Abstract

We investigated transparent conducting electrodes consisting of periodic one-dimensional Ag or Al grids with widths from 25 nm to 5 μm via the finite-difference time-domain method. To retain high transmittance, two grid configurations with opening ratios of 90% and 95% were simulated. Polarization-dependent characteristics of the transmission spectra revealed that the overall transmittance of micron-scale grid electrodes may be estimated by the sum of light power passing through the uncovered area and the light power penetrating the covered metal layer. However, several dominant physical phenomena significantly affect the transmission spectra of the nanoscale grids: Rayleigh anomaly, transmission decay in TE polarized mode, and localized surface plasmon resonance. We conclude that, for applications of transparent electrodes, the critical feature sizes of conducting 1D grids should not be less than the wavelength scale in order to maintain uniform and predictable transmission spectra and low electrical resistivity.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Hecht, L. Hu, G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
    [CrossRef] [PubMed]
  2. P. B. Catrysse, S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
    [CrossRef] [PubMed]
  3. J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
    [CrossRef] [PubMed]
  4. L. Hu, D. S. Hecht, G. Grüner, “Percolation in Transparent and Conducting Carbon Nanotube Networks,” Nano Lett. 4(12), 2513–2517 (2004).
    [CrossRef]
  5. I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, “Novel highly conductive and transparent graphene-based conductors,” Adv. Mater. 24(21), 2844–2849 (2012).
    [CrossRef] [PubMed]
  6. A. R. Madaria, A. Kumar, C. Zhou, “Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens,” Nanotechnology 22(24), 245201 (2011).
    [CrossRef] [PubMed]
  7. M. G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
    [CrossRef] [PubMed]
  8. L. Hu, H. Wu, Y. Cui, “Metal nanogrids, nanowires, and nanofibers for transparent electrodes,” MRS Bull. 36(10), 760–765 (2011).
    [CrossRef]
  9. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
    [CrossRef]
  10. A. Seh-Won, L. Ki-Dong, K. Jin-Sung, K. Sang Hoon, P. Joo-Do, L. Sarng-Hoon, Y. Won, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
    [CrossRef]
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  12. “Lumerical FDTD,” (Lumerical Solutions, Inc.), p. FDTD solutions.
  13. R. C. Weast, CRC handbook of chemistry and physics (CRC Press, 1988).
  14. H. Raether, Excitation of plasmons and interband transitions by electrons (Springer-Verlag, 1980).
  15. P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  16. L. Rayleigh, “III.Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philosophical Magazine Series 6 14(79), 60–65 (1907).
    [CrossRef]
  17. D. Maystre, “Theory of Wood’s Anomalies,” in Plasmonics, S. Enoch, and N. Bonod, eds. (Springer 2012), pp. 39–83.
  18. N. J. Willis, Bistatic radar (SciTech Publishing, 2005).
  19. W. A. Murray, S. Astilean, W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69(16), 165407 (2004).
    [CrossRef]
  20. G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Contributions to the optics of turbid media, particularly of colloidal metal solutions Transl. into ENGLISH from Ann. Phys.(Leipzig), v. 25, no. 3, 1908 p 377–445 1, 377–445 (1976).
  21. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93 (2002).
    [CrossRef]
  22. S. Link, M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
    [CrossRef]
  23. P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  24. W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
    [CrossRef]
  25. D. Josell, S. H. Brongersma, Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009).
    [CrossRef]
  26. K. Fuchs, N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Camb. Philos. Soc. 34(01), 100–108 (1938).
    [CrossRef]
  27. E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1(1), 1–42 (1952).
    [CrossRef]
  28. J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
    [CrossRef] [PubMed]
  29. S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, S. O. Kim, “Soft Graphoepitaxy of Block Copolymer Assembly with Disposable Photoresist Confinement,” Nano Lett. 9(6), 2300–2305 (2009).
    [CrossRef] [PubMed]

2012 (4)

J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[CrossRef] [PubMed]

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[CrossRef]

I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, “Novel highly conductive and transparent graphene-based conductors,” Adv. Mater. 24(21), 2844–2849 (2012).
[CrossRef] [PubMed]

J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[CrossRef] [PubMed]

2011 (3)

L. Hu, H. Wu, Y. Cui, “Metal nanogrids, nanowires, and nanofibers for transparent electrodes,” MRS Bull. 36(10), 760–765 (2011).
[CrossRef]

A. R. Madaria, A. Kumar, C. Zhou, “Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens,” Nanotechnology 22(24), 245201 (2011).
[CrossRef] [PubMed]

D. S. Hecht, L. Hu, G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

2010 (2)

P. B. Catrysse, S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[CrossRef] [PubMed]

M. G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

2009 (2)

D. Josell, S. H. Brongersma, Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009).
[CrossRef]

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, S. O. Kim, “Soft Graphoepitaxy of Block Copolymer Assembly with Disposable Photoresist Confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

2006 (1)

P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Seh-Won, L. Ki-Dong, K. Jin-Sung, K. Sang Hoon, P. Joo-Do, L. Sarng-Hoon, Y. Won, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[CrossRef]

2004 (3)

L. Hu, D. S. Hecht, G. Grüner, “Percolation in Transparent and Conducting Carbon Nanotube Networks,” Nano Lett. 4(12), 2513–2517 (2004).
[CrossRef]

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

W. A. Murray, S. Astilean, W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69(16), 165407 (2004).
[CrossRef]

2002 (1)

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93 (2002).
[CrossRef]

1999 (1)

S. Link, M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1952 (1)

E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1(1), 1–42 (1952).
[CrossRef]

1938 (1)

K. Fuchs, N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Camb. Philos. Soc. 34(01), 100–108 (1938).
[CrossRef]

1907 (1)

L. Rayleigh, “III.Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philosophical Magazine Series 6 14(79), 60–65 (1907).
[CrossRef]

Astilean, S.

W. A. Murray, S. Astilean, W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69(16), 165407 (2004).
[CrossRef]

Barnes, W. L.

I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, “Novel highly conductive and transparent graphene-based conductors,” Adv. Mater. 24(21), 2844–2849 (2012).
[CrossRef] [PubMed]

W. A. Murray, S. Astilean, W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69(16), 165407 (2004).
[CrossRef]

Bointon, T. H.

I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, “Novel highly conductive and transparent graphene-based conductors,” Adv. Mater. 24(21), 2844–2849 (2012).
[CrossRef] [PubMed]

Brijs, B.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

Brongersma, S. H.

D. Josell, S. H. Brongersma, Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009).
[CrossRef]

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

Catrysse, P. B.

P. B. Catrysse, S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Craciun, M. F.

I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, “Novel highly conductive and transparent graphene-based conductors,” Adv. Mater. 24(21), 2844–2849 (2012).
[CrossRef] [PubMed]

Cui, Y.

L. Hu, H. Wu, Y. Cui, “Metal nanogrids, nanowires, and nanofibers for transparent electrodes,” MRS Bull. 36(10), 760–765 (2011).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Ellmer, K.

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

S. Link, M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

Fan, S.

P. B. Catrysse, S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[CrossRef] [PubMed]

Feldmann, J.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93 (2002).
[CrossRef]

Franzl, T.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93 (2002).
[CrossRef]

Froyen, L.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

Fuchs, K.

K. Fuchs, N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Camb. Philos. Soc. 34(01), 100–108 (1938).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Grüner, G.

L. Hu, D. S. Hecht, G. Grüner, “Percolation in Transparent and Conducting Carbon Nanotube Networks,” Nano Lett. 4(12), 2513–2517 (2004).
[CrossRef]

Guo, L. J.

M. G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Hecht, D. S.

D. S. Hecht, L. Hu, G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

L. Hu, D. S. Hecht, G. Grüner, “Percolation in Transparent and Conducting Carbon Nanotube Networks,” Nano Lett. 4(12), 2513–2517 (2004).
[CrossRef]

Hu, L.

D. S. Hecht, L. Hu, G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

L. Hu, H. Wu, Y. Cui, “Metal nanogrids, nanowires, and nanofibers for transparent electrodes,” MRS Bull. 36(10), 760–765 (2011).
[CrossRef]

L. Hu, D. S. Hecht, G. Grüner, “Percolation in Transparent and Conducting Carbon Nanotube Networks,” Nano Lett. 4(12), 2513–2517 (2004).
[CrossRef]

Irvin, G.

D. S. Hecht, L. Hu, G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Jeong, S. J.

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, S. O. Kim, “Soft Graphoepitaxy of Block Copolymer Assembly with Disposable Photoresist Confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

Jin-Sung, K.

A. Seh-Won, L. Ki-Dong, K. Jin-Sung, K. Sang Hoon, P. Joo-Do, L. Sarng-Hoon, Y. Won, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Joo-Do, P.

A. Seh-Won, L. Ki-Dong, K. Jin-Sung, K. Sang Hoon, P. Joo-Do, L. Sarng-Hoon, Y. Won, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[CrossRef]

Josell, D.

D. Josell, S. H. Brongersma, Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009).
[CrossRef]

Kang, M. G.

M. G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Khrapach, I.

I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, “Novel highly conductive and transparent graphene-based conductors,” Adv. Mater. 24(21), 2844–2849 (2012).
[CrossRef] [PubMed]

Ki-Dong, L.

A. Seh-Won, L. Ki-Dong, K. Jin-Sung, K. Sang Hoon, P. Joo-Do, L. Sarng-Hoon, Y. Won, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[CrossRef]

Kim, B. H.

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, S. O. Kim, “Soft Graphoepitaxy of Block Copolymer Assembly with Disposable Photoresist Confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

Kim, J. B.

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, S. O. Kim, “Soft Graphoepitaxy of Block Copolymer Assembly with Disposable Photoresist Confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

Kim, J. E.

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, S. O. Kim, “Soft Graphoepitaxy of Block Copolymer Assembly with Disposable Photoresist Confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

Kim, S. M.

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, S. O. Kim, “Soft Graphoepitaxy of Block Copolymer Assembly with Disposable Photoresist Confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

Kim, S. O.

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, S. O. Kim, “Soft Graphoepitaxy of Block Copolymer Assembly with Disposable Photoresist Confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

Kumar, A.

A. R. Madaria, A. Kumar, C. Zhou, “Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens,” Nanotechnology 22(24), 245201 (2011).
[CrossRef] [PubMed]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Link, S.

S. Link, M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

Luo, X.

M. G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Madaria, A. R.

A. R. Madaria, A. Kumar, C. Zhou, “Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens,” Nanotechnology 22(24), 245201 (2011).
[CrossRef] [PubMed]

Maex, K.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

Moon, H. S.

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, S. O. Kim, “Soft Graphoepitaxy of Block Copolymer Assembly with Disposable Photoresist Confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

Mott, N. F.

K. Fuchs, N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Camb. Philos. Soc. 34(01), 100–108 (1938).
[CrossRef]

Murray, W. A.

W. A. Murray, S. Astilean, W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69(16), 165407 (2004).
[CrossRef]

Palmans, R.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

Park, H. J.

M. G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Polman, A.

J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[CrossRef] [PubMed]

J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[CrossRef] [PubMed]

Polyushkin, D. K.

I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, “Novel highly conductive and transparent graphene-based conductors,” Adv. Mater. 24(21), 2844–2849 (2012).
[CrossRef] [PubMed]

Rayleigh, L.

L. Rayleigh, “III.Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philosophical Magazine Series 6 14(79), 60–65 (1907).
[CrossRef]

Richard, O.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

Russo, S.

I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, “Novel highly conductive and transparent graphene-based conductors,” Adv. Mater. 24(21), 2844–2849 (2012).
[CrossRef] [PubMed]

Sang Hoon, K.

A. Seh-Won, L. Ki-Dong, K. Jin-Sung, K. Sang Hoon, P. Joo-Do, L. Sarng-Hoon, Y. Won, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[CrossRef]

Sarng-Hoon, L.

A. Seh-Won, L. Ki-Dong, K. Jin-Sung, K. Sang Hoon, P. Joo-Do, L. Sarng-Hoon, Y. Won, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[CrossRef]

Seh-Won, A.

A. Seh-Won, L. Ki-Dong, K. Jin-Sung, K. Sang Hoon, P. Joo-Do, L. Sarng-Hoon, Y. Won, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[CrossRef]

Sondheimer, E. H.

E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1(1), 1–42 (1952).
[CrossRef]

Sonnichsen, C.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93 (2002).
[CrossRef]

Spinelli, P.

J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[CrossRef] [PubMed]

J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Tokei, Z.

D. Josell, S. H. Brongersma, Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009).
[CrossRef]

van de Groep, J.

J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[CrossRef] [PubMed]

J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[CrossRef] [PubMed]

von Plessen, G.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93 (2002).
[CrossRef]

Wilk, T.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93 (2002).
[CrossRef]

Withers, F.

I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, “Novel highly conductive and transparent graphene-based conductors,” Adv. Mater. 24(21), 2844–2849 (2012).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Won, Y.

A. Seh-Won, L. Ki-Dong, K. Jin-Sung, K. Sang Hoon, P. Joo-Do, L. Sarng-Hoon, Y. Won, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[CrossRef]

Wu, H.

L. Hu, H. Wu, Y. Cui, “Metal nanogrids, nanowires, and nanofibers for transparent electrodes,” MRS Bull. 36(10), 760–765 (2011).
[CrossRef]

Xu, T.

M. G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

Zhou, C.

A. R. Madaria, A. Kumar, C. Zhou, “Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens,” Nanotechnology 22(24), 245201 (2011).
[CrossRef] [PubMed]

Adv. Mater. (3)

D. S. Hecht, L. Hu, G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, “Novel highly conductive and transparent graphene-based conductors,” Adv. Mater. 24(21), 2844–2849 (2012).
[CrossRef] [PubMed]

M. G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Adv. Phys. (1)

E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1(1), 1–42 (1952).
[CrossRef]

Annu. Rev. Mater. Res. (1)

D. Josell, S. H. Brongersma, Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009).
[CrossRef]

J. Phys. Chem. B (2)

S. Link, M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Math. Proc. Camb. Philos. Soc. (1)

K. Fuchs, N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Camb. Philos. Soc. 34(01), 100–108 (1938).
[CrossRef]

Microelectron. Eng. (1)

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

MRS Bull. (1)

L. Hu, H. Wu, Y. Cui, “Metal nanogrids, nanowires, and nanofibers for transparent electrodes,” MRS Bull. 36(10), 760–765 (2011).
[CrossRef]

Nano Lett. (5)

P. B. Catrysse, S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[CrossRef] [PubMed]

J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[CrossRef] [PubMed]

L. Hu, D. S. Hecht, G. Grüner, “Percolation in Transparent and Conducting Carbon Nanotube Networks,” Nano Lett. 4(12), 2513–2517 (2004).
[CrossRef]

J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[CrossRef] [PubMed]

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, S. O. Kim, “Soft Graphoepitaxy of Block Copolymer Assembly with Disposable Photoresist Confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

Nanotechnology (2)

A. R. Madaria, A. Kumar, C. Zhou, “Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens,” Nanotechnology 22(24), 245201 (2011).
[CrossRef] [PubMed]

A. Seh-Won, L. Ki-Dong, K. Jin-Sung, K. Sang Hoon, P. Joo-Do, L. Sarng-Hoon, Y. Won, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[CrossRef]

Nat. Photonics (1)

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

New J. Phys. (1)

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93 (2002).
[CrossRef]

Philosophical Magazine Series 6 (1)

L. Rayleigh, “III.Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philosophical Magazine Series 6 14(79), 60–65 (1907).
[CrossRef]

Phys. Rev. B (2)

W. A. Murray, S. Astilean, W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69(16), 165407 (2004).
[CrossRef]

P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Other (6)

G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Contributions to the optics of turbid media, particularly of colloidal metal solutions Transl. into ENGLISH from Ann. Phys.(Leipzig), v. 25, no. 3, 1908 p 377–445 1, 377–445 (1976).

D. Maystre, “Theory of Wood’s Anomalies,” in Plasmonics, S. Enoch, and N. Bonod, eds. (Springer 2012), pp. 39–83.

N. J. Willis, Bistatic radar (SciTech Publishing, 2005).

“Lumerical FDTD,” (Lumerical Solutions, Inc.), p. FDTD solutions.

R. C. Weast, CRC handbook of chemistry and physics (CRC Press, 1988).

H. Raether, Excitation of plasmons and interband transitions by electrons (Springer-Verlag, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Simulated optical transmittance of 1D metal grids with micron widths as a function of wavelength and polarization. (a) 95% and (b) 90% opening ratios for silver grids, (c) 95% and (d) 90% opening ratios for Al grids. The linewidths of the grids are shown in the legend. The green horizontal lines indicate the opening ratio of the structures. The inset in (a) shows the imaginary part of refractive index and the calculated transmittance of metal films of 50-nm thickness.

Fig. 2
Fig. 2

Calculated optical transmittance of 1D metal grids with nanoscale widths as a function of wavelength and polarization. (a) 95% and (b) 90% opening ratio (OR) for silver grids, (c) 95% and (d) 90% OR for Al grids. The linewidths of the grids are indicated in the legend. The green horizontal line indicates the opening ratio of the structures.

Fig. 3
Fig. 3

Optical transmittance of the silver grid for TM-polarized light. The length in the right side of each spectrum indicates the grid width of each structure. Figure 3(b) shows the charge density of the metal grids at the transmission dip.

Metrics