Abstract

The dielectric property and magneto-optical effects of ferrofluids have been investigated in the terahertz (THz) regime by using THz time-domain spectroscopy. The experiment results show that the refractive index and absorption coefficient of ferrofluid for THz waves rise up with the increase of nanoparticle concentration in the ferrofluid. Moreover, two different THz magneto-optical effects have been found with different external magnetic fields, of which mechanisms have been theoretically explained well by microscopic structure induced refractive index change in the magnetization process and the transverse magneto-optical effect after the saturation magnetization, respectively. This work suggests that ferrofluid is a promising magneto-optical material in the THz regime which has widely potential applications in THz functional devices for THz sensing, modulation, phase retardation, and polarization control.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Chan, M. L. Moravec, R. G. Baraniuk, D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974–976 (2008).
    [CrossRef] [PubMed]
  2. H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
    [CrossRef] [PubMed]
  3. I. Ibraheem, N. Krumbholz, D. Mittleman, M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microwave Wireless Compon. Lett. 18(1), 67–69 (2008).
    [CrossRef]
  4. H. Zhang, P. Guo, P. Chen, S. Chang, J. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26(1), 101–106 (2009).
    [CrossRef]
  5. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [CrossRef] [PubMed]
  6. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
    [CrossRef]
  7. F. Fan, S. Chen, X.-H. Wang, S.-J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
    [CrossRef] [PubMed]
  8. F. Fan, W.-H. Gu, X.-H. Wang, S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
    [CrossRef]
  9. C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006).
    [CrossRef] [PubMed]
  10. Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
    [CrossRef]
  11. F. Fan, W.-H. Gu, S. Chen, X.-H. Wang, S.-J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
    [CrossRef] [PubMed]
  12. J. Gómez Rivas, C. Janke, P. H. Bolivar, H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005).
    [CrossRef] [PubMed]
  13. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  14. I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
    [CrossRef] [PubMed]
  15. G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
    [CrossRef]
  16. M. Shalaby, M. Peccianti, Y. Ozturk, R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
    [CrossRef] [PubMed]
  17. M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100(24), 241107 (2012).
    [CrossRef]
  18. C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, C. L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
    [CrossRef] [PubMed]
  19. F. Fan, S. Chen, W. Lin, Y.-P. Miao, S. J. Chang, B. Liu, X. H. Wang, L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
    [CrossRef]
  20. A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
    [CrossRef] [PubMed]
  21. Q. H. Yang, H. W. Zhang, Y. L. Liu, Q. Y. Wen, J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25(11), 3957–3960 (2008).
    [CrossRef]
  22. S. Yang, J. Chieh, H. E. Hornga, C. Y. Hong, H. C. Yang, “Origin and applications of magnetically tunable refractive indexof magnetic fluid films,” Appl. Phys. Lett. 84(25), 5204 (2004).
    [CrossRef]
  23. Z. Y. Di, X. F. Chen, S. L. Pu, X. Hu, Y. X. Xia, “Magnetic-field-induced birefringence and particle agglomeration in magnetic fluids,” Appl. Phys. Lett. 89(21), 211106 (2006).
    [CrossRef]
  24. W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
    [CrossRef]
  25. Y. Chen, Q. Han, T. Liu, X. Lan, H. Xiao, “Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid,” Opt. Lett. 38(20), 3999–4001 (2013).
    [CrossRef] [PubMed]
  26. M. Ding, M. N. Zervas, G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express 19(16), 15621–15626 (2011).
    [CrossRef] [PubMed]
  27. P. Jepsen, B. Fischer, A. Thoman, H. Helm, J. Suh, R. Lopez, R. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
    [CrossRef]
  28. K. Q. Zhang and D. J. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 2008), pp. 535–560.

2013 (9)

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[CrossRef]

F. Fan, S. Chen, X.-H. Wang, S.-J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
[CrossRef] [PubMed]

F. Fan, W.-H. Gu, X.-H. Wang, S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[CrossRef]

F. Fan, W.-H. Gu, S. Chen, X.-H. Wang, S.-J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
[CrossRef] [PubMed]

G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[CrossRef]

M. Shalaby, M. Peccianti, Y. Ozturk, R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[CrossRef] [PubMed]

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S. J. Chang, B. Liu, X. H. Wang, L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[CrossRef]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[CrossRef]

Y. Chen, Q. Han, T. Liu, X. Lan, H. Xiao, “Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid,” Opt. Lett. 38(20), 3999–4001 (2013).
[CrossRef] [PubMed]

2012 (3)

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100(24), 241107 (2012).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[CrossRef] [PubMed]

2011 (2)

M. Ding, M. N. Zervas, G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express 19(16), 15621–15626 (2011).
[CrossRef] [PubMed]

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[CrossRef] [PubMed]

2010 (1)

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

2009 (1)

2008 (3)

I. Ibraheem, N. Krumbholz, D. Mittleman, M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microwave Wireless Compon. Lett. 18(1), 67–69 (2008).
[CrossRef]

W. L. Chan, M. L. Moravec, R. G. Baraniuk, D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974–976 (2008).
[CrossRef] [PubMed]

Q. H. Yang, H. W. Zhang, Y. L. Liu, Q. Y. Wen, J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25(11), 3957–3960 (2008).
[CrossRef]

2007 (1)

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

2006 (4)

C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006).
[CrossRef] [PubMed]

P. Jepsen, B. Fischer, A. Thoman, H. Helm, J. Suh, R. Lopez, R. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[CrossRef]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Z. Y. Di, X. F. Chen, S. L. Pu, X. Hu, Y. X. Xia, “Magnetic-field-induced birefringence and particle agglomeration in magnetic fluids,” Appl. Phys. Lett. 89(21), 211106 (2006).
[CrossRef]

2005 (1)

2004 (2)

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, C. L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
[CrossRef] [PubMed]

S. Yang, J. Chieh, H. E. Hornga, C. Y. Hong, H. C. Yang, “Origin and applications of magnetically tunable refractive indexof magnetic fluid films,” Appl. Phys. Lett. 84(25), 5204 (2004).
[CrossRef]

Al-Naib, I.

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100(24), 241107 (2012).
[CrossRef]

Armelles, G.

G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[CrossRef]

Astakhov, G. V.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[CrossRef] [PubMed]

Averitt, R. D.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[CrossRef] [PubMed]

Baraniuk, R. G.

Bolivar, P. H.

Brambilla, G.

Brüne, C.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[CrossRef] [PubMed]

Buhmann, H.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[CrossRef] [PubMed]

Cao, W.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[CrossRef]

Cebollada, A.

G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[CrossRef]

Chan, W. L.

Chang, S.

Chang, S. J.

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S. J. Chang, B. Liu, X. H. Wang, L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[CrossRef]

Chang, S.-J.

Chen, C. Y.

Chen, H. L.

Chen, H. T.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Chen, H.-T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[CrossRef] [PubMed]

Chen, J.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Chen, K.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

Chen, P.

Chen, S.

Chen, X. F.

Z. Y. Di, X. F. Chen, S. L. Pu, X. Hu, Y. X. Xia, “Magnetic-field-induced birefringence and particle agglomeration in magnetic fluids,” Appl. Phys. Lett. 89(21), 211106 (2006).
[CrossRef]

Chen, Y.

Y. Chen, Q. Han, T. Liu, X. Lan, H. Xiao, “Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid,” Opt. Lett. 38(20), 3999–4001 (2013).
[CrossRef] [PubMed]

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

Chieh, J.

S. Yang, J. Chieh, H. E. Hornga, C. Y. Hong, H. C. Yang, “Origin and applications of magnetically tunable refractive indexof magnetic fluid films,” Appl. Phys. Lett. 84(25), 5204 (2004).
[CrossRef]

Clerici, M.

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100(24), 241107 (2012).
[CrossRef]

Cong, L.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[CrossRef]

Crassee, I.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Di, Z. Y.

Z. Y. Di, X. F. Chen, S. L. Pu, X. Hu, Y. X. Xia, “Magnetic-field-induced birefringence and particle agglomeration in magnetic fluids,” Appl. Phys. Lett. 89(21), 211106 (2006).
[CrossRef]

Ding, M.

Earley, S.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

Fan, F.

F. Fan, S. Chen, X.-H. Wang, S.-J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
[CrossRef] [PubMed]

F. Fan, W.-H. Gu, X.-H. Wang, S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[CrossRef]

F. Fan, W.-H. Gu, S. Chen, X.-H. Wang, S.-J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
[CrossRef] [PubMed]

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S. J. Chang, B. Liu, X. H. Wang, L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[CrossRef]

Ferguson, B.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

Fischer, B.

P. Jepsen, B. Fischer, A. Thoman, H. Helm, J. Suh, R. Lopez, R. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[CrossRef]

Gaponenko, I.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

García-Martín, A.

G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[CrossRef]

Gómez Rivas, J.

González, M. U.

G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[CrossRef]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Gu, J.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[CrossRef] [PubMed]

Gu, W.-H.

F. Fan, W.-H. Gu, X.-H. Wang, S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[CrossRef]

F. Fan, W.-H. Gu, S. Chen, X.-H. Wang, S.-J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
[CrossRef] [PubMed]

Guo, P.

Haglund, R.

P. Jepsen, B. Fischer, A. Thoman, H. Helm, J. Suh, R. Lopez, R. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[CrossRef]

Han, J.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[CrossRef] [PubMed]

Han, Q.

Helm, H.

P. Jepsen, B. Fischer, A. Thoman, H. Helm, J. Suh, R. Lopez, R. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[CrossRef]

Hong, C. Y.

S. Yang, J. Chieh, H. E. Hornga, C. Y. Hong, H. C. Yang, “Origin and applications of magnetically tunable refractive indexof magnetic fluid films,” Appl. Phys. Lett. 84(25), 5204 (2004).
[CrossRef]

Hornga, H. E.

S. Yang, J. Chieh, H. E. Hornga, C. Y. Hong, H. C. Yang, “Origin and applications of magnetically tunable refractive indexof magnetic fluid films,” Appl. Phys. Lett. 84(25), 5204 (2004).
[CrossRef]

Hsieh, C. F.

Hu, X.

Z. Y. Di, X. F. Chen, S. L. Pu, X. Hu, Y. X. Xia, “Magnetic-field-induced birefringence and particle agglomeration in magnetic fluids,” Appl. Phys. Lett. 89(21), 211106 (2006).
[CrossRef]

Ibraheem, I.

I. Ibraheem, N. Krumbholz, D. Mittleman, M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microwave Wireless Compon. Lett. 18(1), 67–69 (2008).
[CrossRef]

Janke, C.

Jepsen, P.

P. Jepsen, B. Fischer, A. Thoman, H. Helm, J. Suh, R. Lopez, R. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[CrossRef]

Koch, M.

I. Ibraheem, N. Krumbholz, D. Mittleman, M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microwave Wireless Compon. Lett. 18(1), 67–69 (2008).
[CrossRef]

Krumbholz, N.

I. Ibraheem, N. Krumbholz, D. Mittleman, M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microwave Wireless Compon. Lett. 18(1), 67–69 (2008).
[CrossRef]

Kurz, H.

Kuzmenko, A. B.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Lan, X.

Lin, L.

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S. J. Chang, B. Liu, X. H. Wang, L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[CrossRef]

Lin, W.

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S. J. Chang, B. Liu, X. H. Wang, L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[CrossRef]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[CrossRef]

Lin, Y. F.

Liu, B.

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[CrossRef]

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S. J. Chang, B. Liu, X. H. Wang, L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[CrossRef]

Liu, H. B.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

Liu, T.

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[CrossRef] [PubMed]

Liu, Y.

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[CrossRef]

Liu, Y. L.

Q. H. Yang, H. W. Zhang, Y. L. Liu, Q. Y. Wen, J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25(11), 3957–3960 (2008).
[CrossRef]

Liu, Y.-L.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

Lopez, R.

P. Jepsen, B. Fischer, A. Thoman, H. Helm, J. Suh, R. Lopez, R. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[CrossRef]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[CrossRef] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[CrossRef] [PubMed]

Mazhorova, A.

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100(24), 241107 (2012).
[CrossRef]

Miao, Y.

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[CrossRef]

Miao, Y.-P.

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S. J. Chang, B. Liu, X. H. Wang, L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[CrossRef]

Mittleman, D.

I. Ibraheem, N. Krumbholz, D. Mittleman, M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microwave Wireless Compon. Lett. 18(1), 67–69 (2008).
[CrossRef]

Mittleman, D. M.

Molenkamp, L. W.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[CrossRef] [PubMed]

Morandotti, R.

M. Shalaby, M. Peccianti, Y. Ozturk, R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[CrossRef] [PubMed]

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100(24), 241107 (2012).
[CrossRef]

Moravec, M. L.

Orlita, M.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Ostler, M.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Ozaki, T.

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100(24), 241107 (2012).
[CrossRef]

Ozturk, Y.

M. Shalaby, M. Peccianti, Y. Ozturk, R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[CrossRef] [PubMed]

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100(24), 241107 (2012).
[CrossRef]

Padilla, W. J.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Pan, C. L.

Pan, R. P.

Peccianti, M.

M. Shalaby, M. Peccianti, Y. Ozturk, R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[CrossRef] [PubMed]

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100(24), 241107 (2012).
[CrossRef]

Pimenov, A.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[CrossRef] [PubMed]

Plopper, G.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

Potemski, M.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Pu, S. L.

Z. Y. Di, X. F. Chen, S. L. Pu, X. Hu, Y. X. Xia, “Magnetic-field-induced birefringence and particle agglomeration in magnetic fluids,” Appl. Phys. Lett. 89(21), 211106 (2006).
[CrossRef]

Razzari, L.

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100(24), 241107 (2012).
[CrossRef]

Seyller, T.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Shalaby, M.

M. Shalaby, M. Peccianti, Y. Ozturk, R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[CrossRef] [PubMed]

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100(24), 241107 (2012).
[CrossRef]

Shuvaev, A. M.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[CrossRef] [PubMed]

Singh, R.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[CrossRef] [PubMed]

Skorobogatiy, M.

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100(24), 241107 (2012).
[CrossRef]

Song, B.

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[CrossRef]

Suh, J.

P. Jepsen, B. Fischer, A. Thoman, H. Helm, J. Suh, R. Lopez, R. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[CrossRef]

Tang, T. T.

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Thoman, A.

P. Jepsen, B. Fischer, A. Thoman, H. Helm, J. Suh, R. Lopez, R. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[CrossRef]

Tian, Z.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[CrossRef] [PubMed]

Walter, A. L.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Wang, X. H.

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S. J. Chang, B. Liu, X. H. Wang, L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[CrossRef]

Wang, X.-H.

Wen, Q. Y.

Q. H. Yang, H. W. Zhang, Y. L. Liu, Q. Y. Wen, J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25(11), 3957–3960 (2008).
[CrossRef]

Wen, Q.-Y.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

Xia, Y. X.

Z. Y. Di, X. F. Chen, S. L. Pu, X. Hu, Y. X. Xia, “Magnetic-field-induced birefringence and particle agglomeration in magnetic fluids,” Appl. Phys. Lett. 89(21), 211106 (2006).
[CrossRef]

Xiao, H.

Xie, Y.-S.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

Yang, H. C.

S. Yang, J. Chieh, H. E. Hornga, C. Y. Hong, H. C. Yang, “Origin and applications of magnetically tunable refractive indexof magnetic fluid films,” Appl. Phys. Lett. 84(25), 5204 (2004).
[CrossRef]

Yang, Q. H.

Q. H. Yang, H. W. Zhang, Y. L. Liu, Q. Y. Wen, J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25(11), 3957–3960 (2008).
[CrossRef]

Yang, Q.-H.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

Yang, S.

S. Yang, J. Chieh, H. E. Hornga, C. Y. Hong, H. C. Yang, “Origin and applications of magnetically tunable refractive indexof magnetic fluid films,” Appl. Phys. Lett. 84(25), 5204 (2004).
[CrossRef]

Yuan, J.

Zervas, M. N.

Zha, J.

Q. H. Yang, H. W. Zhang, Y. L. Liu, Q. Y. Wen, J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25(11), 3957–3960 (2008).
[CrossRef]

Zhang, H.

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[CrossRef]

H. Zhang, P. Guo, P. Chen, S. Chang, J. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26(1), 101–106 (2009).
[CrossRef]

Zhang, H. W.

Q. H. Yang, H. W. Zhang, Y. L. Liu, Q. Y. Wen, J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25(11), 3957–3960 (2008).
[CrossRef]

Zhang, H.-W.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[CrossRef] [PubMed]

Zhang, W.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[CrossRef] [PubMed]

Zhang, X.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[CrossRef] [PubMed]

Zhang, X. C.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Adv. Opt. Mater. (1)

G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[CrossRef]

Appl. Phys. Lett. (8)

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[CrossRef]

F. Fan, W.-H. Gu, X.-H. Wang, S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[CrossRef]

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100(24), 241107 (2012).
[CrossRef]

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S. J. Chang, B. Liu, X. H. Wang, L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[CrossRef]

S. Yang, J. Chieh, H. E. Hornga, C. Y. Hong, H. C. Yang, “Origin and applications of magnetically tunable refractive indexof magnetic fluid films,” Appl. Phys. Lett. 84(25), 5204 (2004).
[CrossRef]

Z. Y. Di, X. F. Chen, S. L. Pu, X. Hu, Y. X. Xia, “Magnetic-field-induced birefringence and particle agglomeration in magnetic fluids,” Appl. Phys. Lett. 89(21), 211106 (2006).
[CrossRef]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[CrossRef]

Biosens. Bioelectron. (1)

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

Chin. Phys. Lett. (1)

Q. H. Yang, H. W. Zhang, Y. L. Liu, Q. Y. Wen, J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25(11), 3957–3960 (2008).
[CrossRef]

IEEE Microwave Wireless Compon. Lett. (1)

I. Ibraheem, N. Krumbholz, D. Mittleman, M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microwave Wireless Compon. Lett. 18(1), 67–69 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Nat. Commun. (2)

M. Shalaby, M. Peccianti, Y. Ozturk, R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[CrossRef] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[CrossRef] [PubMed]

Nature (1)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. B (1)

P. Jepsen, B. Fischer, A. Thoman, H. Helm, J. Suh, R. Lopez, R. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[CrossRef] [PubMed]

Other (1)

K. Q. Zhang and D. J. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 2008), pp. 535–560.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) TEM image of ferrofluid of 3.9% concentration without EMF and (b) with an EMF of 30mT; (c) 50 × microscope image of ferrofluid without EMF, (d) with an EMF along the y direction, and (e) along the x direction.

Fig. 2
Fig. 2

(a) Schematic diagram of THz-TDS system. (b) Time-domain signals of reference and three samples; (c) Refractive index and (d) absorption coefficient of ferrofluid of 0%(carrier liquid without nanoparticles), 3.9%, 7.9% and 17.7% concentration.

Fig. 3
Fig. 3

(a) THz time-domain spectroscopy of 7.9% concentration ferrofluid with different EMF. (b)The refractive index curves of 7.9% concentration ferrofluid with different EMF at 1 THz.

Fig. 4
Fig. 4

Measured refractive index spectra of ferrofluid with (a) 3.9%, (b) 7.9% and (c) 17.7% concentration with weak EMF.

Fig. 5
Fig. 5

Measured (red dots) and theoretical (black lines) refractive index of ferrofluid with (a) 3.9%, (b) 7.9% and (c) 17.7% concentration with the EMF increasing at 1THz.

Fig. 6
Fig. 6

Measured refractive index spectra of the ferrofluid with (a) 3.9%, (b) 7.9% and (c) 17.7% concentration under the different EMF in the THz regime.

Fig. 7
Fig. 7

Theoretical refractive index spectra of the ferrofluid with (a) 3.9%, (b) 7.9% and (c) 17.7% concentration under the different EMF in the THz regime.

Tables (1)

Tables Icon

Table 1 Theoretical Parameters of Ferrofluid in the Voigt Magneto-optical Effect

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n = 1 2 { ε 1 ( 2 3 f ) + ε 2 3 f 1 + [ ε 1 ( 2 3 f ) + ε 2 ( 3 f 1 ) ] 2 + 8 ε 1 ε 2 } 1 / 2 ,
f = M M s = coth ( k H ) 1 k H ,
ε=( ε xx ε xy 0 ε xy ε xx 0 0 0 ε zz ),
ε xx = ε + ε ω p 2 (ω+γi) ω[ ( ω+γi ) 2 ( ω c + ω i ) 2 ] ,
ε xy = ε i ω p 2 ω c ω[ ( ω+γi ) 2 ω c 2 ] ,
n p = ε xx + ε xy 2 / ε xx .

Metrics