Abstract

Aggregated 17.125Gb/s real-time end-to-end dual-band optical OFDM (OOFDM) transmissions over 25km SSMF IMDD systems with 7dB receiver sensitivity improvements are experimentally demonstrated, for the first time, by utilizing low-cost transceiver components such as directly modulated 1GHz RSOAs and DACs/ADCs operating at sampling speeds as low as 4GS/s. The demonstrated OOFDM transceivers have both strong adaptability and sufficiently large passband carrier frequency tunability, which enable full use of highly dynamic spectral characteristics of the transmission systems. This results in the achievements of not only excellent performance robustness to variations in system operating conditions but also significantly relaxed requirements on RSOA small-signal modulation bandwidth. It is shown that the aforementioned transmission capacity only varies by <23% over a RSOA-injected optical power variation range as large as 20dB, and that the 1GHz RSOAs can support successful transmissions of adaptively modulated OOFDM signals having bandwidths of 8.5GHz. By taking into account the adopted 25% cyclic prefix and a typical 7.3% FEC overhead, the demonstrated real-time OOFDM transmission systems are capable of conveying 11.6Gb/s user data.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Vetter, “Next generation optical access technologies,” in Proceedings of European Conference and Exhibition on Optical Communication (Amsterdam, Netherlands, 2012), paper Tu.3.G.
  2. N. Cvijetic, M. Cvijetic, M. Huang, E. Ip, Y. Huang, T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol. 30(4), 493–503 (2012).
    [CrossRef]
  3. C. H. Yeh, C. W. Chow, H. Y. Chen, and Y. F. Wu, “10-Gbps OFDM upstream rate by using RSOA-ONU with seeding-light for 75 km long-reach PON access,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (California, 2012), paper JTh2A.65.
    [CrossRef]
  4. S. C. Lin, S. L. Lee, C. K. Liu, C. L. Yang, S. C. Ko, T. W. Liaw, G. Keiser, “Design and demonstration of REAM-based WDM-PONs with remote amplification and channel fault monitoring,” J. Opt. Commun. Netw. 4(4), 336–343 (2012).
    [CrossRef]
  5. Q. Guo, A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett. 24(11), 951–953 (2012).
    [CrossRef]
  6. Z. Xu, Y. Yeo, X. Cheng, and E. Kurniawan, “20-Gb/s injection locked FP-LD in a wavelength-division-multiplexing OFDM-PON,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (California, 2012), paper OW4B.3.
    [CrossRef]
  7. D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, C. Shim, “Hybrid WDM/TDM-PON with wavelength-selection-free transmitters,” J. Lightwave Technol. 23(1), 187–195 (2005).
    [CrossRef]
  8. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s for upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” in Proceedings of European Conference and Exhibition on Optical Communication (Brussels, 2008), Paper Th.3.F.1.
    [CrossRef]
  9. G. Cossu, F. Bottoni, R. Corsini, M. Presi, E. Ciaramella, “40 Gb/s single R-SOA transmission by optical equalization and adaptive OFDM,” IEEE Photon. Technol. Lett. 25(21), 2119–2122 (2013).
    [CrossRef]
  10. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
    [CrossRef]
  11. E. Hugues-Salas, R. P. Giddings, and J. M. Tang, “First experimental demonstration of real-time adaptive transmission of 20Gb/s dual-band optical OFDM signals over 500m OM2 MMFs,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (California, 2012), paper OTh3A.1.
  12. Q. W. Zhang, E. Hugues-Salas, R. P. Giddings, M. Wang, J. M. Tang, “Experimental demonstrations of record high REAM intensity modulator-enabled 19.25Gb/s real-time end-to-end dual-band optical OFDM colorless transmissions over 25km SSMF IMDD systems,” Opt. Express 21(7), 9167–9179 (2013).
    [CrossRef] [PubMed]
  13. L. A. Neto, D. Erasme, N. Genay, P. Chanclou, Q. Deniel, F. Traore, T. Anfray, R. Hmadou, C. Aupetit-Berthelemot, “Simple estimation of fiber dispersion and laser chirp parameters using the downhillSimplex fitting algorithm,” J. Lightwave Technol. 31(2), 334–342 (2013).
    [CrossRef]
  14. J. L. Wei, A. Hamié, R. P. Giddings, J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3688 (2009).
    [CrossRef]
  15. X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J. 2(4), 532–542 (2010).
    [CrossRef]
  16. I. Papagiannakis, M. Omella, D. Klonidis, J. Kikidis, A. N. Birbas, I. Tomkos, and J. Prat, “Upstream transmission in WDM PONs at 10Gb/s using low bandwidth RSOAs assisted with optical filtering and electronic equalization,” in Proceedings of European Conference and Exhibition on Optical Communication (Brussels, Belgium, 2008), paper We.3.F.3.
  17. I. Cano, M. Omela, J. Prat, and P. Poggiolini, “Colorless 10Gb/s extended reach WDM PON with low BW RSOA using MLSE,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (California, 2010), paper OWG2.

2013 (3)

2012 (3)

2010 (2)

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[CrossRef]

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J. 2(4), 532–542 (2010).
[CrossRef]

2009 (1)

2005 (1)

Anfray, T.

Aupetit-Berthelemot, C.

Bottoni, F.

G. Cossu, F. Bottoni, R. Corsini, M. Presi, E. Ciaramella, “40 Gb/s single R-SOA transmission by optical equalization and adaptive OFDM,” IEEE Photon. Technol. Lett. 25(21), 2119–2122 (2013).
[CrossRef]

Chanclou, P.

Ciaramella, E.

G. Cossu, F. Bottoni, R. Corsini, M. Presi, E. Ciaramella, “40 Gb/s single R-SOA transmission by optical equalization and adaptive OFDM,” IEEE Photon. Technol. Lett. 25(21), 2119–2122 (2013).
[CrossRef]

Corsini, R.

G. Cossu, F. Bottoni, R. Corsini, M. Presi, E. Ciaramella, “40 Gb/s single R-SOA transmission by optical equalization and adaptive OFDM,” IEEE Photon. Technol. Lett. 25(21), 2119–2122 (2013).
[CrossRef]

Cossu, G.

G. Cossu, F. Bottoni, R. Corsini, M. Presi, E. Ciaramella, “40 Gb/s single R-SOA transmission by optical equalization and adaptive OFDM,” IEEE Photon. Technol. Lett. 25(21), 2119–2122 (2013).
[CrossRef]

Cvijetic, M.

Cvijetic, N.

Deniel, Q.

Erasme, D.

Genay, N.

Giddings, R. P.

Q. W. Zhang, E. Hugues-Salas, R. P. Giddings, M. Wang, J. M. Tang, “Experimental demonstrations of record high REAM intensity modulator-enabled 19.25Gb/s real-time end-to-end dual-band optical OFDM colorless transmissions over 25km SSMF IMDD systems,” Opt. Express 21(7), 9167–9179 (2013).
[CrossRef] [PubMed]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[CrossRef]

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J. 2(4), 532–542 (2010).
[CrossRef]

J. L. Wei, A. Hamié, R. P. Giddings, J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3688 (2009).
[CrossRef]

Guo, Q.

Q. Guo, A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett. 24(11), 951–953 (2012).
[CrossRef]

Hamié, A.

Hmadou, R.

Hong, Y. H.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J. 2(4), 532–542 (2010).
[CrossRef]

Huang, M.

Huang, Y.

Hugues-Salas, E.

Q. W. Zhang, E. Hugues-Salas, R. P. Giddings, M. Wang, J. M. Tang, “Experimental demonstrations of record high REAM intensity modulator-enabled 19.25Gb/s real-time end-to-end dual-band optical OFDM colorless transmissions over 25km SSMF IMDD systems,” Opt. Express 21(7), 9167–9179 (2013).
[CrossRef] [PubMed]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[CrossRef]

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J. 2(4), 532–542 (2010).
[CrossRef]

Hwang, S.

Ip, E.

Jin, X. Q.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[CrossRef]

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J. 2(4), 532–542 (2010).
[CrossRef]

Jung, D. K.

Keiser, G.

Ko, S. C.

Kwon, J. W.

Lee, S. L.

Liaw, T. W.

Lin, S. C.

Liu, C. K.

Neto, L. A.

Oh, Y.

Presi, M.

G. Cossu, F. Bottoni, R. Corsini, M. Presi, E. Ciaramella, “40 Gb/s single R-SOA transmission by optical equalization and adaptive OFDM,” IEEE Photon. Technol. Lett. 25(21), 2119–2122 (2013).
[CrossRef]

Shim, C.

Shin, D. J.

Shin, H. S.

Tang, J. M.

Q. W. Zhang, E. Hugues-Salas, R. P. Giddings, M. Wang, J. M. Tang, “Experimental demonstrations of record high REAM intensity modulator-enabled 19.25Gb/s real-time end-to-end dual-band optical OFDM colorless transmissions over 25km SSMF IMDD systems,” Opt. Express 21(7), 9167–9179 (2013).
[CrossRef] [PubMed]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[CrossRef]

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J. 2(4), 532–542 (2010).
[CrossRef]

J. L. Wei, A. Hamié, R. P. Giddings, J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3688 (2009).
[CrossRef]

Tran, A. V.

Q. Guo, A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett. 24(11), 951–953 (2012).
[CrossRef]

Traore, F.

Wang, M.

Wang, T.

Wei, J. L.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[CrossRef]

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J. 2(4), 532–542 (2010).
[CrossRef]

J. L. Wei, A. Hamié, R. P. Giddings, J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3688 (2009).
[CrossRef]

Yang, C. L.

Zhang, Q. W.

Zheng, X.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J. 2(4), 532–542 (2010).
[CrossRef]

IEEE Photon. J. (1)

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J. 2(4), 532–542 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

G. Cossu, F. Bottoni, R. Corsini, M. Presi, E. Ciaramella, “40 Gb/s single R-SOA transmission by optical equalization and adaptive OFDM,” IEEE Photon. Technol. Lett. 25(21), 2119–2122 (2013).
[CrossRef]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[CrossRef]

Q. Guo, A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett. 24(11), 951–953 (2012).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

Opt. Express (1)

Other (7)

I. Papagiannakis, M. Omella, D. Klonidis, J. Kikidis, A. N. Birbas, I. Tomkos, and J. Prat, “Upstream transmission in WDM PONs at 10Gb/s using low bandwidth RSOAs assisted with optical filtering and electronic equalization,” in Proceedings of European Conference and Exhibition on Optical Communication (Brussels, Belgium, 2008), paper We.3.F.3.

I. Cano, M. Omela, J. Prat, and P. Poggiolini, “Colorless 10Gb/s extended reach WDM PON with low BW RSOA using MLSE,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (California, 2010), paper OWG2.

E. Hugues-Salas, R. P. Giddings, and J. M. Tang, “First experimental demonstration of real-time adaptive transmission of 20Gb/s dual-band optical OFDM signals over 500m OM2 MMFs,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (California, 2012), paper OTh3A.1.

P. Vetter, “Next generation optical access technologies,” in Proceedings of European Conference and Exhibition on Optical Communication (Amsterdam, Netherlands, 2012), paper Tu.3.G.

C. H. Yeh, C. W. Chow, H. Y. Chen, and Y. F. Wu, “10-Gbps OFDM upstream rate by using RSOA-ONU with seeding-light for 75 km long-reach PON access,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (California, 2012), paper JTh2A.65.
[CrossRef]

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s for upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” in Proceedings of European Conference and Exhibition on Optical Communication (Brussels, 2008), Paper Th.3.F.1.
[CrossRef]

Z. Xu, Y. Yeo, X. Cheng, and E. Kurniawan, “20-Gb/s injection locked FP-LD in a wavelength-division-multiplexing OFDM-PON,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (California, 2012), paper OW4B.3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental system setup of the real-time dual-band OOFDM system using a directly modulated 1.125GHz RSOA-IM.

Fig. 2
Fig. 2

(a) System frequency responses measured for a fixed CW optical injection power of 4.5dBm, (b) RSOA-IM-based 25km SSMF IMDD system frequency responses measured for different CW optical injection powers varying from −10dBm to 9dBm. In both (a) and (b), the RSOA-IM operates at a fixed bias current of 80mA.

Fig. 3
Fig. 3

(a) Normalized system frequency responses and corresponding adaptive subcarrier power loading profiles for both sub-bands, (b) Optimized bit loading profiles for both sub-bands.

Fig. 4
Fig. 4

(a) Baseband and passband BER performance for both the optical back-to-back and entire 25km SSMF IMDD systems, (b) Subcarrier BER distribution across all subcarriers for baseband and passband OFDM signals after transmission through the 25km SSMF system.

Fig. 5
Fig. 5

Received constellations of representative subcarriers before channel equalization after 25km SSMF transmission of RSOA-IM-modulated OOFDM signals for the baseband (BB) and passband (PB).

Fig. 6
Fig. 6

Spectra of the 17.125Gb/s dual-band OFDM RF signals measured after PIN + TIA for different passband carrier frequencies: (a) 6 GHz, (b) 6.5GHz, (c) 7GHz and (d) 7.5GHz.

Fig. 7
Fig. 7

Baseband and passband BER performances for different passband carrier frequencies for the 17.125Gb/s dual-band OOFDM signals after transmission through the 25km SSMF IMDD systems employing the PIN + TIA.

Fig. 8
Fig. 8

Dual-band OOFDM transmission capacity versus CW optical power injected into the RSOA-IM for both the optical back-to-back and entire 25km SSMF systems.

Tables (1)

Tables Icon

Table 1 Transceiver and System Parameters

Metrics