Abstract

We present a comprehensive analysis of pulse compression in adiabatically tapered silicon photonic wire waveguides (Si-PhWWGs), both at telecom (λ ∼ 1.55 μm) and mid-IR (λ ≳ 2.1 μm) wavelengths. Our theoretical and computational study is based on a rigorous model that describes the coupled dynamics of the optical field and photogenerated free carriers, as well as the influence of the physical and geometrical parameters of the Si-PhWWGs on these dynamics. We consider both the soliton and non-soliton pulse propagation regimes, rendering the conclusions of this study relevant to a broad range of experimental settings and practical applications. In particular, we show that by engineering the linear and nonlinear optical properties of Si-PhWWGs through adiabatically varying their width, one can achieve more than 10× pulse compression in millimeter-long waveguides. The inter-dependence between the pulse characteristics and compression efficiency is also discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE 5, 454–458 (1969).
    [CrossRef]
  2. O. E. Martinez, J. P. Gordon, R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1, 1003–1006 (1984).
    [CrossRef]
  3. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  4. G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, M. M. Fejer, “Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings,” Opt. Lett. 23, 864–866 (1998).
    [CrossRef]
  5. N. J. Doran, D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
    [CrossRef] [PubMed]
  6. K. Smith, N. J. Doran, P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294–1296 (1990).
    [CrossRef] [PubMed]
  7. M. D. Pelusi, Y. Matsui, A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
    [CrossRef]
  8. W. J. Tomlinson, R. H. Stolen, C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1, 139–149 (1984).
    [CrossRef]
  9. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
    [CrossRef] [PubMed]
  10. J. T. Manassah, “Pulse compression of an induced-phase-modulated weak signal,” Opt. Lett. 13, 755–757 (1988).
    [CrossRef] [PubMed]
  11. G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers,” Opt. Lett. 14, 137–139 (1989).
    [CrossRef] [PubMed]
  12. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8, 289–291 (1983).
    [CrossRef] [PubMed]
  13. K. A. Ahmed, K. C. Chan, H. F. Liu, “Femtosecond pulse generation from semiconductor laser using the soliton effect compression technique,” IEEE J. Sel. Top. Quantum Electron. 1, 592–600 (1995).
    [CrossRef]
  14. M. D. Pelusi, H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
    [CrossRef]
  15. A. A. Amorim, M. V. Tognetti, P. Oliveira, J. L. Silva, L. M. Bernardo, F. X. Kartner, H. M. Crespo, “Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers,” Opt. Lett. 34, 3851–3853 (2009).
    [CrossRef] [PubMed]
  16. A. C. Peacock, “Mid-IR soliton compression in silicon optical fibers and fiber tapers,” Opt. Lett. 37, 818–820 (2012).
    [CrossRef] [PubMed]
  17. S. V. Chernikov, E. M. Dianov, D. J. Richardson, D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
    [CrossRef] [PubMed]
  18. M. Nakazawa, E. Yoshida, H. Kubota, Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994).
    [CrossRef]
  19. J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. F. Taunay, E. J. Friebele, “Pulse compression using a tapered microstructure optical fiber,” Opt. Express 14, 4026–4036 (2006).
    [CrossRef] [PubMed]
  20. M. L. V. Tse, P. Horak, J. H. V. Price, F. Poletti, F. He, D. J. Richardson, “Pulse compression at 1.06 μm in dispersion-decreasing holey fibers,” Opt. Lett. 31, 3504–3506 (2006).
    [CrossRef] [PubMed]
  21. A. C. Peacock, “Soliton propagation in tapered silicon core fibers,” Opt. Lett. 35, 3697–3699 (2010).
    [CrossRef] [PubMed]
  22. L. Tong, R. Gattass, J. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [CrossRef] [PubMed]
  23. M. Foster, A. Gaeta, Q. Cao, R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).
    [CrossRef] [PubMed]
  24. A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
    [CrossRef] [PubMed]
  25. K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
    [CrossRef]
  26. R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
    [CrossRef]
  27. Q. Lin, O. J. Painter, G. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modelling and applications,” Opt. Express 15, 16604–16644 (2007).
    [CrossRef] [PubMed]
  28. J. I. Dadap, N. C. Panoiu, X. G. Chen, I. W. Hsieh, X. P. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. N. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express 16, 1280–1299 (2008).
    [CrossRef] [PubMed]
  29. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I-W. Hsieh, E. Dulkeith, W. M. J. Green, Y. A. Vlassov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1, 162–235 (2009).
    [CrossRef]
  30. X. Chen, N. C. Panoiu, I. W. Hsieh, J. I. Dadap, R. M. Osgood, “Third-order dispersion and ultrafast-pulse propagation in silicon wire waveguides,” IEEE Photon. Technol. Lett. 18, 2617–2619 (2006).
    [CrossRef]
  31. M. Mohebbi, “Silicon photonic nanowire soliton-effect compressor at 1.5 μm,” IEEE Photon. Technol. Lett. 20, 921–923 (2008).
    [CrossRef]
  32. N. C. Panoiu, X. Chen, R. M. Osgood, “Modulation instability in silicon photonic nanowires,” Opt. Lett. 31, 3609–3611 (2006).
    [CrossRef] [PubMed]
  33. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
    [CrossRef] [PubMed]
  34. X. Liu, R. M. Osgood, Y. A. Vlasov, W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
    [CrossRef]
  35. O. Boyraz, P. Koonath, V. Raghunathan, B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004).
    [CrossRef] [PubMed]
  36. I. W. Hsieh, X. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007).
    [CrossRef] [PubMed]
  37. L. Yin, Q. Lin, G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007).
    [CrossRef] [PubMed]
  38. N. C. Panoiu, X. Liu, R. M. Osgood, “Self-steepening of ultrashort pulses in silicon photonic nanowires,” Opt. Lett. 34, 947–949 (2009).
    [CrossRef] [PubMed]
  39. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
    [CrossRef] [PubMed]
  40. R. Espinola, J. Dadap, R. M. Osgood, S. McNab, Y. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005).
    [CrossRef] [PubMed]
  41. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
    [CrossRef] [PubMed]
  42. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
    [CrossRef]
  43. J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20, 9227–9242 (2012).
    [CrossRef] [PubMed]
  44. S. Lavdas, J. B. Driscoll, H. Jiang, R. R. Grote, R. M. Osgood, N. C. Panoiu, “Generation of parabolic similaritons in tapered silicon photonic wires: comparison of pulse dynamics at telecom and mid-infrared wavelengths,” Opt. Lett. 38, 3953–3956 (2013).
    [CrossRef] [PubMed]
  45. X. Chen, N. C. Panoiu, R. M. Osgood, “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE J. Quantum Electron. 42, 160–170 (2006).
    [CrossRef]
  46. N. C. Panoiu, J. F. McMillan, C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 257–266 (2010).
    [CrossRef]
  47. M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011).
    [CrossRef] [PubMed]
  48. G. Li, J. Yao, Y. Luo, H. Thacker, A. Mekis, X. Zheng, I. Shubin, J.-H. Lee, K. Raj, J. E. Cunningham, A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20, 12035–12039 (2012).
    [CrossRef] [PubMed]
  49. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  50. J. Santhanam, G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003).
    [CrossRef]

2014 (1)

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[CrossRef] [PubMed]

2013 (1)

2012 (3)

2011 (1)

2010 (4)

A. C. Peacock, “Soliton propagation in tapered silicon core fibers,” Opt. Lett. 35, 3697–3699 (2010).
[CrossRef] [PubMed]

N. C. Panoiu, J. F. McMillan, C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 257–266 (2010).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

X. Liu, R. M. Osgood, Y. A. Vlasov, W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[CrossRef]

2009 (3)

2008 (2)

2007 (4)

2006 (6)

X. Chen, N. C. Panoiu, R. M. Osgood, “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE J. Quantum Electron. 42, 160–170 (2006).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

X. Chen, N. C. Panoiu, I. W. Hsieh, J. I. Dadap, R. M. Osgood, “Third-order dispersion and ultrafast-pulse propagation in silicon wire waveguides,” IEEE Photon. Technol. Lett. 18, 2617–2619 (2006).
[CrossRef]

J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. F. Taunay, E. J. Friebele, “Pulse compression using a tapered microstructure optical fiber,” Opt. Express 14, 4026–4036 (2006).
[CrossRef] [PubMed]

M. L. V. Tse, P. Horak, J. H. V. Price, F. Poletti, F. He, D. J. Richardson, “Pulse compression at 1.06 μm in dispersion-decreasing holey fibers,” Opt. Lett. 31, 3504–3506 (2006).
[CrossRef] [PubMed]

N. C. Panoiu, X. Chen, R. M. Osgood, “Modulation instability in silicon photonic nanowires,” Opt. Lett. 31, 3609–3611 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

2003 (2)

L. Tong, R. Gattass, J. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

J. Santhanam, G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003).
[CrossRef]

2002 (1)

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

2000 (2)

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

1999 (1)

M. D. Pelusi, Y. Matsui, A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
[CrossRef]

1998 (1)

1997 (2)

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
[CrossRef] [PubMed]

M. D. Pelusi, H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

1995 (1)

K. A. Ahmed, K. C. Chan, H. F. Liu, “Femtosecond pulse generation from semiconductor laser using the soliton effect compression technique,” IEEE J. Sel. Top. Quantum Electron. 1, 592–600 (1995).
[CrossRef]

1994 (1)

M. Nakazawa, E. Yoshida, H. Kubota, Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994).
[CrossRef]

1993 (1)

1990 (1)

1989 (1)

1988 (2)

1984 (2)

1983 (1)

1969 (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE 5, 454–458 (1969).
[CrossRef]

Agarwal, A.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Agrawal, G.

Agrawal, G. P.

Ahmad, R. U.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

Ahmed, K. A.

K. A. Ahmed, K. C. Chan, H. F. Liu, “Femtosecond pulse generation from semiconductor laser using the soliton effect compression technique,” IEEE J. Sel. Top. Quantum Electron. 1, 592–600 (1995).
[CrossRef]

Alfano, R. R.

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Amorim, A. A.

Arbore, M. A.

Ashcom, J.

L. Tong, R. Gattass, J. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Baldeck, P. L.

Bergman, K.

Bernardo, L. M.

Blanco-Redondo, A.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[CrossRef] [PubMed]

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Bondarenko, O.

Boyraz, O.

Camarda, G. S.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

Cao, Q.

Carruthers, T. F.

Chan, K. C.

K. A. Ahmed, K. C. Chan, H. F. Liu, “Femtosecond pulse generation from semiconductor laser using the soliton effect compression technique,” IEEE J. Sel. Top. Quantum Electron. 1, 592–600 (1995).
[CrossRef]

Chen, X.

Chen, X. G.

Chernikov, S. V.

Chou, C. Y.

Crespo, H. M.

Cunningham, J. E.

Dadap, J.

Dadap, J. I.

De Silvestri, S.

Dianov, E. M.

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Doran, N. J.

Driscoll, J. B.

Dulkeith, E.

Eades, D.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[CrossRef] [PubMed]

Eggleton, B. J.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[CrossRef] [PubMed]

Espinola, R.

Espinola, R. L.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

Fainman, Y.

Fejer, M. M.

Ferencz, K.

Foresi, J.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Fork, R. L.

Foster, M.

Foster, M. A.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Friebele, E. J.

Fukuda, H.

Gaeta, A.

Gaeta, A. L.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Galvanauskas, A.

Gattass, R.

L. Tong, R. Gattass, J. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Gordon, J. P.

Green, W. M.

Green, W. M. J.

Grote, R. R.

Harter, D.

He, F.

He, S.

L. Tong, R. Gattass, J. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Horak, P.

Hsieh, I. W.

Hsieh, I-W.

Hu, J.

Husko, C.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[CrossRef] [PubMed]

Imeshev, G.

Itabashi, S.

Jalali, B.

Jiang, H.

Kartner, F. X.

Khajavikhan, M.

Kim, J.

Kimerling, L. C.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Kimura, Y.

M. Nakazawa, E. Yoshida, H. Kubota, Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994).
[CrossRef]

Koonath, P.

Krauss, T. F.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[CrossRef] [PubMed]

Krausz, F.

Krishnamoorthy, A. V.

Kubota, H.

M. Nakazawa, E. Yoshida, H. Kubota, Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994).
[CrossRef]

Lavdas, S.

Lee, J.-H.

Lee, K. K.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Li, G.

Li, J.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[CrossRef] [PubMed]

Lim, D. R.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Lin, Q.

Lipson, M.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Liu, H. F.

M. D. Pelusi, H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

K. A. Ahmed, K. C. Chan, H. F. Liu, “Femtosecond pulse generation from semiconductor laser using the soliton effect compression technique,” IEEE J. Sel. Top. Quantum Electron. 1, 592–600 (1995).
[CrossRef]

Liu, X.

Liu, X. P.

Lou, J.

L. Tong, R. Gattass, J. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Luan, H. C.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Luo, Y.

Manassah, J. T.

Marks, B. S.

Martinez, O. E.

Matsui, Y.

M. D. Pelusi, Y. Matsui, A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
[CrossRef]

Maxwell, I.

L. Tong, R. Gattass, J. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. Gattass, J. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

McMillan, J. F.

N. C. Panoiu, J. F. McMillan, C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 257–266 (2010).
[CrossRef]

McNab, S.

McNab, S. J.

Mekis, A.

Menyuk, C. R.

Mohebbi, M.

M. Mohebbi, “Silicon photonic nanowire soliton-effect compressor at 1.5 μm,” IEEE Photon. Technol. Lett. 20, 921–923 (2008).
[CrossRef]

Mollenauer, L. F.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Nakazawa, M.

M. Nakazawa, E. Yoshida, H. Kubota, Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994).
[CrossRef]

Nezhad, M. P.

Nisoli, M.

Oliveira, P.

Ophir, N.

Osgood, R. M.

S. Lavdas, J. B. Driscoll, H. Jiang, R. R. Grote, R. M. Osgood, N. C. Panoiu, “Generation of parabolic similaritons in tapered silicon photonic wires: comparison of pulse dynamics at telecom and mid-infrared wavelengths,” Opt. Lett. 38, 3953–3956 (2013).
[CrossRef] [PubMed]

J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20, 9227–9242 (2012).
[CrossRef] [PubMed]

X. Liu, R. M. Osgood, Y. A. Vlasov, W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[CrossRef]

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I-W. Hsieh, E. Dulkeith, W. M. J. Green, Y. A. Vlassov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1, 162–235 (2009).
[CrossRef]

N. C. Panoiu, X. Liu, R. M. Osgood, “Self-steepening of ultrashort pulses in silicon photonic nanowires,” Opt. Lett. 34, 947–949 (2009).
[CrossRef] [PubMed]

J. I. Dadap, N. C. Panoiu, X. G. Chen, I. W. Hsieh, X. P. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. N. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express 16, 1280–1299 (2008).
[CrossRef] [PubMed]

I. W. Hsieh, X. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007).
[CrossRef] [PubMed]

N. C. Panoiu, X. Chen, R. M. Osgood, “Modulation instability in silicon photonic nanowires,” Opt. Lett. 31, 3609–3611 (2006).
[CrossRef] [PubMed]

X. Chen, N. C. Panoiu, R. M. Osgood, “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE J. Quantum Electron. 42, 160–170 (2006).
[CrossRef]

X. Chen, N. C. Panoiu, I. W. Hsieh, J. I. Dadap, R. M. Osgood, “Third-order dispersion and ultrafast-pulse propagation in silicon wire waveguides,” IEEE Photon. Technol. Lett. 18, 2617–2619 (2006).
[CrossRef]

R. Espinola, J. Dadap, R. M. Osgood, S. McNab, Y. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005).
[CrossRef] [PubMed]

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

Painter, O. J.

Panoiu, N. C.

S. Lavdas, J. B. Driscoll, H. Jiang, R. R. Grote, R. M. Osgood, N. C. Panoiu, “Generation of parabolic similaritons in tapered silicon photonic wires: comparison of pulse dynamics at telecom and mid-infrared wavelengths,” Opt. Lett. 38, 3953–3956 (2013).
[CrossRef] [PubMed]

J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20, 9227–9242 (2012).
[CrossRef] [PubMed]

N. C. Panoiu, J. F. McMillan, C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 257–266 (2010).
[CrossRef]

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I-W. Hsieh, E. Dulkeith, W. M. J. Green, Y. A. Vlassov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1, 162–235 (2009).
[CrossRef]

N. C. Panoiu, X. Liu, R. M. Osgood, “Self-steepening of ultrashort pulses in silicon photonic nanowires,” Opt. Lett. 34, 947–949 (2009).
[CrossRef] [PubMed]

J. I. Dadap, N. C. Panoiu, X. G. Chen, I. W. Hsieh, X. P. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. N. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express 16, 1280–1299 (2008).
[CrossRef] [PubMed]

I. W. Hsieh, X. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007).
[CrossRef] [PubMed]

N. C. Panoiu, X. Chen, R. M. Osgood, “Modulation instability in silicon photonic nanowires,” Opt. Lett. 31, 3609–3611 (2006).
[CrossRef] [PubMed]

X. Chen, N. C. Panoiu, R. M. Osgood, “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE J. Quantum Electron. 42, 160–170 (2006).
[CrossRef]

X. Chen, N. C. Panoiu, I. W. Hsieh, J. I. Dadap, R. M. Osgood, “Third-order dispersion and ultrafast-pulse propagation in silicon wire waveguides,” IEEE Photon. Technol. Lett. 18, 2617–2619 (2006).
[CrossRef]

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Payne, D. N.

Peacock, A. C.

Pelusi, M. D.

M. D. Pelusi, Y. Matsui, A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
[CrossRef]

M. D. Pelusi, H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

Pizzuto, F.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

Poletti, F.

Price, J. H. V.

Proctor, M.

Radic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Raghunathan, V.

Raj, K.

Rao, H.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

Richardson, D. J.

Salem, R.

Santhanam, J.

J. Santhanam, G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003).
[CrossRef]

Sartania, S.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Sekaric, L.

Shank, C. V.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Shen, M.

L. Tong, R. Gattass, J. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Shoji, T.

Shubin, I.

Silva, J. L.

Simic, A.

Smith, K.

Spielmann, C.

Stolen, R. H.

Suzuki, A.

M. D. Pelusi, Y. Matsui, A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
[CrossRef]

Svelto, O.

Szipocs, R.

Takahashi, J.

Takahashi, M.

Taunay, T. F.

Thacker, H.

Tognetti, M. V.

Tomlinson, W. J.

Tong, L.

L. Tong, R. Gattass, J. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE 5, 454–458 (1969).
[CrossRef]

Trebino, R.

Tse, M. L. V.

Tsuchizawa, T.

Turner, A. C.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Vlasov, Y.

Vlasov, Y. A.

Vlassov, Y. A.

Watanabe, T.

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Wigley, P. G. J.

Wong, C. W.

N. C. Panoiu, J. F. McMillan, C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 257–266 (2010).
[CrossRef]

Wood, D.

Wright, B. M.

Xia, F.

Xia, F. N.

Yamada, K.

Yao, J.

Yin, L.

Yoshida, E.

M. Nakazawa, E. Yoshida, H. Kubota, Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994).
[CrossRef]

Zhang, Y.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[CrossRef] [PubMed]

Zheng, X.

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Electron. Lett. (1)

M. Nakazawa, E. Yoshida, H. Kubota, Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994).
[CrossRef]

IEEE J. Quantum Electron. (4)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE 5, 454–458 (1969).
[CrossRef]

M. D. Pelusi, Y. Matsui, A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).
[CrossRef]

M. D. Pelusi, H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

X. Chen, N. C. Panoiu, R. M. Osgood, “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE J. Quantum Electron. 42, 160–170 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

N. C. Panoiu, J. F. McMillan, C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 257–266 (2010).
[CrossRef]

K. A. Ahmed, K. C. Chan, H. F. Liu, “Femtosecond pulse generation from semiconductor laser using the soliton effect compression technique,” IEEE J. Sel. Top. Quantum Electron. 1, 592–600 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[CrossRef]

X. Chen, N. C. Panoiu, I. W. Hsieh, J. I. Dadap, R. M. Osgood, “Third-order dispersion and ultrafast-pulse propagation in silicon wire waveguides,” IEEE Photon. Technol. Lett. 18, 2617–2619 (2006).
[CrossRef]

M. Mohebbi, “Silicon photonic nanowire soliton-effect compressor at 1.5 μm,” IEEE Photon. Technol. Lett. 20, 921–923 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[CrossRef] [PubMed]

Nat. Photonics (2)

X. Liu, R. M. Osgood, Y. A. Vlasov, W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[CrossRef]

Nature (2)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

L. Tong, R. Gattass, J. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Santhanam, G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003).
[CrossRef]

Opt. Express (12)

M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011).
[CrossRef] [PubMed]

J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20, 9227–9242 (2012).
[CrossRef] [PubMed]

G. Li, J. Yao, Y. Luo, H. Thacker, A. Mekis, X. Zheng, I. Shubin, J.-H. Lee, K. Raj, J. E. Cunningham, A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20, 12035–12039 (2012).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[CrossRef] [PubMed]

I. W. Hsieh, X. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007).
[CrossRef] [PubMed]

Q. Lin, O. J. Painter, G. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modelling and applications,” Opt. Express 15, 16604–16644 (2007).
[CrossRef] [PubMed]

J. I. Dadap, N. C. Panoiu, X. G. Chen, I. W. Hsieh, X. P. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. N. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express 16, 1280–1299 (2008).
[CrossRef] [PubMed]

O. Boyraz, P. Koonath, V. Raghunathan, B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004).
[CrossRef] [PubMed]

R. Espinola, J. Dadap, R. M. Osgood, S. McNab, Y. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[CrossRef] [PubMed]

M. Foster, A. Gaeta, Q. Cao, R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).
[CrossRef] [PubMed]

J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. F. Taunay, E. J. Friebele, “Pulse compression using a tapered microstructure optical fiber,” Opt. Express 14, 4026–4036 (2006).
[CrossRef] [PubMed]

Opt. Lett. (16)

M. L. V. Tse, P. Horak, J. H. V. Price, F. Poletti, F. He, D. J. Richardson, “Pulse compression at 1.06 μm in dispersion-decreasing holey fibers,” Opt. Lett. 31, 3504–3506 (2006).
[CrossRef] [PubMed]

N. C. Panoiu, X. Chen, R. M. Osgood, “Modulation instability in silicon photonic nanowires,” Opt. Lett. 31, 3609–3611 (2006).
[CrossRef] [PubMed]

L. Yin, Q. Lin, G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8, 289–291 (1983).
[CrossRef] [PubMed]

N. J. Doran, D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
[CrossRef] [PubMed]

J. T. Manassah, “Pulse compression of an induced-phase-modulated weak signal,” Opt. Lett. 13, 755–757 (1988).
[CrossRef] [PubMed]

G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers,” Opt. Lett. 14, 137–139 (1989).
[CrossRef] [PubMed]

K. Smith, N. J. Doran, P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294–1296 (1990).
[CrossRef] [PubMed]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
[CrossRef] [PubMed]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
[CrossRef] [PubMed]

G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, M. M. Fejer, “Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings,” Opt. Lett. 23, 864–866 (1998).
[CrossRef]

N. C. Panoiu, X. Liu, R. M. Osgood, “Self-steepening of ultrashort pulses in silicon photonic nanowires,” Opt. Lett. 34, 947–949 (2009).
[CrossRef] [PubMed]

A. A. Amorim, M. V. Tognetti, P. Oliveira, J. L. Silva, L. M. Bernardo, F. X. Kartner, H. M. Crespo, “Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers,” Opt. Lett. 34, 3851–3853 (2009).
[CrossRef] [PubMed]

A. C. Peacock, “Soliton propagation in tapered silicon core fibers,” Opt. Lett. 35, 3697–3699 (2010).
[CrossRef] [PubMed]

S. Lavdas, J. B. Driscoll, H. Jiang, R. R. Grote, R. M. Osgood, N. C. Panoiu, “Generation of parabolic similaritons in tapered silicon photonic wires: comparison of pulse dynamics at telecom and mid-infrared wavelengths,” Opt. Lett. 38, 3953–3956 (2013).
[CrossRef] [PubMed]

A. C. Peacock, “Mid-IR soliton compression in silicon optical fibers and fiber tapers,” Opt. Lett. 37, 818–820 (2012).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

a) Sketch of a Si-PhWWG oriented along the 11̄0 direction (red arrow). Dispersion maps of b) second-order, β2, and c) third-order dispersion coefficient, β3. The black contour corresponds to zero-GVD, β2(λ, w) = 0.

Fig. 2
Fig. 2

Dispersion maps of a) real and b) imaginary part of the nonlinear coefficient, γ, and the dispersion maps of c) real and d) imaginary part of the shock-time coefficient, τs.

Fig. 3
Fig. 3

Temporal [a) and d)] and spectral [b) and e)] pulse evolution in a tapered Si-PhWWG (see text for taper and pulse parameters) and the corresponding free-carriers dynamics [c) and f)]. Top and bottom panels correspond to λ = 1.55 μm and λ = 2.1 μm, respectively.

Fig. 4
Fig. 4

Evolution of pulse energy E and width τ vs. the propagation distance. Top panels correspond to λ = 1.55 μm, τ =180 fs, and P0 = 0.2 W, whereas the pulse parameters in the bottom panels are λ = 2.1 μm, τ = 180 fs, and P0 = 0.5 W.

Fig. 5
Fig. 5

Evolution of the pulse chirp C (left panels), frequency shift Ω (middle panels), and temporal shift T (right panels), determined for different peak power. Top and bottom panels correspond to λ = 1.55 μm and λ = 2.1 μm, respectively, and throughout τ = 180 fs.

Fig. 6
Fig. 6

The same as in Fig. 5, the pulse parameters being determined as function of τ. The pulse power in the top and bottom panels is P0 = 1.4 W and P0 =2.07 W, respectively.

Fig. 7
Fig. 7

a) Dependence of the pulse width on P0, determined for τ = 180 fs and b) on τ, determined for P0 = 1.4 W. c) Dependence of the pulse width on P0, determined for τ = 180 fs and d) on τ, determined for P0 = 2.07 W. The top and bottom plots correspond to λ = 1.55 μm and λ = 2.1 μm, respectively. The color bar indicates the pulse width, normalized to its initial value.

Fig. 8
Fig. 8

Evolution of pulse width (left panels) and LD and Lnl (right panels) determined for tapered Si-PhWWGs with increasing (dotted line) and decreasing (solid line) dispersion.

Fig. 9
Fig. 9

a) Evolution of the pulse width for two taper profiles, calculated for P0 = 1.4 W and λ = 1.55 μm and b) for P0 = 2.07 W and λ = 2.1 μm. In both cases the initial pulse width is τ = 180 fs.

Fig. 10
Fig. 10

Temporal [a) and d)] and spectral [b) and e)] pulse evolution in a tapered Si-PhWWGs whose dispersion changes from normal to anomalous (see text for taper and pulse parameters) and the corresponding free-carriers dynamics [c) and f)]. Top and bottom panels correspond to λ = 1.55 μm and λ = 2.1 μm, respectively.

Fig. 11
Fig. 11

Evolution of the pulse width upon propagation in a tapered Si-PhWWGs whose dispersion changes from normal to anomalous, determined for a) λ = 1.55 μm and b) λ = 2.1 μm. Insets depict the evolution of the soliton number Ns as well as the input and output pulse profiles.

Fig. 12
Fig. 12

a) Dependence of the pulse width vs. peak power P0, determined for τ = 180 fs, and b) vs. τ, determined for P0 = 90 mW. c) Dependence of the pulse width vs. peak power P0, determined for τ = 180 fs and d) vs. τ, determined for P0 = 100 mW. Top and bottom panels correspond to λ = 1.55 μm and λ = 2.1 μm, respectively. The color bar indicates the pulse width, normalized to its initial value, whereas the vertical dashed lines indicate the distance at which β2 = 0.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

i u z + n = 1 3 i n β n ( z ) n ! n u t n = i c κ ( z ) 2 n v g ( z ) α ( z ) u ω κ ( z ) n v g ( z ) δ n ( z ) u γ ( z ) [ 1 + i τ s ( z ) t ] | u | 2 u ,
N ( z , t ) t = N ( z , t ) t c + 3 Γ ( z ) 4 ε 0 h ¯ A 2 ( z ) v g 2 ( z ) | u ( z , t ) | 4 ,
E = | u | 2 d t ,
τ 2 = δ E ( t T ) 2 | u | 2 d t ,
C = i δ 2 E ( t T ) ( u * u t u u t * ) d t ,
Ω = i 2 E ( u * u t u u t * ) d t ,
T = 1 E t | u | 2 d t ,
u s ( t , z = 0 ) = E 2 τ sech ( t T τ ) e i Ω ( t T ) i C ( t T ) 2 2 τ 2 ,
u G ( t , z = 0 ) = E π τ e i Ω ( t T ) ( 1 + i C ) ( t T ) 2 2 τ 2 .
d F ( z ) d z = 𝔸 ( E , τ , C , Ω , T ) ,
d τ d z = β 2 C τ ,
d C d z = ( 4 π 2 + C 2 ) β 2 τ 2 + 2 γ π 2 E τ ,
d E d z = 2 ( γ ) | u | 4 d t 4 | u | 2 ( γ τ s u * u t ) d t 2 | u | 2 ( γ τ s u u t * ) d t ,
d τ d z = δ 2 τ E 2 d E d z ( t T ) 2 | u | 2 d t δ 2 τ E d T d z ( t T ) | u | 2 d t + π 2 δ 12 β 2 C τ + δ β 3 2 τ E ( t T ) | u t | 2 d t 2 δ E τ ( t T ) 2 | u | 2 ( γ τ s u * u t ) d t δ γ τ E ( t T ) 2 | u | 4 d t δ τ E ( t T ) 2 | u | 2 ( γ τ s u u t * ) d t ,
d C d z = δ β 2 E | u t | 2 d t + i δ β 3 4 E ( u t t u t * u t t * u t ) d t 2 δ E ( t T ) | u | 2 ( γ u * u t ) d t 2 δ E ( t T ) [ γ τ s u t * ( | u | 2 u ) t ] d t 2 δ E | u | 2 ( γ τ s u * u t ) d t δ E | u | 2 ( γ τ s u u t * ) d t i δ 2 E 2 d E d z ( t T ) ( u * u t u u t * ) d t i δ 2 E d T d z ( u * u t u u t * ) d t ,
d Ω d z = i 2 E 2 d E d z ( u * u t u u t * ) d t 2 E ( γ u * u t ) | u | 2 d t 4 ( γ τ s ) E | u u t | 2 d t 2 E [ γ τ s ( u u t * ) 2 ] d t ,
d T d z = 1 E 2 d E d z t | u | 2 d t + β 2 Ω + β 3 2 E | u t | 2 d t 2 γ E t | u | 4 d t 4 E t | u | 2 ( γ τ s u * u t ) d t 2 E t | u | 2 ( γ τ s u u t * ) d t .
d E d z = 2 γ E 2 3 τ 2 ( γ τ s ) 3 E 2 Ω τ ,
d τ d z = ( β 2 + β 3 Ω ) C τ + π 2 6 3 π 2 [ γ ( γ τ s ) Ω ] E τ 2 E d E d z ,
d C d z = β 2 [ ( 4 π 2 + C 2 ) 1 τ 2 + 12 Ω 2 π 2 ] + β 3 [ ( 2 π 2 + 3 C 2 2 ) Ω τ 2 + 6 Ω 3 π 2 ] C E d E d z Ω d T d z 2 ( π 2 6 ) 3 π 2 [ γ + π 2 6 ( γ τ s ) Ω ] E C τ + 2 π 2 [ γ + π 2 + 12 6 ( γ τ s ) Ω ] E τ ,
d Ω d z = 1 3 [ 2 γ Ω + ( γ τ s ) C τ 2 ( γ τ s ) ( 6 5 τ 2 + 2 Ω 2 + π 2 6 6 C 2 τ 2 ) ] E τ Ω E d E d z ,
d T d z = β 2 Ω + β 3 2 [ 1 3 τ 2 + Ω 2 + π 2 12 C 2 τ 2 ] [ 2 3 γ T ( γ τ s ) 2 ] E τ ( γ τ s ) 3 ( 2 T Ω + π 2 6 6 C ) E τ T E d E d z ,
d E d z = 2 π γ E 2 τ 2 π ( γ τ s ) E 2 Ω τ ,
d τ d z = ( β 2 + β 3 Ω ) C τ 1 8 π [ γ + ( γ τ s ) Ω ] E 1 2 τ E d E d z ,
d C d z = β 2 [ ( 1 + C 2 ) 1 τ 2 + 2 Ω 2 ] + β 3 [ ( 1 + 3 C 2 ) Ω 2 τ 2 + Ω 3 ] C E d E d z Ω d T d z 1 2 π [ γ + 2 ( γ τ s ) Ω ] E C τ + 1 2 π [ γ + 2 ( γ τ s ) Ω ] E τ ,
d Ω d z = 1 2 π [ 2 γ Ω + ( γ τ s ) C τ 2 ( γ τ s ) ( 3 2 τ 2 + 2 Ω 2 + 1 2 C 2 τ 2 ) ] E τ Ω E d E d z ,
d T d z = β 2 Ω + β 3 2 [ 1 2 τ 2 + Ω 2 + 1 2 C 2 τ 2 ] 1 2 π [ 2 γ T 3 ( γ τ s ) 2 ] E τ 2 π ( γ τ s ) ( T Ω + C 4 ) E τ T E d E d z .

Metrics