Abstract

Microwave photonic filters with arbitrary phase response can be achieved by merging high-repetition-rate electro-optic frequency comb technology with line-by-line pulse shaping. When arranged in an interferometric configuration, the filter features a number of programmable complex-coefficient taps equal to the number of available comb lines. In this work, we use an ultrabroadband comb generator resulting in a microwave photonic phase filter with >100 complex-coefficient taps. We demonstrate the potential of this filter by performing programmable chirp control of ultrawideband waveforms that extend over long (>10 ns) temporal apertures. This work opens new possibilities for compensating realistic linear distortion impairments on ultrabroadband wireless signals spanning over dozens of nanosecond temporal apertures.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  2. J. Capmany, B. Ortega, D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [CrossRef]
  3. B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, D. Pastor, “Variable delay line for phased-antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
    [CrossRef]
  4. Y. Liu, J. Yang, J. Yao, “Cotinuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14(8), 1172–1174 (2002).
    [CrossRef]
  5. D. B. Hunter, M. E. Parker, J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
    [CrossRef]
  6. S. Xiao, A. M. Weiner, “Programmable photonic microwave filters with arbitrary ulra-wideband phase response,” IEEE Trans. Microw. Theory Tech. 54(11), 4002–4008 (2006).
    [CrossRef]
  7. J. G. Proakis, Digital Communications, 4th ed., (McGraw-Hill, 2001).
  8. P. Tortoli, F. Guidi, C. Atzeni, “Digital vs SAW matched filter implementation for radar pulse compression,” Proc. IEEE Ultrason. Symp.1, 199–202 (1994).
    [CrossRef]
  9. J. D. McKinney, A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006).
    [CrossRef]
  10. M. Bolea, J. Mora, B. Ortega, J. Capmany, “Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities,” Opt. Express 19(5), 4566–4576 (2011).
    [CrossRef] [PubMed]
  11. M. Li, A. Malacarne, N. Belhadj, S. LaRochelle, J. Yao, J. Azana, “Reconfigurable and single-shot chirped microwave pulse compression using a time-spectrum convolution system,” postdeadline paper, IEEE Microwave Photonics Conference (2011).
  12. E. Hamidi, A. M. Weiner, “Post-compensation of ultra-wideband antenna dispersion using microwave photonic phase filters and its applications to UWB systems,” IEEE Trans. Microw. Theory Tech. 57(4), 890–898 (2009).
    [CrossRef]
  13. E. Hamidi, A. M. Weiner, “Phase-only matched filtering ultrawideband arbitrary microwave waveforms via optical pulse shaping,” J. Lightwave Technol. 26(15), 2355–2363 (2008).
    [CrossRef]
  14. M. Sagues, A. Loayssa, J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19(16), 1194–1196 (2007).
    [CrossRef]
  15. T. Mengual, B. Vidal, J. Marti, “Continuously tunable photonic microwave filter based on a spatial light modulator,” Opt. Commun. 281(10), 2746–2749 (2008).
    [CrossRef]
  16. X. Yi, T. X. H. Huang, R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
    [CrossRef]
  17. Y. Dai, J. P. Yao, “Nonuniformly-spaced photonic microwave delayline filter,” Opt. Express 16(7), 4713–4718 (2008).
    [CrossRef] [PubMed]
  18. E. Hamidi, D. E. Leaird, A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
    [CrossRef]
  19. M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency comb,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
    [CrossRef]
  20. V. Torres-Company, J. Lancis, P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33(16), 1822–1824 (2008).
    [CrossRef] [PubMed]
  21. Z. Jiang, D. S. Seo, D. E. Leaird, A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005).
    [CrossRef] [PubMed]
  22. M. Song, V. Torres-Company, A. J. Metcalf, A. M. Weiner, “Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping,” Opt. Lett. 37(5), 845–847 (2012).
    [CrossRef] [PubMed]
  23. V. Ataie, B. P.-P. Kuo, E. Myslivets, S. Radic, “Generation of 1500-tone, 120 nm-wide ultraflat frequency comb by single CW source,” postdeadline paper, Optical Fiber Communication Conference (OFC) (2013).
  24. A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner, “High-Power Broadly Tunable Electro-Optic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231 (2013), doi:.
    [CrossRef]
  25. C. B. Huang, S. G. Park, D. E. Leaird, A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008).
    [CrossRef] [PubMed]
  26. C. Finot, B. Kibler, L. Provost, S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum generation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008).
    [CrossRef]
  27. R. Wu, V. Torres-Company, D. E. Leaird, A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped Optical Frequency Comb Generation,” Opt. Express 21(5), 6045–6052 (2013).
    [CrossRef] [PubMed]
  28. A. M. Weiner, Ultrafast Optics (Wiley Interscience, 2009).

2013 (2)

A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner, “High-Power Broadly Tunable Electro-Optic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231 (2013), doi:.
[CrossRef]

R. Wu, V. Torres-Company, D. E. Leaird, A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped Optical Frequency Comb Generation,” Opt. Express 21(5), 6045–6052 (2013).
[CrossRef] [PubMed]

2012 (1)

2011 (2)

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency comb,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[CrossRef]

M. Bolea, J. Mora, B. Ortega, J. Capmany, “Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities,” Opt. Express 19(5), 4566–4576 (2011).
[CrossRef] [PubMed]

2010 (2)

E. Hamidi, D. E. Leaird, A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[CrossRef]

X. Yi, T. X. H. Huang, R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[CrossRef]

2009 (2)

E. Hamidi, A. M. Weiner, “Post-compensation of ultra-wideband antenna dispersion using microwave photonic phase filters and its applications to UWB systems,” IEEE Trans. Microw. Theory Tech. 57(4), 890–898 (2009).
[CrossRef]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[CrossRef]

2008 (6)

2007 (1)

M. Sagues, A. Loayssa, J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19(16), 1194–1196 (2007).
[CrossRef]

2006 (4)

J. Capmany, B. Ortega, D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[CrossRef]

D. B. Hunter, M. E. Parker, J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[CrossRef]

S. Xiao, A. M. Weiner, “Programmable photonic microwave filters with arbitrary ulra-wideband phase response,” IEEE Trans. Microw. Theory Tech. 54(11), 4002–4008 (2006).
[CrossRef]

J. D. McKinney, A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006).
[CrossRef]

2005 (1)

2002 (1)

Y. Liu, J. Yang, J. Yao, “Cotinuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

2000 (1)

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, D. Pastor, “Variable delay line for phased-antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[CrossRef]

Andres, M. V.

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, D. Pastor, “Variable delay line for phased-antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[CrossRef]

Andrés, P.

Ataie, V.

V. Ataie, B. P.-P. Kuo, E. Myslivets, S. Radic, “Generation of 1500-tone, 120 nm-wide ultraflat frequency comb by single CW source,” postdeadline paper, Optical Fiber Communication Conference (OFC) (2013).

Atzeni, C.

P. Tortoli, F. Guidi, C. Atzeni, “Digital vs SAW matched filter implementation for radar pulse compression,” Proc. IEEE Ultrason. Symp.1, 199–202 (1994).
[CrossRef]

Azana, J.

M. Li, A. Malacarne, N. Belhadj, S. LaRochelle, J. Yao, J. Azana, “Reconfigurable and single-shot chirped microwave pulse compression using a time-spectrum convolution system,” postdeadline paper, IEEE Microwave Photonics Conference (2011).

Belhadj, N.

M. Li, A. Malacarne, N. Belhadj, S. LaRochelle, J. Yao, J. Azana, “Reconfigurable and single-shot chirped microwave pulse compression using a time-spectrum convolution system,” postdeadline paper, IEEE Microwave Photonics Conference (2011).

Bolea, M.

Capmany, J.

M. Bolea, J. Mora, B. Ortega, J. Capmany, “Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities,” Opt. Express 19(5), 4566–4576 (2011).
[CrossRef] [PubMed]

M. Sagues, A. Loayssa, J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19(16), 1194–1196 (2007).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[CrossRef]

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, D. Pastor, “Variable delay line for phased-antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[CrossRef]

Cruz, J. L.

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, D. Pastor, “Variable delay line for phased-antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[CrossRef]

Dai, Y.

Dexter, J. L.

D. B. Hunter, M. E. Parker, J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[CrossRef]

Finot, C.

Guidi, F.

P. Tortoli, F. Guidi, C. Atzeni, “Digital vs SAW matched filter implementation for radar pulse compression,” Proc. IEEE Ultrason. Symp.1, 199–202 (1994).
[CrossRef]

Hamidi, E.

E. Hamidi, D. E. Leaird, A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[CrossRef]

E. Hamidi, A. M. Weiner, “Post-compensation of ultra-wideband antenna dispersion using microwave photonic phase filters and its applications to UWB systems,” IEEE Trans. Microw. Theory Tech. 57(4), 890–898 (2009).
[CrossRef]

E. Hamidi, A. M. Weiner, “Phase-only matched filtering ultrawideband arbitrary microwave waveforms via optical pulse shaping,” J. Lightwave Technol. 26(15), 2355–2363 (2008).
[CrossRef]

Huang, C. B.

Huang, T. X. H.

X. Yi, T. X. H. Huang, R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[CrossRef]

Hunter, D. B.

D. B. Hunter, M. E. Parker, J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[CrossRef]

Jiang, Z.

Kibler, B.

Kuo, B. P.-P.

V. Ataie, B. P.-P. Kuo, E. Myslivets, S. Radic, “Generation of 1500-tone, 120 nm-wide ultraflat frequency comb by single CW source,” postdeadline paper, Optical Fiber Communication Conference (OFC) (2013).

Lancis, J.

LaRochelle, S.

M. Li, A. Malacarne, N. Belhadj, S. LaRochelle, J. Yao, J. Azana, “Reconfigurable and single-shot chirped microwave pulse compression using a time-spectrum convolution system,” postdeadline paper, IEEE Microwave Photonics Conference (2011).

Leaird, D. E.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner, “High-Power Broadly Tunable Electro-Optic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231 (2013), doi:.
[CrossRef]

R. Wu, V. Torres-Company, D. E. Leaird, A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped Optical Frequency Comb Generation,” Opt. Express 21(5), 6045–6052 (2013).
[CrossRef] [PubMed]

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency comb,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[CrossRef]

E. Hamidi, D. E. Leaird, A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[CrossRef]

C. B. Huang, S. G. Park, D. E. Leaird, A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008).
[CrossRef] [PubMed]

Z. Jiang, D. S. Seo, D. E. Leaird, A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005).
[CrossRef] [PubMed]

Li, M.

M. Li, A. Malacarne, N. Belhadj, S. LaRochelle, J. Yao, J. Azana, “Reconfigurable and single-shot chirped microwave pulse compression using a time-spectrum convolution system,” postdeadline paper, IEEE Microwave Photonics Conference (2011).

Liu, Y.

Y. Liu, J. Yang, J. Yao, “Cotinuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

Loayssa, A.

M. Sagues, A. Loayssa, J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19(16), 1194–1196 (2007).
[CrossRef]

Long, C. M.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency comb,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[CrossRef]

Malacarne, A.

M. Li, A. Malacarne, N. Belhadj, S. LaRochelle, J. Yao, J. Azana, “Reconfigurable and single-shot chirped microwave pulse compression using a time-spectrum convolution system,” postdeadline paper, IEEE Microwave Photonics Conference (2011).

Marti, J.

T. Mengual, B. Vidal, J. Marti, “Continuously tunable photonic microwave filter based on a spatial light modulator,” Opt. Commun. 281(10), 2746–2749 (2008).
[CrossRef]

McKinney, J. D.

J. D. McKinney, A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006).
[CrossRef]

Mengual, T.

T. Mengual, B. Vidal, J. Marti, “Continuously tunable photonic microwave filter based on a spatial light modulator,” Opt. Commun. 281(10), 2746–2749 (2008).
[CrossRef]

Metcalf, A. J.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner, “High-Power Broadly Tunable Electro-Optic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231 (2013), doi:.
[CrossRef]

M. Song, V. Torres-Company, A. J. Metcalf, A. M. Weiner, “Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping,” Opt. Lett. 37(5), 845–847 (2012).
[CrossRef] [PubMed]

Minasian, R. A.

X. Yi, T. X. H. Huang, R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[CrossRef]

Mora, J.

Myslivets, E.

V. Ataie, B. P.-P. Kuo, E. Myslivets, S. Radic, “Generation of 1500-tone, 120 nm-wide ultraflat frequency comb by single CW source,” postdeadline paper, Optical Fiber Communication Conference (OFC) (2013).

Ortega, B.

Park, S. G.

Parker, M. E.

D. B. Hunter, M. E. Parker, J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[CrossRef]

Pastor, D.

J. Capmany, B. Ortega, D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[CrossRef]

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, D. Pastor, “Variable delay line for phased-antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[CrossRef]

Provost, L.

Radic, S.

V. Ataie, B. P.-P. Kuo, E. Myslivets, S. Radic, “Generation of 1500-tone, 120 nm-wide ultraflat frequency comb by single CW source,” postdeadline paper, Optical Fiber Communication Conference (OFC) (2013).

Sagues, M.

M. Sagues, A. Loayssa, J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19(16), 1194–1196 (2007).
[CrossRef]

Seo, D.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency comb,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[CrossRef]

Seo, D. S.

Song, M.

M. Song, V. Torres-Company, A. J. Metcalf, A. M. Weiner, “Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping,” Opt. Lett. 37(5), 845–847 (2012).
[CrossRef] [PubMed]

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency comb,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[CrossRef]

Torres-Company, V.

Tortoli, P.

P. Tortoli, F. Guidi, C. Atzeni, “Digital vs SAW matched filter implementation for radar pulse compression,” Proc. IEEE Ultrason. Symp.1, 199–202 (1994).
[CrossRef]

Vidal, B.

T. Mengual, B. Vidal, J. Marti, “Continuously tunable photonic microwave filter based on a spatial light modulator,” Opt. Commun. 281(10), 2746–2749 (2008).
[CrossRef]

Wabnitz, S.

Weiner, A. M.

R. Wu, V. Torres-Company, D. E. Leaird, A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped Optical Frequency Comb Generation,” Opt. Express 21(5), 6045–6052 (2013).
[CrossRef] [PubMed]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner, “High-Power Broadly Tunable Electro-Optic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231 (2013), doi:.
[CrossRef]

M. Song, V. Torres-Company, A. J. Metcalf, A. M. Weiner, “Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping,” Opt. Lett. 37(5), 845–847 (2012).
[CrossRef] [PubMed]

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency comb,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[CrossRef]

E. Hamidi, D. E. Leaird, A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[CrossRef]

E. Hamidi, A. M. Weiner, “Post-compensation of ultra-wideband antenna dispersion using microwave photonic phase filters and its applications to UWB systems,” IEEE Trans. Microw. Theory Tech. 57(4), 890–898 (2009).
[CrossRef]

E. Hamidi, A. M. Weiner, “Phase-only matched filtering ultrawideband arbitrary microwave waveforms via optical pulse shaping,” J. Lightwave Technol. 26(15), 2355–2363 (2008).
[CrossRef]

C. B. Huang, S. G. Park, D. E. Leaird, A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008).
[CrossRef] [PubMed]

J. D. McKinney, A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006).
[CrossRef]

S. Xiao, A. M. Weiner, “Programmable photonic microwave filters with arbitrary ulra-wideband phase response,” IEEE Trans. Microw. Theory Tech. 54(11), 4002–4008 (2006).
[CrossRef]

Z. Jiang, D. S. Seo, D. E. Leaird, A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005).
[CrossRef] [PubMed]

Wu, R.

R. Wu, V. Torres-Company, D. E. Leaird, A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped Optical Frequency Comb Generation,” Opt. Express 21(5), 6045–6052 (2013).
[CrossRef] [PubMed]

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency comb,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[CrossRef]

Xiao, S.

S. Xiao, A. M. Weiner, “Programmable photonic microwave filters with arbitrary ulra-wideband phase response,” IEEE Trans. Microw. Theory Tech. 54(11), 4002–4008 (2006).
[CrossRef]

Yang, J.

Y. Liu, J. Yang, J. Yao, “Cotinuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

Yao, J.

Y. Liu, J. Yang, J. Yao, “Cotinuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

M. Li, A. Malacarne, N. Belhadj, S. LaRochelle, J. Yao, J. Azana, “Reconfigurable and single-shot chirped microwave pulse compression using a time-spectrum convolution system,” postdeadline paper, IEEE Microwave Photonics Conference (2011).

Yao, J. P.

Yi, X.

X. Yi, T. X. H. Huang, R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner, “High-Power Broadly Tunable Electro-Optic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231 (2013), doi:.
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency comb,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[CrossRef]

M. Sagues, A. Loayssa, J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19(16), 1194–1196 (2007).
[CrossRef]

Y. Liu, J. Yang, J. Yao, “Cotinuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (7)

D. B. Hunter, M. E. Parker, J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[CrossRef]

S. Xiao, A. M. Weiner, “Programmable photonic microwave filters with arbitrary ulra-wideband phase response,” IEEE Trans. Microw. Theory Tech. 54(11), 4002–4008 (2006).
[CrossRef]

J. D. McKinney, A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006).
[CrossRef]

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, D. Pastor, “Variable delay line for phased-antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[CrossRef]

E. Hamidi, A. M. Weiner, “Post-compensation of ultra-wideband antenna dispersion using microwave photonic phase filters and its applications to UWB systems,” IEEE Trans. Microw. Theory Tech. 57(4), 890–898 (2009).
[CrossRef]

X. Yi, T. X. H. Huang, R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[CrossRef]

E. Hamidi, D. E. Leaird, A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

T. Mengual, B. Vidal, J. Marti, “Continuously tunable photonic microwave filter based on a spatial light modulator,” Opt. Commun. 281(10), 2746–2749 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Other (5)

V. Ataie, B. P.-P. Kuo, E. Myslivets, S. Radic, “Generation of 1500-tone, 120 nm-wide ultraflat frequency comb by single CW source,” postdeadline paper, Optical Fiber Communication Conference (OFC) (2013).

A. M. Weiner, Ultrafast Optics (Wiley Interscience, 2009).

M. Li, A. Malacarne, N. Belhadj, S. LaRochelle, J. Yao, J. Azana, “Reconfigurable and single-shot chirped microwave pulse compression using a time-spectrum convolution system,” postdeadline paper, IEEE Microwave Photonics Conference (2011).

J. G. Proakis, Digital Communications, 4th ed., (McGraw-Hill, 2001).

P. Tortoli, F. Guidi, C. Atzeni, “Digital vs SAW matched filter implementation for radar pulse compression,” Proc. IEEE Ultrason. Symp.1, 199–202 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for the complex-coefficient-tap MWP phase filter. MZM: Mach-Zehnder modulator; EDFA: erbium-doped fiber amplifier; DCF: dispersion compensating fiber; PD: photodetector; RF: radio-frequency.

Fig. 2
Fig. 2

(a) Schematic diagram of the experimental setup for the ultrabroadband OFC generator used as multi-wavelength comb source. CW: continuous-wave; PC: polarization controller; PM: phase modulator; IM: intensity modulator; SMF: single-mode fiber; HNLF: highly nonlinear fiber; BPF: bandpass filter. Measured optical power spectrum of (b) high power OFC generator and (c) smoothened and truncated ultrabroadband OFC.

Fig. 3
Fig. 3

(a) Measured (solid) and simulated (dashed) amplitude filter transfer functions of MWP phase filter on dB scale with a coefficient of quadratic phase β = –0.017 applied to the comb. (b) Group delay of the filter: measured (solid), simulated (dashed), and from approximate expression, Eq. (4) (dotted).

Fig. 4
Fig. 4

Microwave pulse-compression experimental scheme.

Fig. 5
Fig. 5

Measurement results for phase-matched filtering. (a) (c) Temporal profiles of input linearly chirp pulses (left) and corresponding measured RF spectra of synthesized input pulses (right) with (a) −3.7 ns/GHz and (c) + 3.7 ns/GHz chirp respectively, and (b) (d) corresponding compressed pulses (left) and their spectrograms (right) after matched filtering. Inset of (b) and (d), single-shot waveforms with same x and y axis scale as (b) and (d).

Tables (1)

Tables Icon

Table 1 Comparison of Reconfigurable MWP Phase Filters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H( ω RF ) n e n 2 exp[jnDΔω( ω RF +τ/D )j Φ n ].
H( ω RF ) n e n 2 exp[jnDΔω( ω ˜ RF βn DΔω )]
ω ˜ RF = βn DΔω
n= DΔω ω ˜ RF β .
τ( ω ˜ RF )= (DΔω) 2 β ω ˜ RF .
2π ψ 2 = 2π (DΔω) 2 β .

Metrics