. R. Calhoun, H. Maeta, S. Roy, L. M. Bali, S. Bali, “Sensitive real-time measurement of the refractive index and attenuation coefficient of milk and milk-cream mixtures,” J. Dairy Sci. 93(8), 3497–3504 (2010).
[CrossRef] [PubMed]

Sakadzic, S.

Scheffold, F.

F. Cardinaux, L. Cipelletti, F. Scheffold, P. Schurtenberger, “Micreorheology of giant-micelle solutions,” Europhys. Lett. 57(5), 738–744 (2002).
[CrossRef]

Schurtenberger, P.

F. Cardinaux, L. Cipelletti, F. Scheffold, P. Schurtenberger, “Micreorheology of giant-micelle solutions,” Europhys. Lett. 57(5), 738–744 (2002).
[CrossRef]

Shang, Y.

So, P. T.

M. Jonas, H. Huang, R. D. Kamm, P. T. So, “Fast fluorescence laser tracking microrheometry. I: instrument development,” Biophys. J. 94(4), 1459–1469 (2008).
[CrossRef] [PubMed]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[CrossRef] [PubMed]

Stevens, S. D.

Tearney, G. J.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

S. K. Nadkarni, A. Bilenca, B. E. Bouma, G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Tee, S. Y.

B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051505 (2002).
[CrossRef] [PubMed]

Tromberg, B. J.

van Gemert, M. J.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[CrossRef] [PubMed]

Vera, M. U.

P. A. Lemieux, M. U. Vera, D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit:The role of ballistic transport and anisotropic scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(4), 4498–4515 (1998).
[CrossRef]

Wang, L. V.

Watson, A. D.

M. M. Robins, A. D. Watson, P. J. Wilde, “Emulsions-creaming and rheology,” Curr. Opin. Colloid Interface Sci. 7(5-6), 419–425 (2002).
[CrossRef]

Wax, A.

Weitz, D. A.

B. R. Dasgupta, D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 021504 (2005).
[CrossRef] [PubMed]

B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051505 (2002).
[CrossRef] [PubMed]

L. Cipelletti, D. A. Weitz, “Ultralow angle dynamic light scattering with a charge coupled device camera based multispeckle multitau correlator,” Rev. Sci. Instrum. 70(8), 3214–3221 (1999).
[CrossRef]

T. G. Mason, H. Gang, D. A. Weitz, “Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids,” J. Opt. Soc. Am. A 14(1), 139–149 (1997).
[CrossRef]

T. G. Mason, D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[CrossRef] [PubMed]

D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France 51, 2101–2127 (1990).

Wilde, P. J.

M. M. Robins, A. D. Watson, P. J. Wilde, “Emulsions-creaming and rheology,” Curr. Opin. Colloid Interface Sci. 7(5-6), 419–425 (2002).
[CrossRef]

Wilson, B.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[CrossRef] [PubMed]

Xi, J.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

Yelin, D.

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

Yodh, A. G.

Yu, G.

Zhu, J. X.

D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France 51, 2101–2127 (1990).

Zhu, Y.

Appl. Opt.

Appl. Spectrosc.

Biomed. Opt. Express

Biophys. J.

M. Jonas, H. Huang, R. D. Kamm, P. T. So, “Fast fluorescence laser tracking microrheometry. I: instrument development,” Biophys. J. 94(4), 1459–1469 (2008).
[CrossRef] [PubMed]

Circulation

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Colloids Surf. B Biointerfaces

M. Alexander, D. G. Dalgleish, “Application of transmission diffusing wave spectroscopy to the study of gelation of milk by acidification and rennet,” Colloids Surf. B Biointerfaces 38(1-2), 83–90 (2004).
[CrossRef] [PubMed]

Curr. Opin. Colloid Interface Sci.

M. M. Robins, A. D. Watson, P. J. Wilde, “Emulsions-creaming and rheology,” Curr. Opin. Colloid Interface Sci. 7(5-6), 419–425 (2002).
[CrossRef]

Europhys. Lett.

F. Cardinaux, L. Cipelletti, F. Scheffold, P. Schurtenberger, “Micreorheology of giant-micelle solutions,” Europhys. Lett. 57(5), 738–744 (2002).
[CrossRef]

J. Biomed. Opt.

S. K. Nadkarni, A. Bilenca, B. E. Bouma, G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

S. L. Jacques, B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[CrossRef] [PubMed]

J. Dairy Sci.

W. R. Calhoun, H. Maeta, S. Roy, L. M. Bali, S. Bali, “Sensitive real-time measurement of the refractive index and attenuation coefficient of milk and milk-cream mixtures,” J. Dairy Sci. 93(8), 3497–3504 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Phys. France

D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France 51, 2101–2127 (1990).

Lasers Surg. Med.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[CrossRef] [PubMed]

Med. Phys.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051505 (2002).
[CrossRef] [PubMed]

B. R. Dasgupta, D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 021504 (2005).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

P. A. Lemieux, M. U. Vera, D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit:The role of ballistic transport and anisotropic scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(4), 4498–4515 (1998).
[CrossRef]

D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(4), 3350–3358 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

T. G. Mason, D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[CrossRef] [PubMed]

PLoS ONE

Z. Hajjarian, S. K. Nadkarni, “Evaluation and Correction for Optical Scattering Variations in Laser Speckle Rheology of Biological Fluids,” PLoS ONE 8(5), e65014 (2013).
[CrossRef] [PubMed]

Prog. Org. Coat.

A. Brun, H. Dihang, L. Brunel, “Film formation of coatings studied by diffusing-wave spectroscopy,” Prog. Org. Coat. 61(2-4), 181–191 (2008).
[CrossRef]

Rev. Sci. Instrum.

L. Cipelletti, D. A. Weitz, “Ultralow angle dynamic light scattering with a charge coupled device camera based multispeckle multitau correlator,” Rev. Sci. Instrum. 70(8), 3214–3221 (1999).
[CrossRef]

Rheol. Acta

T. G. Mason, “Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta 39(4), 371–378 (2000).
[CrossRef]

Sci. Rep.

Z. Hajjarian, S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012).
[CrossRef] [PubMed]

Surf. Coat. Int. B

A. J. Breugem, F. Bouchama, G. J. M. Koper, “Diffusing wave spectroscopy: A novel rheological method for drying paint films,” Surf. Coat. Int. B 88(2), 135–138 (2005).
[CrossRef]

Other

D. A. Weitz and D. J. Pine, “Diffusing-Wave Spectroscopy,” in Dynamic Light Scattering: The Methods and Some Applications, W. Brown, ed. (Oxford University, 1993) (49).

V. V. Tuchin, Handbook of optical biomedical diagnostics (SPIE Press, 2002).

L. V. Wang and H. Wu, Biomedical optics: principles and imaging (Wiley-Interscience, 2007).

D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of biomedical optics (CRC Press, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

LSR Instrumentation [10]. Laser beam was passed through a polarizer (P), a beam expander (BE), and focused on the sample by a lens (L1). The backscattered light was redirected by a beam-splitter (BS) towards the camera aperture and passed through a polarizer (P). The cross polarized light was then focused by a lens (L2) at the CMOS sensor.

Fig. 2
Fig. 2

Speckle intensity temporal autocorrelation curves for aqueous glycerol suspensions of varying μs'. It is evident that speckle fluctuations speed up with increasing μs' and the decay trend of g2(t) curves is accelerated.

Fig. 3
Fig. 3

Viscoelastic modului, |G*(ω)|, extracted from g2(t) curves of Fig. 2, using (a) DWS equation, and (b) PSCT-MCRT based approach. The viscoelastic modulus measured using a conventional rheometer is shown as a black dashed curve. For these primarily scattering samples of negligible absorption, DWS fails to yield an accurate estimate of viscoelastic properties. In contrast, PSCT-MCRT successfully derives the moduli from g2(t) curves of Fig. 2.

Fig. 4
Fig. 4

Speckle intensity temporal autocorrelation curves for aqueous glycerol suspensions of varying absorption coefficient. As μa increases, speckle fluctuations decelerate, and g2(t) curves decay slower.

Fig. 5
Fig. 5

Viscoelastic modulus, |G*(ω)|, obtained from g2(t) curves of Fig. 3, using (a) DWS equation, and (b) PSCT-MCRT for glycerol suspensions of identical mechanical properties, similar reduced scattering coefficient, μs', but varying absorption coefficient, μa. The viscoelastic modulus measured using a conventional rheometer is shown as a dashed black curve. It is clear that DWS is capable of correcting for the influence of variations in μa. PSCT- MCRT performs well for any arbitrary set of optical properties.

Fig. 6
Fig. 6

Speckle intensity temporal autocorrelation curve, g2(t) for samples of varying μs' and μa. In panel (a) samples with higher μs' have a smaller μa, whereas in panel (b) μs' and μa are proportional.

Fig. 7
Fig. 7

Viscoelastic modulus, |G*(ω)|, obtained from g2(t) curves of Fig. 6(a), using (a) DWS equation, and (b) PSCT-MCRT, for glycerol suspensions of identical mechanical properties and varying μ's and μa. The viscoelastic modulus measured using a conventional rheometer is shown as a black dashed curve. |G*(ω)| derived from speckle fluctuations, exhibit close agreement with conventional rheology, except when μ's = 1.2 and μa = 0.68.

Fig. 8
Fig. 8

Viscoelastic modulus, |G*(ω)|, obtained from g2(t) curves of Fig. 6(b) using (a) DWS equation, and (b) PSCT-MCRT. The viscoelastic modulus measured using a conventional rheometer is shown as a black dashed curve. In both cases, modulus values match the results of conventional rheometry.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

g 2 exp (t)= I( t 0 )I( t 0 +t ) pixels I ( t 0 ) 2 pixels I ( t 0 +t ) 2 pixels t 0 .
g 2 DWS (t)= e 2γ k 0 2 n 2 Δ r 2 (t) + 3 μ a μ s '
g 2 MCRT (t)= e 2γ ( k 0 2 n 2 Δ r 2 (t) ) ζ
G*(ω)= K B T πa Δ r 2 (t) Γ(1+α(t)) | t=1/ω
μ a = ρ Carbon σ A Carbon + ρ Ti O 2 σ A Ti O 2 μ s '=( ρ Carbon σ S Carbon + ρ Ti O 2 σ S Ti O 2 )(1g)

Metrics