Abstract

An efficient and broadband parametric wavelength converter is proposed in the silicon-on-insulator (SOI) waveguide without dispersion engineering. The vertical grating is utilized to achieve the quasi-phase-matching (QPM) of four-wave mixing (FWM). By alternating the phase-mismatch between two values with opposite signs, the parametric attenuation is suppressed. The conversion efficiency at the designated signal wavelength is significantly improved, and the 3-dB conversion bandwidth is also extended effectively. It is demonstrated that the conversion bandwidth is insensitive to both the propagation length and the grating width, which alleviates the tradeoff between the conversion bandwidth and the peak conversion efficiency. For a continuous-wave (CW) pump at 1550 nm, a conversion bandwidth of 331 nm and a peak efficiency of −12.8 dB can be realized in a 1.5-cm-long grating with serious phase-mismatch.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. K. Oxenlowe, M. Hua Ji, M. Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
    [CrossRef]
  2. Y. Xie, S. Gao, S. He, “All-optical wavelength conversion and multicasting for polarization-multiplexed signal using angled pumps in a silicon waveguide,” Opt. Lett. 37(11), 1898–1900 (2012).
    [CrossRef] [PubMed]
  3. N. Ophir, R. K. W. Lau, M. Menard, R. Salem, K. Padmaraju, Y. Okawachi, M. Lipson, A. L. Gaeta, K. Bergman, “First demonstration of a 10-Gb/s RZ end-to-end four-wave mixing-based link at 1884 nm using silicon nanowaveguides,” IEEE Photon. Technol. Lett. 24(4), 276–278 (2012).
    [CrossRef]
  4. J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [CrossRef]
  5. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun 2, 296 (2011).
    [CrossRef] [PubMed]
  6. F. Li, M. Pelusi, D.-X. Xu, R. Ma, S. Janz, B. J. Eggleton, D. J. Moss, “All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator,” Opt. Express 19(23), 22410–22416 (2011).
    [CrossRef] [PubMed]
  7. A. C. Turner, M. A. Foster, A. L. Gaeta, M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
    [CrossRef] [PubMed]
  8. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
    [CrossRef] [PubMed]
  9. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
    [CrossRef] [PubMed]
  10. M. Zhu, H. Liu, X. Li, N. Huang, Q. Sun, J. Wen, Z. Wang, “Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides,” Opt. Express 20(14), 15899–15907 (2012).
    [CrossRef] [PubMed]
  11. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20(2), 1685–1690 (2012).
    [CrossRef] [PubMed]
  12. J. Kim, Ö. Boyraz, J. H. Lim, M. N. Islam, “Gain enhancement in cascaded fiber parametric amplifier with quasi-phase matching: theory and experiment,” J. Lightwave Technol. 19(2), 247–251 (2001).
    [CrossRef]
  13. M. Charbonneau-Lefort, B. Afeyan, M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B 25(4), 463–480 (2008).
    [CrossRef]
  14. N. Satyan, G. Rakuljic, A. Yariv, “Chirp multiplication by four wave mixing for wideband swept-frequency sources for high resolution imaging,” J. Lightwave Technol. 28(14), 2077–2083 (2010).
    [CrossRef]
  15. H. Zhu, B. Luo, W. Pan, L. Yan, S. Xiang, K. Wen, “Gain enhancement of fiber optical parametric amplifier via introducing phase-shifted fiber Bragg grating for phase matching,” J. Opt. Soc. Am. B 29(6), 1497–1502 (2012).
    [CrossRef]
  16. N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1078–1091 (2011).
    [CrossRef]
  17. Y. Lefevre, N. Vermeulen, H. Thienpont, “Quasi-phase-matching of four-wave-mixing-based wavelength conversion by phase-mismatch switching,” J. Lightwave Technol. 31(13), 2113–2121 (2013).
    [CrossRef]
  18. J. B. Driscoll, R. R. Grote, X. P. Liu, J. I. Dadap, N. C. Panoiu, R. M. Osgood., “Directionally anisotropic Si nanowires: on-chip nonlinear grating devices in uniform waveguides,” Opt. Lett. 36(8), 1416–1418 (2011).
    [CrossRef] [PubMed]
  19. J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20(8), 9227–9242 (2012).
    [CrossRef] [PubMed]
  20. Y. Huang, E.-K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, O. Boyraz, “Quasi phase matching in SOI and SOS based parametric wavelength converters,” Proc. SPIE 8120(81200F), 81200F (2011).
    [CrossRef]
  21. B. Jin, C. Yu, J. Yuan, X. Sang, X. Xiang, Z. Liu, S. Wei, “Efficient wavelength conversion based on quasi-phase-matched four-wave mixing in a silicon waveguide with a microring phase shifter,” J. Opt. Soc. Am. B 30(9), 2491–2497 (2013).
    [CrossRef]
  22. E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18(21), 21981–21989 (2010).
    [CrossRef] [PubMed]
  23. T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  24. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
    [CrossRef] [PubMed]
  25. M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
    [CrossRef]
  26. A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
    [CrossRef]
  27. Q. Lin, J. Zhang, P. M. Fauchet, G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14(11), 4786–4799 (2006).
    [CrossRef] [PubMed]
  28. Q. Lin, O. J. Painter, G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [CrossRef] [PubMed]
  29. X. Sang, O. Boyraz, “Gain and noise characteristics of high-bit-rate silicon parametric amplifiers,” Opt. Express 16(17), 13122–13132 (2008).
    [CrossRef] [PubMed]
  30. F. D. Leonardis, V. M. N. Passaro, “Efficient wavelength conversion in optimized SOI waveguides via pulsed four-wave mixing,” J. Lightwave Technol. 29(23), 3523–3535 (2011).
    [CrossRef]
  31. Z. Wang, H. Liu, N. Huang, Q. Sun, J. Wen, “Impact of dispersion profiles of silicon waveguides on optical parametric amplification in the femtosecond regime,” Opt. Express 19(24), 24730–24737 (2011).
    [CrossRef] [PubMed]
  32. I. D. Rukhlenko, M. Premaratne, G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron. 16(1), 200–215 (2010).
    [CrossRef]
  33. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
    [CrossRef] [PubMed]
  34. W. Mathlouthi, H. Rong, M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008).
    [CrossRef] [PubMed]
  35. S. Lavdas, J. B. Driscoll, H. Jiang, R. R. Grote, R. M. Osgood, N. C. Panoiu, “Generation of parabolic similaritons in tapered silicon photonic wires: comparison of pulse dynamics at telecom and mid-infrared wavelengths,” Opt. Lett. 38(19), 3953–3956 (2013).
    [CrossRef] [PubMed]
  36. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
    [CrossRef] [PubMed]
  37. V. R. Almeida, R. R. Panepucci, M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [CrossRef] [PubMed]
  38. L. Zhang, Y. Yue, R. G. Beausoleil, A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18(19), 20529–20534 (2010).
    [CrossRef] [PubMed]

2013 (3)

2012 (7)

N. Ophir, R. K. W. Lau, M. Menard, R. Salem, K. Padmaraju, Y. Okawachi, M. Lipson, A. L. Gaeta, K. Bergman, “First demonstration of a 10-Gb/s RZ end-to-end four-wave mixing-based link at 1884 nm using silicon nanowaveguides,” IEEE Photon. Technol. Lett. 24(4), 276–278 (2012).
[CrossRef]

L. K. Oxenlowe, M. Hua Ji, M. Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20(2), 1685–1690 (2012).
[CrossRef] [PubMed]

J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20(8), 9227–9242 (2012).
[CrossRef] [PubMed]

Y. Xie, S. Gao, S. He, “All-optical wavelength conversion and multicasting for polarization-multiplexed signal using angled pumps in a silicon waveguide,” Opt. Lett. 37(11), 1898–1900 (2012).
[CrossRef] [PubMed]

H. Zhu, B. Luo, W. Pan, L. Yan, S. Xiang, K. Wen, “Gain enhancement of fiber optical parametric amplifier via introducing phase-shifted fiber Bragg grating for phase matching,” J. Opt. Soc. Am. B 29(6), 1497–1502 (2012).
[CrossRef]

M. Zhu, H. Liu, X. Li, N. Huang, Q. Sun, J. Wen, Z. Wang, “Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides,” Opt. Express 20(14), 15899–15907 (2012).
[CrossRef] [PubMed]

2011 (8)

J. B. Driscoll, R. R. Grote, X. P. Liu, J. I. Dadap, N. C. Panoiu, R. M. Osgood., “Directionally anisotropic Si nanowires: on-chip nonlinear grating devices in uniform waveguides,” Opt. Lett. 36(8), 1416–1418 (2011).
[CrossRef] [PubMed]

F. Li, M. Pelusi, D.-X. Xu, R. Ma, S. Janz, B. J. Eggleton, D. J. Moss, “All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator,” Opt. Express 19(23), 22410–22416 (2011).
[CrossRef] [PubMed]

Z. Wang, H. Liu, N. Huang, Q. Sun, J. Wen, “Impact of dispersion profiles of silicon waveguides on optical parametric amplification in the femtosecond regime,” Opt. Express 19(24), 24730–24737 (2011).
[CrossRef] [PubMed]

F. D. Leonardis, V. M. N. Passaro, “Efficient wavelength conversion in optimized SOI waveguides via pulsed four-wave mixing,” J. Lightwave Technol. 29(23), 3523–3535 (2011).
[CrossRef]

N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1078–1091 (2011).
[CrossRef]

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[CrossRef]

Y. Huang, E.-K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, O. Boyraz, “Quasi phase matching in SOI and SOS based parametric wavelength converters,” Proc. SPIE 8120(81200F), 81200F (2011).
[CrossRef]

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun 2, 296 (2011).
[CrossRef] [PubMed]

2010 (7)

2009 (1)

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

2008 (5)

2007 (2)

2006 (2)

2003 (1)

2002 (1)

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

2001 (1)

Afeyan, B.

Agrawal, G. P.

Almeida, V. R.

Beausoleil, R. G.

Bergman, K.

N. Ophir, R. K. W. Lau, M. Menard, R. Salem, K. Padmaraju, Y. Okawachi, M. Lipson, A. L. Gaeta, K. Bergman, “First demonstration of a 10-Gb/s RZ end-to-end four-wave mixing-based link at 1884 nm using silicon nanowaveguides,” IEEE Photon. Technol. Lett. 24(4), 276–278 (2012).
[CrossRef]

J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20(8), 9227–9242 (2012).
[CrossRef] [PubMed]

Bogoni, A.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[CrossRef]

Boyraz, O.

Boyraz, Ö.

Canciamilla, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun 2, 296 (2011).
[CrossRef] [PubMed]

Charbonneau-Lefort, M.

Clausen,

L. K. Oxenlowe, M. Hua Ji, M. Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

Dadap, J. I.

Debaes, C.

N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1078–1091 (2011).
[CrossRef]

Driscoll, J. B.

Eggleton, B. J.

Fauchet, P. M.

Fejer, M. M.

Ferrari, C.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun 2, 296 (2011).
[CrossRef] [PubMed]

Foster, M. A.

Freude, W.

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Gaeta, A. L.

N. Ophir, R. K. W. Lau, M. Menard, R. Salem, K. Padmaraju, Y. Okawachi, M. Lipson, A. L. Gaeta, K. Bergman, “First demonstration of a 10-Gb/s RZ end-to-end four-wave mixing-based link at 1884 nm using silicon nanowaveguides,” IEEE Photon. Technol. Lett. 24(4), 276–278 (2012).
[CrossRef]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
[CrossRef] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

A. C. Turner, M. A. Foster, A. L. Gaeta, M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

Galili, M.

L. K. Oxenlowe, M. Hua Ji, M. Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

Gao, S.

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Grote, R. R.

Hänsch, T. W.

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hao Hu, H. C. H.

L. K. Oxenlowe, M. Hua Ji, M. Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

He, S.

Holzwarth, R.

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hua Ji, M.

L. K. Oxenlowe, M. Hua Ji, M. Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

Huang, N.

Huang, Y.

Y. Huang, E.-K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, O. Boyraz, “Quasi phase matching in SOI and SOS based parametric wavelength converters,” Proc. SPIE 8120(81200F), 81200F (2011).
[CrossRef]

E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18(21), 21981–21989 (2010).
[CrossRef] [PubMed]

Hvam, A. T.

L. K. Oxenlowe, M. Hua Ji, M. Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

Islam, M. N.

Janz, S.

Jeppesen, P.

L. K. Oxenlowe, M. Hua Ji, M. Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

Jiang, H.

Jin, B.

Kalyoncu, S. K.

Y. Huang, E.-K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, O. Boyraz, “Quasi phase matching in SOI and SOS based parametric wavelength converters,” Proc. SPIE 8120(81200F), 81200F (2011).
[CrossRef]

E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18(21), 21981–21989 (2010).
[CrossRef] [PubMed]

Kim, J.

Koos, C.

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Lau, R. K. W.

N. Ophir, R. K. W. Lau, M. Menard, R. Salem, K. Padmaraju, Y. Okawachi, M. Lipson, A. L. Gaeta, K. Bergman, “First demonstration of a 10-Gb/s RZ end-to-end four-wave mixing-based link at 1884 nm using silicon nanowaveguides,” IEEE Photon. Technol. Lett. 24(4), 276–278 (2012).
[CrossRef]

Lavdas, S.

Lefevre, Y.

Y. Lefevre, N. Vermeulen, H. Thienpont, “Quasi-phase-matching of four-wave-mixing-based wavelength conversion by phase-mismatch switching,” J. Lightwave Technol. 31(13), 2113–2121 (2013).
[CrossRef]

N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1078–1091 (2011).
[CrossRef]

Leonardis, F. D.

Leuthold, J.

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Levy, J. S.

Li, F.

Li, X.

Lim, J. H.

Lin, Q.

Lipson, M.

N. Ophir, R. K. W. Lau, M. Menard, R. Salem, K. Padmaraju, Y. Okawachi, M. Lipson, A. L. Gaeta, K. Bergman, “First demonstration of a 10-Gb/s RZ end-to-end four-wave mixing-based link at 1884 nm using silicon nanowaveguides,” IEEE Photon. Technol. Lett. 24(4), 276–278 (2012).
[CrossRef]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
[CrossRef] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

A. C. Turner, M. A. Foster, A. L. Gaeta, M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

Liu, H.

Liu, X. P.

Liu, Z.

Luo, B.

Ma, R.

Manolatou, C.

Mathlouthi, W.

Melloni, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun 2, 296 (2011).
[CrossRef] [PubMed]

Menard, M.

N. Ophir, R. K. W. Lau, M. Menard, R. Salem, K. Padmaraju, Y. Okawachi, M. Lipson, A. L. Gaeta, K. Bergman, “First demonstration of a 10-Gb/s RZ end-to-end four-wave mixing-based link at 1884 nm using silicon nanowaveguides,” IEEE Photon. Technol. Lett. 24(4), 276–278 (2012).
[CrossRef]

Minhao Pu,

L. K. Oxenlowe, M. Hua Ji, M. Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

Morichetti, F.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun 2, 296 (2011).
[CrossRef] [PubMed]

Moss, D. J.

Mulvad, K.

L. K. Oxenlowe, M. Hua Ji, M. Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

Nuccio, S. R.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[CrossRef]

Okawachi, Y.

N. Ophir, R. K. W. Lau, M. Menard, R. Salem, K. Padmaraju, Y. Okawachi, M. Lipson, A. L. Gaeta, K. Bergman, “First demonstration of a 10-Gb/s RZ end-to-end four-wave mixing-based link at 1884 nm using silicon nanowaveguides,” IEEE Photon. Technol. Lett. 24(4), 276–278 (2012).
[CrossRef]

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

Ophir, N.

N. Ophir, R. K. W. Lau, M. Menard, R. Salem, K. Padmaraju, Y. Okawachi, M. Lipson, A. L. Gaeta, K. Bergman, “First demonstration of a 10-Gb/s RZ end-to-end four-wave mixing-based link at 1884 nm using silicon nanowaveguides,” IEEE Photon. Technol. Lett. 24(4), 276–278 (2012).
[CrossRef]

J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20(8), 9227–9242 (2012).
[CrossRef] [PubMed]

Osgood, R. M.

Oxenlowe, L. K.

L. K. Oxenlowe, M. Hua Ji, M. Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

Padmaraju, K.

N. Ophir, R. K. W. Lau, M. Menard, R. Salem, K. Padmaraju, Y. Okawachi, M. Lipson, A. L. Gaeta, K. Bergman, “First demonstration of a 10-Gb/s RZ end-to-end four-wave mixing-based link at 1884 nm using silicon nanowaveguides,” IEEE Photon. Technol. Lett. 24(4), 276–278 (2012).
[CrossRef]

Painter, O. J.

Pan, W.

Panepucci, R. R.

Paniccia, M.

Panoiu, N. C.

Passaro, V. M. N.

Pelusi, M.

Poitras, C. B.

Premaratne, M.

I. D. Rukhlenko, M. Premaratne, G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron. 16(1), 200–215 (2010).
[CrossRef]

Qian, F.

Y. Huang, E.-K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, O. Boyraz, “Quasi phase matching in SOI and SOS based parametric wavelength converters,” Proc. SPIE 8120(81200F), 81200F (2011).
[CrossRef]

E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18(21), 21981–21989 (2010).
[CrossRef] [PubMed]

Rakuljic, G.

Rong, H.

Rukhlenko, I. D.

I. D. Rukhlenko, M. Premaratne, G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron. 16(1), 200–215 (2010).
[CrossRef]

Salem, R.

N. Ophir, R. K. W. Lau, M. Menard, R. Salem, K. Padmaraju, Y. Okawachi, M. Lipson, A. L. Gaeta, K. Bergman, “First demonstration of a 10-Gb/s RZ end-to-end four-wave mixing-based link at 1884 nm using silicon nanowaveguides,” IEEE Photon. Technol. Lett. 24(4), 276–278 (2012).
[CrossRef]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
[CrossRef] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

Samarelli, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun 2, 296 (2011).
[CrossRef] [PubMed]

Sang, X.

Satyan, N.

Schmidt, B. S.

Sharping, J. E.

Sipe, J. E.

N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1078–1091 (2011).
[CrossRef]

Song, Q.

Y. Huang, E.-K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, O. Boyraz, “Quasi phase matching in SOI and SOS based parametric wavelength converters,” Proc. SPIE 8120(81200F), 81200F (2011).
[CrossRef]

E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18(21), 21981–21989 (2010).
[CrossRef] [PubMed]

Sorel, M.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun 2, 296 (2011).
[CrossRef] [PubMed]

Sun, Q.

Thienpont, H.

Y. Lefevre, N. Vermeulen, H. Thienpont, “Quasi-phase-matching of four-wave-mixing-based wavelength conversion by phase-mismatch switching,” J. Lightwave Technol. 31(13), 2113–2121 (2013).
[CrossRef]

N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1078–1091 (2011).
[CrossRef]

Tien, E. K.

Tien, E.-K.

Y. Huang, E.-K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, O. Boyraz, “Quasi phase matching in SOI and SOS based parametric wavelength converters,” Proc. SPIE 8120(81200F), 81200F (2011).
[CrossRef]

Turner, A. C.

Turner-Foster, A. C.

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[CrossRef] [PubMed]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Udem, T.

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Vermeulen, N.

Y. Lefevre, N. Vermeulen, H. Thienpont, “Quasi-phase-matching of four-wave-mixing-based wavelength conversion by phase-mismatch switching,” J. Lightwave Technol. 31(13), 2113–2121 (2013).
[CrossRef]

N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1078–1091 (2011).
[CrossRef]

Wang, J.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[CrossRef]

Wang, Z.

Wei, S.

Wen, J.

Wen, K.

Willner, A. E.

Wu, X.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[CrossRef]

Xiang, S.

Xiang, X.

Xie, Y.

Xu, D.-X.

Yan, L.

Yan, Y.

Yariv, A.

Yilmaz, O. F.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[CrossRef]

Yu, C.

Yuan, J.

Yue, Y.

Yvind, J. M.

L. K. Oxenlowe, M. Hua Ji, M. Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

Zhang, J.

Zhang, L.

Zhu, H.

Zhu, M.

IEEE J. Sel. Top. Quantum Electron. (4)

L. K. Oxenlowe, M. Hua Ji, M. Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1078–1091 (2011).
[CrossRef]

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[CrossRef]

I. D. Rukhlenko, M. Premaratne, G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron. 16(1), 200–215 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Ophir, R. K. W. Lau, M. Menard, R. Salem, K. Padmaraju, Y. Okawachi, M. Lipson, A. L. Gaeta, K. Bergman, “First demonstration of a 10-Gb/s RZ end-to-end four-wave mixing-based link at 1884 nm using silicon nanowaveguides,” IEEE Photon. Technol. Lett. 24(4), 276–278 (2012).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (3)

Nat Commun (1)

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun 2, 296 (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Nature (2)

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Opt. Express (16)

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14(11), 4786–4799 (2006).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

Q. Lin, O. J. Painter, G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

A. C. Turner, M. A. Foster, A. L. Gaeta, M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

X. Sang, O. Boyraz, “Gain and noise characteristics of high-bit-rate silicon parametric amplifiers,” Opt. Express 16(17), 13122–13132 (2008).
[CrossRef] [PubMed]

W. Mathlouthi, H. Rong, M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008).
[CrossRef] [PubMed]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
[CrossRef] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[CrossRef] [PubMed]

L. Zhang, Y. Yue, R. G. Beausoleil, A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18(19), 20529–20534 (2010).
[CrossRef] [PubMed]

E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18(21), 21981–21989 (2010).
[CrossRef] [PubMed]

M. Zhu, H. Liu, X. Li, N. Huang, Q. Sun, J. Wen, Z. Wang, “Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides,” Opt. Express 20(14), 15899–15907 (2012).
[CrossRef] [PubMed]

F. Li, M. Pelusi, D.-X. Xu, R. Ma, S. Janz, B. J. Eggleton, D. J. Moss, “All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator,” Opt. Express 19(23), 22410–22416 (2011).
[CrossRef] [PubMed]

Z. Wang, H. Liu, N. Huang, Q. Sun, J. Wen, “Impact of dispersion profiles of silicon waveguides on optical parametric amplification in the femtosecond regime,” Opt. Express 19(24), 24730–24737 (2011).
[CrossRef] [PubMed]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20(2), 1685–1690 (2012).
[CrossRef] [PubMed]

J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20(8), 9227–9242 (2012).
[CrossRef] [PubMed]

Opt. Lett. (4)

Proc. SPIE (1)

Y. Huang, E.-K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, O. Boyraz, “Quasi phase matching in SOI and SOS based parametric wavelength converters,” Proc. SPIE 8120(81200F), 81200F (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Conceptual illustration of the vertically etched silicon grating. (b) Δ β ( λ s , o b j ) and β 2 ( ω p ) for a strip waveguide with h = 220 nm and various waveguide widths, where λ p = 1550 nm and λ s , o b j = 1750 nm.

Fig. 2
Fig. 2

(a) Waveguide width, (b) conversion efficiency, and (c) sin θ as functions of the propagation length in different waveguides. The signal wavelength is 1750 nm.

Fig. 3
Fig. 3

(a) Effect of Δw on the conversion efficiently with wdc = 755 nm. (b) Effect of wdc on the conversion efficiently with Δw = 120 nm. The signal wavelength is 1750 nm.

Fig. 4
Fig. 4

Evolution of the conversion efficiency in the 755-nm-wide waveguide and the vertical grating with w 1 = 755 nm and w 2 = 815 nm. The grating width is also presented as a function of the propagation length. The signal wavelength is 1750 nm.

Fig. 5
Fig. 5

Conversion efficiency for different waveguides as a function of the signal wavelength. The pump is launched at 1550 nm.

Fig. 6
Fig. 6

Effect of the propagation length on the conversion efficiency spectra in (a) Grating 1, (b) Grating 2, and (c) constant-width waveguide with w = 695 nm.

Fig. 7
Fig. 7

Effect of the waveguide width on (a) conversion efficiency at 1750 nm, and (b) conversion bandwidth in a constant-width waveguide. The pump is launched at 1550 nm, and the waveguide length is 1.5 cm.

Tables (2)

Tables Icon

Table 1 Conversion bandwidth for various gratings with a length of 1.5 cm

Tables Icon

Table 2 Comparisons of the conversion efficiency spectra for various grating lengths

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d A p dz = 1 2 [α+ α p FCA ] A p +i( γ p e | A p | 2 +2 γ ps e | A s | 2 +2 γ pi e | A i | 2 ) A p +i 2π λ p Δ n p A p +2i γ pspi A p * A s A i exp(iΔβz),
d A s dz = 1 2 [α+ α s FCA ] A s +i(2 γ sp e | A p | 2 + γ s e | A s | 2 +2 γ si e | A i | 2 ) A s +i 2π λ s Δ n s A s +i γ spip A p 2 A i * exp(iΔβz),
d A i dz = 1 2 [α+ α i FCA ] A i +i(2 γ ip e | A p | 2 +2 γ is e | A s | 2 + γ i e | A i | 2 ) A i +i 2π λ i Δ n i A i +i γ ipsp A p 2 A s * exp(iΔβz),
γ klmn e = γ klmn +i β klmn T = n 2 ω k c a ¯ klmn +i β TPA 2 a ¯ klmn ,
d P p dz =(α+ α p FCA +2 β p T P p ) P p 4 γ pspi ( P p 2 P s P i ) 1/2 sinθ,
d P k dz =(α+ α k FCA +4 β kp T P p ) P k +2 γ kplp ( P p 2 P s P i ) 1/2 sinθ,
dθ dz =κ+[ γ spip ( P p 2 P i / P s ) 1/2 + γ ipsp ( P p 2 P s / P i ) 1/2 4 γ pspi ( P s P i ) 1/2 ]cosθ,
κ=Δβ+2( γ sp + γ ip γ p ) P p κ FCD ,
Δβ= β 2 ( ω p ) ( ω p ω s ) 2 + β 4 ( ω p ) ( ω p ω s ) 4 /12.
L ξ = π / 2 | g ξ | ,

Metrics